- -

Synthesis, post-synthetic modification and stability of a 2D styryl ammonium lead iodide hybrid material

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis, post-synthetic modification and stability of a 2D styryl ammonium lead iodide hybrid material

Mostrar el registro completo del ítem

Peng, Y.; Albero-Sancho, J.; García Gómez, H. (2020). Synthesis, post-synthetic modification and stability of a 2D styryl ammonium lead iodide hybrid material. Dalton Transactions. 49(2):395-403. https://doi.org/10.1039/C9DT04285G

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165714

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis, post-synthetic modification and stability of a 2D styryl ammonium lead iodide hybrid material
Autor: Peng, Yong Albero-Sancho, Josep García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] A new hybrid lead iodide material (HP1) having 4-vinylphenylene ammonium as the organic cation has been prepared. The structural formula based on chemical analysis of HP1 corresponds to PbI2.5(4-styrylammonium)(0.5). ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Dalton Transactions. (issn: 1477-9226 )
DOI: 10.1039/C9DT04285G
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/C9DT04285G
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/MINECO//RTI2018-890237-CO2-R1
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/
Agradecimientos:
Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa SEV2016, and RTI2018-890237-CO2-R1) and the Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. Yong Peng also ...[+]
Tipo: Artículo

References

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338(6107), 643-647. doi:10.1126/science.1228604

Boix, P. P., Agarwala, S., Koh, T. M., Mathews, N., & Mhaisalkar, S. G. (2015). Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. The Journal of Physical Chemistry Letters, 6(5), 898-907. doi:10.1021/jz502547f

Eames, C., Frost, J. M., Barnes, P. R. F., O’Regan, B. C., Walsh, A., & Islam, M. S. (2015). Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 6(1). doi:10.1038/ncomms8497 [+]
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338(6107), 643-647. doi:10.1126/science.1228604

Boix, P. P., Agarwala, S., Koh, T. M., Mathews, N., & Mhaisalkar, S. G. (2015). Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. The Journal of Physical Chemistry Letters, 6(5), 898-907. doi:10.1021/jz502547f

Eames, C., Frost, J. M., Barnes, P. R. F., O’Regan, B. C., Walsh, A., & Islam, M. S. (2015). Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 6(1). doi:10.1038/ncomms8497

Kato, Y., Ono, L. K., Lee, M. V., Wang, S., Raga, S. R., & Qi, Y. (2015). Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes. Advanced Materials Interfaces, 2(13), 1500195. doi:10.1002/admi.201500195

Malinkiewicz, O., Yella, A., Lee, Y. H., Espallargas, G. M., Graetzel, M., Nazeeruddin, M. K., & Bolink, H. J. (2013). Perovskite solar cells employing organic charge-transport layers. Nature Photonics, 8(2), 128-132. doi:10.1038/nphoton.2013.341

Christians, J. A., Manser, J. S., & Kamat, P. V. (2015). Multifaceted Excited State of CH3NH3PbI3. Charge Separation, Recombination, and Trapping. The Journal of Physical Chemistry Letters, 6(11), 2086-2095. doi:10.1021/acs.jpclett.5b00594

Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., … Snaith, H. J. (2013). Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 342(6156), 341-344. doi:10.1126/science.1243982

Xing, G., Mathews, N., Sun, S., Lim, S. S., Lam, Y. M., Grätzel, M., … Sum, T. C. (2013). Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH 3 NH 3 PbI 3. Science, 342(6156), 344-347. doi:10.1126/science.1243167

Albero, J., & García, H. (2017). Luminescence control in hybrid perovskites and their applications. Journal of Materials Chemistry C, 5(17), 4098-4110. doi:10.1039/c7tc00714k

Correa-Baena, J.-P., Abate, A., Saliba, M., Tress, W., Jesper Jacobsson, T., Grätzel, M., & Hagfeldt, A. (2017). The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science, 10(3), 710-727. doi:10.1039/c6ee03397k

Jeon, N. J., Na, H., Jung, E. H., Yang, T.-Y., Lee, Y. G., Kim, G., … Seo, J. (2018). A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 3(8), 682-689. doi:10.1038/s41560-018-0200-6

Sahli, F., Werner, J., Kamino, B. A., Bräuninger, M., Monnard, R., Paviet-Salomon, B., … Ballif, C. (2018). Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials, 17(9), 820-826. doi:10.1038/s41563-018-0115-4

