- -

A Lamellar MWW Zeolite With Silicon and Niobium Oxide Pillars: A Catalyst for the Oxidation of Volatile Organic Compounds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Lamellar MWW Zeolite With Silicon and Niobium Oxide Pillars: A Catalyst for the Oxidation of Volatile Organic Compounds

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Schwanke, Anderson Joel es_ES
dc.contributor.author Balzer, Rosana es_ES
dc.contributor.author Lopes, Christian Wittee es_ES
dc.contributor.author Meira, Debora Motta es_ES
dc.contributor.author DÍAZ MORALES, URBANO MANUEL es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Pergher, Sibele es_ES
dc.date.accessioned 2021-04-28T03:31:39Z
dc.date.available 2021-04-28T03:31:39Z
dc.date.issued 2020-08-17 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165715
dc.description This is the peer reviewed version of the following article: A. J. Schwanke, R. Balzer, C. Wittee Lopes, D. Motta Meira, U. Díaz, A. Corma, S. Pergher, Chem. Eur. J. 2020, 26, 10459, which has been published in final form at https://doi.org/10.1002/chem.202000862. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] In this work, an MWW-type zeolite with pillars containing silicon and niobium oxide was synthesized to obtain a hierarchical zeolite. The effect of niobium insertion in the pillaring process was determined by combining a controllable acidity and accessibility in the final material. All pillared materials had niobium occupying framework positions in pillars and extra-framework positions. The pillared material, Pil-Nb-4.5 with 4.5 wt % niobium, did not compromise the mesoporosity formed by pillaring, while the increase of niobium in the structure gradually decreased the mesoporosity and ordering of lamellar stacking. The morphology of the pillared zeolites and the niobium content were found to directly affect the catalytic activity. Specifically, we report on the activity of the MWW-type zeolites with niobium catalyzing the gas-phase oxidation of volatile organic compounds (VOCs), which is an important reaction for clean environmental. All produced MWW-type zeolites with niobium were catalytically active, even at low temperatures and low niobium loading, and provided excellent conversion efficiencies. es_ES
dc.description.sponsorship A.J.S. thanks the CordenacAo de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES)-Finance Code 001, the PDSE program (process number 99999.004779/2014-02) and the prof. Claudio Radtke from the PPGQ-UFRGS for the XPS analyses. C.W.L. is grateful to INOMAT/CAPES for a postdoctoral fellowship. U.D. thanks the funding by the Spanish Government (MAT2017-82288-C2-1-P). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Layered compounds es_ES
dc.subject MCM-36 es_ES
dc.subject Niobium es_ES
dc.subject Oxidation es_ES
dc.subject Zeolite es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title A Lamellar MWW Zeolite With Silicon and Niobium Oxide Pillars: A Catalyst for the Oxidation of Volatile Organic Compounds es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.202000862 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//99999.004779%2F2014-02/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Schwanke, AJ.; Balzer, R.; Lopes, CW.; Meira, DM.; Díaz Morales, UM.; Corma Canós, A.; Pergher, S. (2020). A Lamellar MWW Zeolite With Silicon and Niobium Oxide Pillars: A Catalyst for the Oxidation of Volatile Organic Compounds. Chemistry - A European Journal. 26(46):1-12. https://doi.org/10.1002/chem.202000862 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.202000862 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 46 es_ES
dc.identifier.pmid 32427389 es_ES
dc.relation.pasarela S\434007 es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Zhang, X., Guo, J., Guan, P., Liu, C., Huang, H., Xue, F., … Chisholm, M. F. (2013). Catalytically active single-atom niobium in graphitic layers. Nature Communications, 4(1). doi:10.1038/ncomms2929 es_ES
dc.description.references Yan, W., Zhang, G., Yan, H., Liu, Y., Chen, X., Feng, X., … Yang, C. (2018). Liquid-Phase Epoxidation of Light Olefins over W and Nb Nanocatalysts. ACS Sustainable Chemistry & Engineering, 6(4), 4423-4452. doi:10.1021/acssuschemeng.7b03101 es_ES
dc.description.references Ziolek, M., & Sobczak, I. (2017). The role of niobium component in heterogeneous catalysts. Catalysis Today, 285, 211-225. doi:10.1016/j.cattod.2016.12.013 es_ES
dc.description.references Tanabe, K. (2003). Catalytic application of niobium compounds. Catalysis Today, 78(1-4), 65-77. doi:10.1016/s0920-5861(02)00343-7 es_ES
dc.description.references Nakajima, K., Baba, Y., Noma, R., Kitano, M., N. Kondo, J., Hayashi, S., & Hara, M. (2011). Nb2O5·nH2O as a Heterogeneous Catalyst with Water-Tolerant Lewis Acid Sites. Journal of the American Chemical Society, 133(12), 4224-4227. doi:10.1021/ja110482r es_ES
dc.description.references Nowak, I., & Ziolek, M. (1999). Niobium Compounds:  Preparation, Characterization, and Application in Heterogeneous Catalysis. Chemical Reviews, 99(12), 3603-3624. doi:10.1021/cr9800208 es_ES
dc.description.references Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417(6891), 813-821. doi:10.1038/nature00785 es_ES
dc.description.references Li, K., Valla, J., & Garcia-Martinez, J. (2013). Realizing the Commercial Potential of Hierarchical Zeolites: New Opportunities in Catalytic Cracking. ChemCatChem, 6(1), 46-66. doi:10.1002/cctc.201300345 es_ES
dc.description.references Pérez-Ramírez, J., Christensen, C. H., Egeblad, K., Christensen, C. H., & Groen, J. C. (2008). Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 37(11), 2530. doi:10.1039/b809030k es_ES
dc.description.references Schwieger, W., Machoke, A. G., Weissenberger, T., Inayat, A., Selvam, T., Klumpp, M., & Inayat, A. (2016). Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chemical Society Reviews, 45(12), 3353-3376. doi:10.1039/c5cs00599j es_ES
dc.description.references Přech, J., Pizarro, P., Serrano, D. P., & Čejka, J. (2018). From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 47(22), 8263-8306. doi:10.1039/c8cs00370j es_ES
dc.description.references Ramos, F. S. O., Pietre, M. K. de, & Pastore, H. O. (2013). Lamellar zeolites: an oxymoron? RSC Adv., 3(7), 2084-2111. doi:10.1039/c2ra21573j es_ES
dc.description.references Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910 es_ES
dc.description.references Maheshwari, S., Martínez, C., Teresa Portilla, M., Llopis, F. J., Corma, A., & Tsapatsis, M. (2010). Influence of layer structure preservation on the catalytic properties of the pillared zeolite MCM-36. Journal of Catalysis, 272(2), 298-308. doi:10.1016/j.jcat.2010.04.011 es_ES
dc.description.references Dumitriu, E., Secundo, F., Patarin, J., & Fechete, I. (2003). Preparation and properties of lipase immobilized on MCM-36 support. Journal of Molecular Catalysis B: Enzymatic, 22(3-4), 119-133. doi:10.1016/s1381-1177(03)00015-8 es_ES
dc.description.references Kim, S.-Y., Ban, H.-J., & Ahn, W.-S. (2007). Ti-MCM-36: a new mesoporous epoxidation catalyst. Catalysis Letters, 113(3-4), 160-164. doi:10.1007/s10562-007-9022-z es_ES
dc.description.references A.Corma V.Fornés A.Chica U.Diaz Spanish Patent 9802283 1999; es_ES
dc.description.references Roth, W. J., & Kresge, C. T. (2011). Intercalation chemistry of NU-6(1), the layered precursor to zeolite NSI, leading to the pillared zeolite MCM-39(Si). Microporous and Mesoporous Materials, 144(1-3), 158-161. doi:10.1016/j.micromeso.2011.04.006 es_ES
dc.description.references Na, K., Choi, M., Park, W., Sakamoto, Y., Terasaki, O., & Ryoo, R. (2010). Pillared MFI Zeolite Nanosheets of a Single-Unit-Cell Thickness. Journal of the American Chemical Society, 132(12), 4169-4177. doi:10.1021/ja908382n es_ES
dc.description.references Kosuge, K., & Tsunashima, A. (1995). New silica-pillared material prepared from the layered silicic acid of ilerite. Journal of the Chemical Society, Chemical Communications, (23), 2427. doi:10.1039/c39950002427 es_ES
dc.description.references Chlubná, P., Roth, W. J., Greer, H. F., Zhou, W., Shvets, O., Zukal, A., … Morris, R. E. (2013). 3D to 2D Routes to Ultrathin and Expanded Zeolitic Materials. Chemistry of Materials, 25(4), 542-547. doi:10.1021/cm303260z es_ES
dc.description.references Přech, J., & Čejka, J. (2016). UTL titanosilicate: An extra-large pore epoxidation catalyst with tunable textural properties. Catalysis Today, 277, 2-8. doi:10.1016/j.cattod.2015.09.036 es_ES
dc.description.references Roth, W. J., Nachtigall, P., Morris, R. E., & Čejka, J. (2014). Two-Dimensional Zeolites: Current Status and Perspectives. Chemical Reviews, 114(9), 4807-4837. doi:10.1021/cr400600f es_ES
dc.description.references Barth, J.-O., Kornatowski, J., & Lercher*, J. A. (2002). Synthesis of new MCM-36 derivatives pillared with alumina or magnesia–alumina. Journal of Materials Chemistry, 12(2), 369-373. doi:10.1039/b104824b es_ES
dc.description.references BARTH, J., JENTYS, A., ILIOPOULOU, E., VASALOS, I., & LERCHER, J. (2004). Novel derivatives of MCM-36 as catalysts for the reduction of nitrogen oxides from FCC regenerator flue gas streams. Journal of Catalysis, 227(1), 117-129. doi:10.1016/j.jcat.2004.06.021 es_ES
dc.description.references Jin, F., Huang, S., Cheng, S., Wu, Y., Chang, C.-C., & Huang, Y.-W. (2015). The influences of Al species and Ti species on the catalytic epoxidation over Si/Ti-pillared MCM-36 synthesized from MCM-22. Catalysis Science & Technology, 5(5), 3007-3016. doi:10.1039/c5cy00145e es_ES
dc.description.references Wojtaszek-Gurdak, A., Zielinska, M., & Ziolek, M. (2019). MWW layered zeolites modified with niobium species - Surface and catalytic properties. Catalysis Today, 325, 89-97. doi:10.1016/j.cattod.2018.07.044 es_ES
dc.description.references Přech, J., Eliášová, P., Aldhayan, D., & Kubů, M. (2015). Epoxidation of bulky organic molecules over pillared titanosilicates. Catalysis Today, 243, 134-140. doi:10.1016/j.cattod.2014.07.002 es_ES
dc.description.references Ushikubo, T. (2000). Recent topics of research and development of catalysis by niobium and tantalum oxides. Catalysis Today, 57(3-4), 331-338. doi:10.1016/s0920-5861(99)00344-2 es_ES
dc.description.references Bertuna, A., Comini, E., Poli, N., Zappa, D., & Sberveglieri, G. (2014). Niobium Oxide Nanostructures for Chemical Sensing. Procedia Engineering, 87, 807-810. doi:10.1016/j.proeng.2014.11.675 es_ES
dc.description.references Zhen, G., Eggli, V., Vörös, J., Zammaretti, P., Textor, M., Glockshuber, R., & Kuennemann, E. (2004). Immobilization of the Enzyme β-Lactamase on Biotin-Derivatized Poly(l-lysine)-g-poly(ethylene glycol)-Coated Sensor Chips:  A Study on Oriented Attachment and Surface Activity by Enzyme Kinetics and in Situ Optical Sensing. Langmuir, 20(24), 10464-10473. doi:10.1021/la0482812 es_ES
dc.description.references Corma, A., Llabrés i Xamena, F. X., Prestipino, C., Renz, M., & Valencia, S. (2009). Water Resistant, Catalytically Active Nb and Ta Isolated Lewis Acid Sites, Homogeneously Distributed by Direct Synthesis in a Beta Zeolite. The Journal of Physical Chemistry C, 113(26), 11306-11315. doi:10.1021/jp902375n es_ES
dc.description.references Trejda, M., Wojtaszek, A., Floch, A., Wojcieszak, R., Gaigneaux, E. M., & Ziolek, M. (2010). New Nb and Ta–FAU zeolites—Direct synthesis, characterisation and surface properties. Catalysis Today, 158(1-2), 170-177. doi:10.1016/j.cattod.2010.06.018 es_ES
dc.description.references Wojtaszek, A., Ziolek, M., Dzwigaj, S., & Tielens, F. (2011). Comparison of competition between T=O and T–OH groups in vanadium, niobium, tantalum BEA zeolite and SOD based zeolites. Chemical Physics Letters, 514(1-3), 70-73. doi:10.1016/j.cplett.2011.08.005 es_ES
dc.description.references Hartmann, M., Prakash, A. M., & Kevan, L. (2003). Characterization and catalytic evaluation of mesoporous and microporous molecular sieves containing niobium. Catalysis Today, 78(1-4), 467-475. doi:10.1016/s0920-5861(02)00334-6 es_ES
dc.description.references Tielens, F., Shishido, T., & Dzwigaj, S. (2010). What Do the Niobium Framework Sites Look Like in Redox Zeolites? A Combined Theoretical and Experimental Investigation. The Journal of Physical Chemistry C, 114(7), 3140-3147. doi:10.1021/jp910956j es_ES
dc.description.references Sobczak, I., Kieronczyk, N., Trejda, M., & Ziolek, M. (2008). Gold, vanadium and niobium containing MCM-41 materials—Catalytic properties in methanol oxidation. Catalysis Today, 139(3), 188-195. doi:10.1016/j.cattod.2008.05.029 es_ES
dc.description.references Trejda, M., Tuel, A., Kujawa, J., Kilos, B., & Ziolek, M. (2008). Niobium rich SBA-15 materials – preparation, characterisation and catalytic activity. Microporous and Mesoporous Materials, 110(2-3), 271-278. doi:10.1016/j.micromeso.2007.06.015 es_ES
dc.description.references KILOS, B., TUEL, A., ZIOLEK, M., & VOLTA, J. (2006). New Nb-containing SBA-3 mesoporous materials—Synthesis, characteristics, and catalytic activity in gas and liquid phase oxidation. Catalysis Today, 118(3-4), 416-424. doi:10.1016/j.cattod.2006.07.029 es_ES
dc.description.references DIAS, A., LIMA, S., CARRIAZO, D., RIVES, V., PILLINGER, M., & VALENTE, A. (2006). Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of d-xylose into furfural. Journal of Catalysis, 244(2), 230-237. doi:10.1016/j.jcat.2006.09.010 es_ES
dc.description.references Prakash, A. M., & Kevan, L. (1998). Synthesis of Niobium Silicate Molecular Sieves of the MFI Structure:  Evidence for Framework Incorporation of the Niobium Ion. Journal of the American Chemical Society, 120(50), 13148-13155. doi:10.1021/ja982262v es_ES
dc.description.references Da Silva, A. G. M., Rodrigues, T. S., Candido, E. G., de Freitas, I. C., da Silva, A. H. M., Fajardo, H. V., … Camargo, P. H. C. (2018). Combining active phase and support optimization in MnO2-Au nanoflowers: Enabling high activities towards green oxidations. Journal of Colloid and Interface Science, 530, 282-291. doi:10.1016/j.jcis.2018.06.089 es_ES
dc.description.references Balzer, R., Probst, L. F. D., Fajardo, H. V., Teodoro, F. S., Gurgel, L. V. A., & Gil, L. F. (2017). New use for succinylated sugarcane bagasse containing adsorbed Cu 2+ and Ni 2+ : Efficient catalysts for gas-phase n -hexane and n -heptane oxidation reactions. Industrial Crops and Products, 97, 649-652. doi:10.1016/j.indcrop.2017.01.006 es_ES
dc.description.references Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145 es_ES
dc.description.references Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719 es_ES
dc.description.references Díaz, U., & Corma, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions, 43(27), 10292. doi:10.1039/c3dt53181c es_ES
dc.description.references Rodrigues, M. V., Okolie, C., Sievers, C., & Martins, L. (2018). Organosilane-Assisted Synthesis of Hierarchical MCM-22 Zeolites for Condensation of Glycerol into Bulky Products. Crystal Growth & Design, 19(1), 231-241. doi:10.1021/acs.cgd.8b01310 es_ES
dc.description.references Chlubná, P., Roth, W. J., Zukal, A., Kubů, M., & Pavlatová, J. (2012). Pillared MWW zeolites MCM-36 prepared by swelling MCM-22P in concentrated surfactant solutions. Catalysis Today, 179(1), 35-42. doi:10.1016/j.cattod.2011.06.035 es_ES
dc.description.references Ramanathan, A., Maheswari, R., & Subramaniam, B. (2015). Facile Styrene Epoxidation with H2O2 over Novel Niobium Containing Cage Type Mesoporous Silicate, Nb-KIT-5. Topics in Catalysis, 58(4-6), 314-324. doi:10.1007/s11244-015-0372-2 es_ES
dc.description.references Wojtaszek-Gurdak, A., & Ziolek, M. (2015). Nb and Zr modified MWW zeolites – characterisation and catalytic activity. RSC Advances, 5(29), 22326-22333. doi:10.1039/c5ra00411j es_ES
dc.description.references Bahl, M. K. (1975). ESCA studies of some niobium compounds. Journal of Physics and Chemistry of Solids, 36(6), 485-491. doi:10.1016/0022-3697(75)90132-8 es_ES
dc.description.references Fernandes, S. L., Albano, L. G. S., Affonço, L. J., Silva, J. H. D. da, Longo, E., & Graeff, C. F. de O. (2019). Exploring the Properties of Niobium Oxide Films for Electron Transport Layers in Perovskite Solar Cells. Frontiers in Chemistry, 7. doi:10.3389/fchem.2019.00050 es_ES
dc.description.references Jin, K., Zhang, T., Ji, J., Zhang, M., Zhang, Y., & Tang, S. (2015). Functionalization of MCM-22 by Dual Acidic Ionic Liquid and Its Paraffin Absorption Modulation Properties. Industrial & Engineering Chemistry Research, 54(1), 164-170. doi:10.1021/ie504327t es_ES
dc.description.references Yoshida, H., Tanaka, T., Yoshida, T., Funabiki, T., & Yoshida, S. (1996). Control of the structure of niobium oxide species on silica by the equilibrium adsorption method. Catalysis Today, 28(1-2), 79-89. doi:10.1016/0920-5861(95)00232-4 es_ES
dc.description.references Tiozzo, C., Bisio, C., Carniato, F., Gallo, A., Scott, S. L., Psaro, R., & Guidotti, M. (2013). Niobium–silica catalysts for the selective epoxidation of cyclic alkenes: the generation of the active site by grafting niobocene dichloride. Physical Chemistry Chemical Physics, 15(32), 13354. doi:10.1039/c3cp51570b es_ES
dc.description.references MATIAS, P., LOPES, J., LAFORGE, S., MAGNOUX, P., RUSSO, P., RIBEIROCARROTT, M., … RAMOARIBEIRO, F. (2008). Methylcyclohexane transformation over HMCM22 zeolite: Mechanism and location of the reactions. Journal of Catalysis, 259(2), 190-202. doi:10.1016/j.jcat.2008.08.006 es_ES
dc.description.references Laforge, S., Ayrault, P., Martin, D., & Guisnet, M. (2005). Acidic and catalytic properties of MCM-22 and MCM-36 zeolites synthesized from the same precursors. Applied Catalysis A: General, 279(1-2), 79-88. doi:10.1016/j.apcata.2004.10.015 es_ES
dc.description.references Cecilia, J. A., García-Sancho, C., & Franco, F. (2013). Montmorillonite based porous clay heterostructures: Influence of Zr in the structure and acidic properties. Microporous and Mesoporous Materials, 176, 95-102. doi:10.1016/j.micromeso.2013.03.037 es_ES
dc.description.references Nolan, M., Parker, S. C., & Watson, G. W. (2005). The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surface Science, 595(1-3), 223-232. doi:10.1016/j.susc.2005.08.015 es_ES
dc.description.references Laguna, O. H., Pérez, A., Centeno, M. A., & Odriozola, J. A. (2015). Synergy between gold and oxygen vacancies in gold supported on Zr-doped ceria catalysts for the CO oxidation. Applied Catalysis B: Environmental, 176-177, 385-395. doi:10.1016/j.apcatb.2015.04.019 es_ES
dc.description.references Guillén-Hurtado, N., García-García, A., & Bueno-López, A. (2013). Isotopic study of ceria-catalyzed soot oxidation in the presence of NOx. Journal of Catalysis, 299, 181-187. doi:10.1016/j.jcat.2012.11.026 es_ES
dc.description.references Da Silva, A. G. M., Fajardo, H. V., Balzer, R., Probst, L. F. D., Lovón, A. S. P., Lovón-Quintana, J. J., … Robles-Dutenhefner, P. A. (2015). Versatile and efficient catalysts for energy and environmental processes: Mesoporous silica containing Au, Pd and Au-Pd. Journal of Power Sources, 285, 460-468. doi:10.1016/j.jpowsour.2015.03.066 es_ES
dc.description.references Tang, X., Xu, Y., & Shen, W. (2008). Promoting effect of copper on the catalytic activity of MnOx–CeO2 mixed oxide for complete oxidation of benzene. Chemical Engineering Journal, 144(2), 175-180. doi:10.1016/j.cej.2008.01.016 es_ES
dc.description.references Solsona, B., Pérez-Cabero, M., Vázquez, I., Dejoz, A., García, T., Álvarez-Rodríguez, J., … Amorós, P. (2012). Total oxidation of VOCs on Au nanoparticles anchored on Co doped mesoporous UVM-7 silica. Chemical Engineering Journal, 187, 391-400. doi:10.1016/j.cej.2012.01.132 es_ES
dc.description.references Ousmane, M., Liotta, L. F., Carlo, G. D., Pantaleo, G., Venezia, A. M., Deganello, G., … Giroir-Fendler, A. (2011). Supported Au catalysts for low-temperature abatement of propene and toluene, as model VOCs: Support effect. Applied Catalysis B: Environmental, 101(3-4), 629-637. doi:10.1016/j.apcatb.2010.11.004 es_ES
dc.description.references Li, S., Wang, H., Li, W., Wu, X., Tang, W., & Chen, Y. (2015). Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor. Applied Catalysis B: Environmental, 166-167, 260-269. doi:10.1016/j.apcatb.2014.11.040 es_ES
dc.description.references Mo, S., Li, S., Li, J., Deng, Y., Peng, S., Chen, J., & Chen, Y. (2016). Rich surface Co(iii) ions-enhanced Co nanocatalyst benzene/toluene oxidation performance derived from CoIICoIIIlayered double hydroxide. Nanoscale, 8(34), 15763-15773. doi:10.1039/c6nr04902h es_ES
dc.description.references Zuo, S., Huang, Q., Li, J., & Zhou, R. (2009). Promoting effect of Ce added to metal oxide supported on Al pillared clays for deep benzene oxidation. Applied Catalysis B: Environmental, 91(1-2), 204-209. doi:10.1016/j.apcatb.2009.05.025 es_ES
dc.description.references López, J. M., Gilbank, A. L., García, T., Solsona, B., Agouram, S., & Torrente-Murciano, L. (2015). The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Applied Catalysis B: Environmental, 174-175, 403-412. doi:10.1016/j.apcatb.2015.03.017 es_ES
dc.description.references Hatanaka, M., Takahashi, N., Tanabe, T., Nagai, Y., Dohmae, K., Aoki, Y., … Shinjoh, H. (2010). Ideal Pt loading for a Pt/CeO2-based catalyst stabilized by a Pt–O–Ce bond. Applied Catalysis B: Environmental, 99(1-2), 336-342. doi:10.1016/j.apcatb.2010.07.003 es_ES
dc.description.references Li, W. B., Wang, J. X., & Gong, H. (2009). Catalytic combustion of VOCs on non-noble metal catalysts. Catalysis Today, 148(1-2), 81-87. doi:10.1016/j.cattod.2009.03.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem