- -

A Lamellar MWW Zeolite With Silicon and Niobium Oxide Pillars: A Catalyst for the Oxidation of Volatile Organic Compounds

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


A Lamellar MWW Zeolite With Silicon and Niobium Oxide Pillars: A Catalyst for the Oxidation of Volatile Organic Compounds

Show full item record

Schwanke, AJ.; Balzer, R.; Lopes, CW.; Meira, DM.; Díaz Morales, UM.; Corma Canós, A.; Pergher, S. (2020). A Lamellar MWW Zeolite With Silicon and Niobium Oxide Pillars: A Catalyst for the Oxidation of Volatile Organic Compounds. Chemistry - A European Journal. 26(46):1-12. https://doi.org/10.1002/chem.202000862

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165715

Files in this item

Item Metadata

Title: A Lamellar MWW Zeolite With Silicon and Niobium Oxide Pillars: A Catalyst for the Oxidation of Volatile Organic Compounds
Author: Schwanke, Anderson Joel Balzer, Rosana Lopes, Christian Wittee Meira, Debora Motta DÍAZ MORALES, URBANO MANUEL Corma Canós, Avelino Pergher, Sibele
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
[EN] In this work, an MWW-type zeolite with pillars containing silicon and niobium oxide was synthesized to obtain a hierarchical zeolite. The effect of niobium insertion in the pillaring process was determined by combining ...[+]
Subjects: Layered compounds , MCM-36 , Niobium , Oxidation , Zeolite
Copyrigths: Reserva de todos los derechos
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.202000862
John Wiley & Sons
Publisher version: https://doi.org/10.1002/chem.202000862
Project ID:
Ministerio Ciencia, Innovación y Universidades/MAT2017-82288-C2-1-P
Description: This is the peer reviewed version of the following article: A. J. Schwanke, R. Balzer, C. Wittee Lopes, D. Motta Meira, U. Díaz, A. Corma, S. Pergher, Chem. Eur. J. 2020, 26, 10459, which has been published in final form at https://doi.org/10.1002/chem.202000862. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
A.J.S. thanks the CordenacAo de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES)-Finance Code 001, the PDSE program (process number 99999.004779/2014-02) and the prof. Claudio Radtke from the PPGQ-UFRGS for the ...[+]
Type: Artículo


Zhang, X., Guo, J., Guan, P., Liu, C., Huang, H., Xue, F., … Chisholm, M. F. (2013). Catalytically active single-atom niobium in graphitic layers. Nature Communications, 4(1). doi:10.1038/ncomms2929

Yan, W., Zhang, G., Yan, H., Liu, Y., Chen, X., Feng, X., … Yang, C. (2018). Liquid-Phase Epoxidation of Light Olefins over W and Nb Nanocatalysts. ACS Sustainable Chemistry & Engineering, 6(4), 4423-4452. doi:10.1021/acssuschemeng.7b03101

Ziolek, M., & Sobczak, I. (2017). The role of niobium component in heterogeneous catalysts. Catalysis Today, 285, 211-225. doi:10.1016/j.cattod.2016.12.013 [+]
Zhang, X., Guo, J., Guan, P., Liu, C., Huang, H., Xue, F., … Chisholm, M. F. (2013). Catalytically active single-atom niobium in graphitic layers. Nature Communications, 4(1). doi:10.1038/ncomms2929

Yan, W., Zhang, G., Yan, H., Liu, Y., Chen, X., Feng, X., … Yang, C. (2018). Liquid-Phase Epoxidation of Light Olefins over W and Nb Nanocatalysts. ACS Sustainable Chemistry & Engineering, 6(4), 4423-4452. doi:10.1021/acssuschemeng.7b03101

Ziolek, M., & Sobczak, I. (2017). The role of niobium component in heterogeneous catalysts. Catalysis Today, 285, 211-225. doi:10.1016/j.cattod.2016.12.013

Tanabe, K. (2003). Catalytic application of niobium compounds. Catalysis Today, 78(1-4), 65-77. doi:10.1016/s0920-5861(02)00343-7

Nakajima, K., Baba, Y., Noma, R., Kitano, M., N. Kondo, J., Hayashi, S., & Hara, M. (2011). Nb2O5·nH2O as a Heterogeneous Catalyst with Water-Tolerant Lewis Acid Sites. Journal of the American Chemical Society, 133(12), 4224-4227. doi:10.1021/ja110482r

Nowak, I., & Ziolek, M. (1999). Niobium Compounds:  Preparation, Characterization, and Application in Heterogeneous Catalysis. Chemical Reviews, 99(12), 3603-3624. doi:10.1021/cr9800208

Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417(6891), 813-821. doi:10.1038/nature00785

Li, K., Valla, J., & Garcia-Martinez, J. (2013). Realizing the Commercial Potential of Hierarchical Zeolites: New Opportunities in Catalytic Cracking. ChemCatChem, 6(1), 46-66. doi:10.1002/cctc.201300345

Pérez-Ramírez, J., Christensen, C. H., Egeblad, K., Christensen, C. H., & Groen, J. C. (2008). Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 37(11), 2530. doi:10.1039/b809030k

Schwieger, W., Machoke, A. G., Weissenberger, T., Inayat, A., Selvam, T., Klumpp, M., & Inayat, A. (2016). Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chemical Society Reviews, 45(12), 3353-3376. doi:10.1039/c5cs00599j

Přech, J., Pizarro, P., Serrano, D. P., & Čejka, J. (2018). From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 47(22), 8263-8306. doi:10.1039/c8cs00370j

Ramos, F. S. O., Pietre, M. K. de, & Pastore, H. O. (2013). Lamellar zeolites: an oxymoron? RSC Adv., 3(7), 2084-2111. doi:10.1039/c2ra21573j

Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910

Maheshwari, S., Martínez, C., Teresa Portilla, M., Llopis, F. J., Corma, A., & Tsapatsis, M. (2010). Influence of layer structure preservation on the catalytic properties of the pillared zeolite MCM-36. Journal of Catalysis, 272(2), 298-308. doi:10.1016/j.jcat.2010.04.011

Dumitriu, E., Secundo, F., Patarin, J., & Fechete, I. (2003). Preparation and properties of lipase immobilized on MCM-36 support. Journal of Molecular Catalysis B: Enzymatic, 22(3-4), 119-133. doi:10.1016/s1381-1177(03)00015-8

Kim, S.-Y., Ban, H.-J., & Ahn, W.-S. (2007). Ti-MCM-36: a new mesoporous epoxidation catalyst. Catalysis Letters, 113(3-4), 160-164. doi:10.1007/s10562-007-9022-z

A.Corma V.Fornés A.Chica U.Diaz Spanish Patent 9802283 1999;

Roth, W. J., & Kresge, C. T. (2011). Intercalation chemistry of NU-6(1), the layered precursor to zeolite NSI, leading to the pillared zeolite MCM-39(Si). Microporous and Mesoporous Materials, 144(1-3), 158-161. doi:10.1016/j.micromeso.2011.04.006

Na, K., Choi, M., Park, W., Sakamoto, Y., Terasaki, O., & Ryoo, R. (2010). Pillared MFI Zeolite Nanosheets of a Single-Unit-Cell Thickness. Journal of the American Chemical Society, 132(12), 4169-4177. doi:10.1021/ja908382n

Kosuge, K., & Tsunashima, A. (1995). New silica-pillared material prepared from the layered silicic acid of ilerite. Journal of the Chemical Society, Chemical Communications, (23), 2427. doi:10.1039/c39950002427

Chlubná, P., Roth, W. J., Greer, H. F., Zhou, W., Shvets, O., Zukal, A., … Morris, R. E. (2013). 3D to 2D Routes to Ultrathin and Expanded Zeolitic Materials. Chemistry of Materials, 25(4), 542-547. doi:10.1021/cm303260z

Přech, J., & Čejka, J. (2016). UTL titanosilicate: An extra-large pore epoxidation catalyst with tunable textural properties. Catalysis Today, 277, 2-8. doi:10.1016/j.cattod.2015.09.036

Roth, W. J., Nachtigall, P., Morris, R. E., & Čejka, J. (2014). Two-Dimensional Zeolites: Current Status and Perspectives. Chemical Reviews, 114(9), 4807-4837. doi:10.1021/cr400600f

Barth, J.-O., Kornatowski, J., & Lercher*, J. A. (2002). Synthesis of new MCM-36 derivatives pillared with alumina or magnesia–alumina. Journal of Materials Chemistry, 12(2), 369-373. doi:10.1039/b104824b

BARTH, J., JENTYS, A., ILIOPOULOU, E., VASALOS, I., & LERCHER, J. (2004). Novel derivatives of MCM-36 as catalysts for the reduction of nitrogen oxides from FCC regenerator flue gas streams. Journal of Catalysis, 227(1), 117-129. doi:10.1016/j.jcat.2004.06.021

Jin, F., Huang, S., Cheng, S., Wu, Y., Chang, C.-C., & Huang, Y.-W. (2015). The influences of Al species and Ti species on the catalytic epoxidation over Si/Ti-pillared MCM-36 synthesized from MCM-22. Catalysis Science & Technology, 5(5), 3007-3016. doi:10.1039/c5cy00145e

Wojtaszek-Gurdak, A., Zielinska, M., & Ziolek, M. (2019). MWW layered zeolites modified with niobium species - Surface and catalytic properties. Catalysis Today, 325, 89-97. doi:10.1016/j.cattod.2018.07.044

Přech, J., Eliášová, P., Aldhayan, D., & Kubů, M. (2015). Epoxidation of bulky organic molecules over pillared titanosilicates. Catalysis Today, 243, 134-140. doi:10.1016/j.cattod.2014.07.002

Ushikubo, T. (2000). Recent topics of research and development of catalysis by niobium and tantalum oxides. Catalysis Today, 57(3-4), 331-338. doi:10.1016/s0920-5861(99)00344-2

Bertuna, A., Comini, E., Poli, N., Zappa, D., & Sberveglieri, G. (2014). Niobium Oxide Nanostructures for Chemical Sensing. Procedia Engineering, 87, 807-810. doi:10.1016/j.proeng.2014.11.675

Zhen, G., Eggli, V., Vörös, J., Zammaretti, P., Textor, M., Glockshuber, R., & Kuennemann, E. (2004). Immobilization of the Enzyme β-Lactamase on Biotin-Derivatized Poly(l-lysine)-g-poly(ethylene glycol)-Coated Sensor Chips:  A Study on Oriented Attachment and Surface Activity by Enzyme Kinetics and in Situ Optical Sensing. Langmuir, 20(24), 10464-10473. doi:10.1021/la0482812

Corma, A., Llabrés i Xamena, F. X., Prestipino, C., Renz, M., & Valencia, S. (2009). Water Resistant, Catalytically Active Nb and Ta Isolated Lewis Acid Sites, Homogeneously Distributed by Direct Synthesis in a Beta Zeolite. The Journal of Physical Chemistry C, 113(26), 11306-11315. doi:10.1021/jp902375n

Trejda, M., Wojtaszek, A., Floch, A., Wojcieszak, R., Gaigneaux, E. M., & Ziolek, M. (2010). New Nb and Ta–FAU zeolites—Direct synthesis, characterisation and surface properties. Catalysis Today, 158(1-2), 170-177. doi:10.1016/j.cattod.2010.06.018

Wojtaszek, A., Ziolek, M., Dzwigaj, S., & Tielens, F. (2011). Comparison of competition between T=O and T–OH groups in vanadium, niobium, tantalum BEA zeolite and SOD based zeolites. Chemical Physics Letters, 514(1-3), 70-73. doi:10.1016/j.cplett.2011.08.005

Hartmann, M., Prakash, A. M., & Kevan, L. (2003). Characterization and catalytic evaluation of mesoporous and microporous molecular sieves containing niobium. Catalysis Today, 78(1-4), 467-475. doi:10.1016/s0920-5861(02)00334-6

Tielens, F., Shishido, T., & Dzwigaj, S. (2010). What Do the Niobium Framework Sites Look Like in Redox Zeolites? A Combined Theoretical and Experimental Investigation. The Journal of Physical Chemistry C, 114(7), 3140-3147. doi:10.1021/jp910956j

Sobczak, I., Kieronczyk, N., Trejda, M., & Ziolek, M. (2008). Gold, vanadium and niobium containing MCM-41 materials—Catalytic properties in methanol oxidation. Catalysis Today, 139(3), 188-195. doi:10.1016/j.cattod.2008.05.029

Trejda, M., Tuel, A., Kujawa, J., Kilos, B., & Ziolek, M. (2008). Niobium rich SBA-15 materials – preparation, characterisation and catalytic activity. Microporous and Mesoporous Materials, 110(2-3), 271-278. doi:10.1016/j.micromeso.2007.06.015

KILOS, B., TUEL, A., ZIOLEK, M., & VOLTA, J. (2006). New Nb-containing SBA-3 mesoporous materials—Synthesis, characteristics, and catalytic activity in gas and liquid phase oxidation. Catalysis Today, 118(3-4), 416-424. doi:10.1016/j.cattod.2006.07.029

DIAS, A., LIMA, S., CARRIAZO, D., RIVES, V., PILLINGER, M., & VALENTE, A. (2006). Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of d-xylose into furfural. Journal of Catalysis, 244(2), 230-237. doi:10.1016/j.jcat.2006.09.010

Prakash, A. M., & Kevan, L. (1998). Synthesis of Niobium Silicate Molecular Sieves of the MFI Structure:  Evidence for Framework Incorporation of the Niobium Ion. Journal of the American Chemical Society, 120(50), 13148-13155. doi:10.1021/ja982262v

Da Silva, A. G. M., Rodrigues, T. S., Candido, E. G., de Freitas, I. C., da Silva, A. H. M., Fajardo, H. V., … Camargo, P. H. C. (2018). Combining active phase and support optimization in MnO2-Au nanoflowers: Enabling high activities towards green oxidations. Journal of Colloid and Interface Science, 530, 282-291. doi:10.1016/j.jcis.2018.06.089

Balzer, R., Probst, L. F. D., Fajardo, H. V., Teodoro, F. S., Gurgel, L. V. A., & Gil, L. F. (2017). New use for succinylated sugarcane bagasse containing adsorbed Cu 2+ and Ni 2+ : Efficient catalysts for gas-phase n -hexane and n -heptane oxidation reactions. Industrial Crops and Products, 97, 649-652. doi:10.1016/j.indcrop.2017.01.006

Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145

Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719

Díaz, U., & Corma, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions, 43(27), 10292. doi:10.1039/c3dt53181c

Rodrigues, M. V., Okolie, C., Sievers, C., & Martins, L. (2018). Organosilane-Assisted Synthesis of Hierarchical MCM-22 Zeolites for Condensation of Glycerol into Bulky Products. Crystal Growth & Design, 19(1), 231-241. doi:10.1021/acs.cgd.8b01310

Chlubná, P., Roth, W. J., Zukal, A., Kubů, M., & Pavlatová, J. (2012). Pillared MWW zeolites MCM-36 prepared by swelling MCM-22P in concentrated surfactant solutions. Catalysis Today, 179(1), 35-42. doi:10.1016/j.cattod.2011.06.035

Ramanathan, A., Maheswari, R., & Subramaniam, B. (2015). Facile Styrene Epoxidation with H2O2 over Novel Niobium Containing Cage Type Mesoporous Silicate, Nb-KIT-5. Topics in Catalysis, 58(4-6), 314-324. doi:10.1007/s11244-015-0372-2

Wojtaszek-Gurdak, A., & Ziolek, M. (2015). Nb and Zr modified MWW zeolites – characterisation and catalytic activity. RSC Advances, 5(29), 22326-22333. doi:10.1039/c5ra00411j

Bahl, M. K. (1975). ESCA studies of some niobium compounds. Journal of Physics and Chemistry of Solids, 36(6), 485-491. doi:10.1016/0022-3697(75)90132-8

Fernandes, S. L., Albano, L. G. S., Affonço, L. J., Silva, J. H. D. da, Longo, E., & Graeff, C. F. de O. (2019). Exploring the Properties of Niobium Oxide Films for Electron Transport Layers in Perovskite Solar Cells. Frontiers in Chemistry, 7. doi:10.3389/fchem.2019.00050

Jin, K., Zhang, T., Ji, J., Zhang, M., Zhang, Y., & Tang, S. (2015). Functionalization of MCM-22 by Dual Acidic Ionic Liquid and Its Paraffin Absorption Modulation Properties. Industrial & Engineering Chemistry Research, 54(1), 164-170. doi:10.1021/ie504327t

Yoshida, H., Tanaka, T., Yoshida, T., Funabiki, T., & Yoshida, S. (1996). Control of the structure of niobium oxide species on silica by the equilibrium adsorption method. Catalysis Today, 28(1-2), 79-89. doi:10.1016/0920-5861(95)00232-4

Tiozzo, C., Bisio, C., Carniato, F., Gallo, A., Scott, S. L., Psaro, R., & Guidotti, M. (2013). Niobium–silica catalysts for the selective epoxidation of cyclic alkenes: the generation of the active site by grafting niobocene dichloride. Physical Chemistry Chemical Physics, 15(32), 13354. doi:10.1039/c3cp51570b

MATIAS, P., LOPES, J., LAFORGE, S., MAGNOUX, P., RUSSO, P., RIBEIROCARROTT, M., … RAMOARIBEIRO, F. (2008). Methylcyclohexane transformation over HMCM22 zeolite: Mechanism and location of the reactions. Journal of Catalysis, 259(2), 190-202. doi:10.1016/j.jcat.2008.08.006

Laforge, S., Ayrault, P., Martin, D., & Guisnet, M. (2005). Acidic and catalytic properties of MCM-22 and MCM-36 zeolites synthesized from the same precursors. Applied Catalysis A: General, 279(1-2), 79-88. doi:10.1016/j.apcata.2004.10.015

Cecilia, J. A., García-Sancho, C., & Franco, F. (2013). Montmorillonite based porous clay heterostructures: Influence of Zr in the structure and acidic properties. Microporous and Mesoporous Materials, 176, 95-102. doi:10.1016/j.micromeso.2013.03.037

Nolan, M., Parker, S. C., & Watson, G. W. (2005). The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surface Science, 595(1-3), 223-232. doi:10.1016/j.susc.2005.08.015

Laguna, O. H., Pérez, A., Centeno, M. A., & Odriozola, J. A. (2015). Synergy between gold and oxygen vacancies in gold supported on Zr-doped ceria catalysts for the CO oxidation. Applied Catalysis B: Environmental, 176-177, 385-395. doi:10.1016/j.apcatb.2015.04.019

Guillén-Hurtado, N., García-García, A., & Bueno-López, A. (2013). Isotopic study of ceria-catalyzed soot oxidation in the presence of NOx. Journal of Catalysis, 299, 181-187. doi:10.1016/j.jcat.2012.11.026

Da Silva, A. G. M., Fajardo, H. V., Balzer, R., Probst, L. F. D., Lovón, A. S. P., Lovón-Quintana, J. J., … Robles-Dutenhefner, P. A. (2015). Versatile and efficient catalysts for energy and environmental processes: Mesoporous silica containing Au, Pd and Au-Pd. Journal of Power Sources, 285, 460-468. doi:10.1016/j.jpowsour.2015.03.066

Tang, X., Xu, Y., & Shen, W. (2008). Promoting effect of copper on the catalytic activity of MnOx–CeO2 mixed oxide for complete oxidation of benzene. Chemical Engineering Journal, 144(2), 175-180. doi:10.1016/j.cej.2008.01.016

Solsona, B., Pérez-Cabero, M., Vázquez, I., Dejoz, A., García, T., Álvarez-Rodríguez, J., … Amorós, P. (2012). Total oxidation of VOCs on Au nanoparticles anchored on Co doped mesoporous UVM-7 silica. Chemical Engineering Journal, 187, 391-400. doi:10.1016/j.cej.2012.01.132

Ousmane, M., Liotta, L. F., Carlo, G. D., Pantaleo, G., Venezia, A. M., Deganello, G., … Giroir-Fendler, A. (2011). Supported Au catalysts for low-temperature abatement of propene and toluene, as model VOCs: Support effect. Applied Catalysis B: Environmental, 101(3-4), 629-637. doi:10.1016/j.apcatb.2010.11.004

Li, S., Wang, H., Li, W., Wu, X., Tang, W., & Chen, Y. (2015). Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor. Applied Catalysis B: Environmental, 166-167, 260-269. doi:10.1016/j.apcatb.2014.11.040

Mo, S., Li, S., Li, J., Deng, Y., Peng, S., Chen, J., & Chen, Y. (2016). Rich surface Co(iii) ions-enhanced Co nanocatalyst benzene/toluene oxidation performance derived from CoIICoIIIlayered double hydroxide. Nanoscale, 8(34), 15763-15773. doi:10.1039/c6nr04902h

Zuo, S., Huang, Q., Li, J., & Zhou, R. (2009). Promoting effect of Ce added to metal oxide supported on Al pillared clays for deep benzene oxidation. Applied Catalysis B: Environmental, 91(1-2), 204-209. doi:10.1016/j.apcatb.2009.05.025

López, J. M., Gilbank, A. L., García, T., Solsona, B., Agouram, S., & Torrente-Murciano, L. (2015). The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Applied Catalysis B: Environmental, 174-175, 403-412. doi:10.1016/j.apcatb.2015.03.017

Hatanaka, M., Takahashi, N., Tanabe, T., Nagai, Y., Dohmae, K., Aoki, Y., … Shinjoh, H. (2010). Ideal Pt loading for a Pt/CeO2-based catalyst stabilized by a Pt–O–Ce bond. Applied Catalysis B: Environmental, 99(1-2), 336-342. doi:10.1016/j.apcatb.2010.07.003

Li, W. B., Wang, J. X., & Gong, H. (2009). Catalytic combustion of VOCs on non-noble metal catalysts. Catalysis Today, 148(1-2), 81-87. doi:10.1016/j.cattod.2009.03.007




This item appears in the following Collection(s)

Show full item record