Dhakshinamoorthy, A., Navalon, S., Corma, A., & Garcia, H. (2012). Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy & Environmental Science, 5(11), 9217. doi:10.1039/c2ee21948d

Albero, J., Asiri, A. M., & García, H. (2016). Influence of the composition of hybrid perovskites on their performance in solar cells. Journal of Materials Chemistry A, 4(12), 4353-4364. doi:10.1039/c6ta00334f

Park, S., Chang, W. J., Lee, C. W., Park, S., Ahn, H.-Y., & Nam, K. T. (2016). Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nature Energy, 2(1). doi:10.1038/nenergy.2016.185

Niu, G., Guo, X., & Wang, L. (2015). Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A, 3(17), 8970-8980. doi:10.1039/c4ta04994b

Sharma, S. K., Phadnis, C., Das, T. K., Kumar, A., Kavaipatti, B., Chowdhury, A., & Yella, A. (2019). Reversible Dimensionality Tuning of Hybrid Perovskites with Humidity: Visualization and Application to Stable Solar Cells. Chemistry of Materials, 31(9), 3111-3117. doi:10.1021/acs.chemmater.8b04115

Berhe, T. A., Su, W.-N., Chen, C.-H., Pan, C.-J., Cheng, J.-H., Chen, H.-M., … Hwang, B.-J. (2016). Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science, 9(2), 323-356. doi:10.1039/c5ee02733k

Wang, R., Mujahid, M., Duan, Y., Wang, Z., Xue, J., & Yang, Y. (2019). A Review of Perovskites Solar Cell Stability. Advanced Functional Materials, 29(47), 1808843. doi:10.1002/adfm.201808843

Ma, J., Fang, C., Chen, C., Jin, L., Wang, J., Wang, S., … Li, D. (2019). Chiral 2D Perovskites with a High Degree of Circularly Polarized Photoluminescence. ACS Nano, 13(3), 3659-3665. doi:10.1021/acsnano.9b00302

Tremblay, M.-H., Thouin, F., Leisen, J., Bacsa, J., Srimath Kandada, A. R., Hoffman, J. M., … Marder, S. R. (2019). (4NPEA)2PbI4 (4NPEA = 4-Nitrophenylethylammonium): Structural, NMR, and Optical Properties of a 3 × 3 Corrugated 2D Hybrid Perovskite. Journal of the American Chemical Society, 141(11), 4521-4525. doi:10.1021/jacs.8b13207

Spanopoulos, I., Hadar, I., Ke, W., Tu, Q., Chen, M., Tsai, H., … Kanatzidis, M. G. (2019). Uniaxial Expansion of the 2D Ruddlesden–Popper Perovskite Family for Improved Environmental Stability. Journal of the American Chemical Society, 141(13), 5518-5534. doi:10.1021/jacs.9b01327

Febriansyah, B., Koh, T. M., John, R. A., Ganguly, R., Li, Y., Bruno, A., … England, J. (2018). Inducing Panchromatic Absorption and Photoconductivity in Polycrystalline Molecular 1D Lead-Iodide Perovskites through π-Stacked Viologens. Chemistry of Materials, 30(17), 5827-5830. doi:10.1021/acs.chemmater.8b02038

Zhao, Y.-Q., Ma, Q.-R., Liu, B., Yu, Z.-L., Yang, J., & Cai, M.-Q. (2018). Layer-dependent transport and optoelectronic property in two-dimensional perovskite: (PEA)2PbI4. Nanoscale, 10(18), 8677-8688. doi:10.1039/c8nr00997j

Byun, J., Cho, H., Wolf, C., Jang, M., Sadhanala, A., Friend, R. H., … Lee, T.-W. (2016). Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes. Advanced Materials, 28(34), 7515-7520. doi:10.1002/adma.201601369

Li, N., Zhu, Z., Chueh, C.-C., Liu, H., Peng, B., Petrone, A., … Jen, A. K.-Y. (2016). Mixed Cation FAxPEA1-xPbI3with Enhanced Phase and Ambient Stability toward High-Performance Perovskite Solar Cells. Advanced Energy Materials, 7(1), 1601307. doi:10.1002/aenm.201601307

Arabpour Roghabadi, F., Alidaei, M., Mousavi, S. M., Ashjari, T., Tehrani, A. S., Ahmadi, V., & Sadrameli, S. M. (2019). Stability progress of perovskite solar cells dependent on the crystalline structure: From 3D ABX3 to 2D Ruddlesden–Popper perovskite absorbers. Journal of Materials Chemistry A, 7(11), 5898-5933. doi:10.1039/c8ta10444a

Khuong, K. S., Jones, W. H., Pryor, W. A., & Houk, K. N. (2005). The Mechanism of the Self-Initiated Thermal Polymerization of Styrene. Theoretical Solution of a Classic Problem. Journal of the American Chemical Society, 127(4), 1265-1277. doi:10.1021/ja0448667

Yao, K., Wang, X., Li, F., & Zhou, L. (2015). Mixed perovskite based on methyl-ammonium and polymeric-ammonium for stable and reproducible solar cells. Chemical Communications, 51(84), 15430-15433. doi:10.1039/c5cc05879a

Bubnova, O. (2016). 2D materials: Hybrid interfaces. Nature Nanotechnology. doi:10.1038/nnano.2016.13

Saidaminov, M. I., Abdelhady, A. L., Murali, B., Alarousu, E., Burlakov, V. M., Peng, W., … Bakr, O. M. (2015). High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nature Communications, 6(1). doi:10.1038/ncomms8586

Baikie, T., Fang, Y., Kadro, J. M., Schreyer, M., Wei, F., Mhaisalkar, S. G., … White, T. J. (2013). Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A, 1(18), 5628. doi:10.1039/c3ta10518k

Dou, L., Wong, A. B., Yu, Y., Lai, M., Kornienko, N., Eaton, S. W., … Yang, P. (2015). Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 349(6255), 1518-1521. doi:10.1126/science.aac7660

Milot, R. L., Sutton, R. J., Eperon, G. E., Haghighirad, A. A., Martinez Hardigree, J., Miranda, L., … Herz, L. M. (2016). Charge-Carrier Dynamics in 2D Hybrid Metal–Halide Perovskites. Nano Letters, 16(11), 7001-7007. doi:10.1021/acs.nanolett.6b03114

Véron, A. C., Linden, A., Leclaire, N. A., Roedern, E., Hu, S., Ren, W., … Nüesch, F. A. (2018). One-Dimensional Organic–Inorganic Hybrid Perovskite Incorporating Near-Infrared-Absorbing Cyanine Cations. The Journal of Physical Chemistry Letters, 9(9), 2438-2442. doi:10.1021/acs.jpclett.8b00458

Peng, Y., Albero, J., Álvarez, E., & García, H. (2019). Hybrid benzidinium lead iodide perovskites with a 1D structure as photoinduced electron transfer photocatalysts. Sustainable Energy & Fuels, 3(9), 2356-2360. doi:10.1039/c9se00182d

Wang, S., Ono, L. K., Leyden, M. R., Kato, Y., Raga, S. R., Lee, M. V., & Qi, Y. (2015). Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method. Journal of Materials Chemistry A, 3(28), 14631-14641. doi:10.1039/c5ta03593g

Zhang, F., & Srinivasan, M. P. (2007). Multilayered Gold-Nanoparticle/Polyimide Composite Thin Film through Layer-by-Layer Assembly. Langmuir, 23(20), 10102-10108. doi:10.1021/la0635045

Singh, T., Öz, S., Sasinska, A., Frohnhoven, R., Mathur, S., & Miyasaka, T. (2018). Sulfate‐Assisted Interfacial Engineering for High Yield and Efficiency of Triple Cation Perovskite Solar Cells with Alkali‐Doped TiO 2 Electron‐Transporting Layers. Advanced Functional Materials, 28(14), 1706287. doi:10.1002/adfm.201706287

Yang, J., & Kelly, T. L. (2016). Decomposition and Cell Failure Mechanisms in Lead Halide Perovskite Solar Cells. Inorganic Chemistry, 56(1), 92-101. doi:10.1021/acs.inorgchem.6b01307

Huang, W., Manser, J. S., Kamat, P. V., & Ptasinska, S. (2015). Evolution of Chemical Composition, Morphology, and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite under Ambient Conditions. Chemistry of Materials, 28(1), 303-311. doi:10.1021/acs.chemmater.5b04122

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem