- -

Configurational landscape of chiral iron(II) bis(phosphane) complexes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Configurational landscape of chiral iron(II) bis(phosphane) complexes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Estevan, Francisco es_ES
dc.contributor.author Feliz Rodriguez, Marta es_ES
dc.date.accessioned 2021-04-28T03:31:48Z
dc.date.available 2021-04-28T03:31:48Z
dc.date.issued 2020-04-14 es_ES
dc.identifier.issn 1477-9226 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165717
dc.description.abstract [EN] The reaction of a chiral [FeH(¿2-H2){(R,R)-Me-DuPhos}2]+ ((R,R)-Me-DuPhos = (¿)-1,2-bis[(2R,5R)-2,5-dimethylphospholano]benzene) complex with ethers and halides is investigated by NMR techniques. From this study, it is apparent that dihydrogen ligand exchange by poorly-coordinating donor molecules, such as THF or Et2O, is feasible under mild conditions. The cis-[FeH(THF-d8){(R,R)-Me-DuPhos}2]+ complex is identified as the product in THF-d8 solution. A mixture of cis- and trans-[FeH(ether){(R,R)-Me-DuPhos}2]+ isomers is obtained after the addition of small quantities of THF or Et2O to a CD2Cl2 solution of [FeH(¿2-H2){(R,R)-Me-DuPhos}2]+. The reaction of [FeH(¿2-H2){(R,R)-Me-DuPhos}2]+ with an excess of iodide or chloride salts in THF-d8 or CD2Cl2 affords initially cis- and trans-[FeHX{(R,R)-Me-DuPhos}2] (X = Cl or I) isomers. The trans complex is the thermodynamic product obtained when X = Cl, whereas the cis isomer is obtained when X = I. These complexes evolve with time, and the pentacoordinated [FeX{(R,R)-Me-DuPhos}2](A) (X = Cl, A = BF4; X = A = I) and hexacoordinated trans-[FeCl2{(R,R)-Me-DuPhos}2] compounds are obtained as air-stable crystals and identified by X-ray diffraction and NMR techniques. Experiments done with (S,S)-Me-DuPhos ((+)-1,2-bis[(2S,5S)-2,5-dimethylphospholano]benzene) gave similar results, and the [FeI{(S,S)-Me-DuPhos}2](ClO4) compound has been crystallographically characterized. es_ES
dc.description.sponsorship This research was supported by the Severo Ochoa Program (SEV-2016-0683), Ministerio de Ciencia e Innovacion (RTI2018-096399), and the Consejo Superior de Investigaciones Cientificas (CSIC) of the Universitat de Valencia. We would like to thank the Servei Central d'Instrumetacion Cientifica (SCIC) of the Universitat Jaume I for the X-ray facilities and the Servicio Central de Apoyo a la Investigacion Experimental (SCSIE) of the Universitat de Valencia for the NMR facilities. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Dalton Transactions es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Iron es_ES
dc.subject DuPhos es_ES
dc.subject Hydride es_ES
dc.subject Isomerization es_ES
dc.subject Configuration es_ES
dc.title Configurational landscape of chiral iron(II) bis(phosphane) complexes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9dt04821a es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096399-A-I00/ES/CLUSTERES MULTIMETALICOS Y SUBNANOMETRICOS SOPORTADOS: SINTESIS, ESTRUCTURA Y DINAMISMO ATOMICO, Y EMPLEO COMO CATALIZADORES EN LA VALORIZACION DE METANO Y ALCANOS LIGEROS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Estevan, F.; Feliz Rodriguez, M. (2020). Configurational landscape of chiral iron(II) bis(phosphane) complexes. Dalton Transactions. 49(14):4528-4538. https://doi.org/10.1039/c9dt04821a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9dt04821a es_ES
dc.description.upvformatpinicio 4528 es_ES
dc.description.upvformatpfin 4538 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 49 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\410831 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Belkova, N. V., Epstein, L. M., Filippov, O. A., & Shubina, E. S. (2016). Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides. Chemical Reviews, 116(15), 8545-8587. doi:10.1021/acs.chemrev.6b00091 es_ES
dc.description.references Esteruelas, M. A., & Oro, L. A. (1998). Dihydrogen Complexes as Homogeneous Reduction Catalysts. Chemical Reviews, 98(2), 577-588. doi:10.1021/cr970322u es_ES
dc.description.references Bullock, R. M. (1991). Metal-Hydrogen Bond Cleavage Reactions of Transition Metal Hydrides: Hydrogen Atom, Hydride, and Proton Transfer Reactions. Comments on Inorganic Chemistry, 12(1), 1-33. doi:10.1080/02603599108018617 es_ES
dc.description.references R. H. Morris , in Encyclopedia of Inorganic and Bioinorganic Chemistry , ed. R. H. Crabtree , 2018 , pp. 1–12 es_ES
dc.description.references Catalysis without Precious Metals , ed. R. M. Bullock , Wiley-VCH , Weinheim , 2010 es_ES
dc.description.references Robinson, S. J. C., & Heinekey, D. M. (2017). Hydride & dihydrogen complexes of earth abundant metals: structure, reactivity, and applications to catalysis. Chemical Communications, 53(4), 669-676. doi:10.1039/c6cc07529k es_ES
dc.description.references Bianchini, C., Meli, A., Peruzzini, M., Frediani, P., Bohanna, C., Esteruelas, M. A., & Oro, L. A. (1992). Selective hydrogenation of 1-alkynes to alkenes catalyzed by an iron(II) cis-hydride .eta.2-dihydrogen complex. A case of intramolecular reaction between .eta.2-H2 and .sigma.-vinyl ligands. Organometallics, 11(1), 138-145. doi:10.1021/om00037a029 es_ES
dc.description.references Fürstner, A. (2016). Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion. ACS Central Science, 2(11), 778-789. doi:10.1021/acscentsci.6b00272 es_ES
dc.description.references Wei, D., & Darcel, C. (2018). Iron Catalysis in Reduction and Hydrometalation Reactions. Chemical Reviews, 119(4), 2550-2610. doi:10.1021/acs.chemrev.8b00372 es_ES
dc.description.references Bullock, R. M., & Chambers, G. M. (2017). Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2101), 20170002. doi:10.1098/rsta.2017.0002 es_ES
dc.description.references Ho, C.-Y., Chan, C.-W., & He, L. (2015). Catalytic Asymmetric Hydroalkenylation of Vinylarenes: Electronic Effects of Substrates and Chiral N-Heterocyclic Carbene Ligands. Angewandte Chemie International Edition, 54(15), 4512-4516. doi:10.1002/anie.201411882 es_ES
dc.description.references Timsina, Y. N., Sharma, R. K., & RajanBabu, T. V. (2015). Cobalt-catalysed asymmetric hydrovinylation of 1,3-dienes. Chemical Science, 6(7), 3994-4008. doi:10.1039/c5sc00929d es_ES
dc.description.references Morris, R. H. (2015). Exploiting Metal–Ligand Bifunctional Reactions in the Design of Iron Asymmetric Hydrogenation Catalysts. Accounts of Chemical Research, 48(5), 1494-1502. doi:10.1021/acs.accounts.5b00045 es_ES
dc.description.references Morris, R. H. (2018). Mechanisms of the H2- and transfer hydrogenation of polar bonds catalyzed by iron group hydrides. Dalton Transactions, 47(32), 10809-10826. doi:10.1039/c8dt01804a es_ES
dc.description.references Morris, R. H. (2009). Asymmetric hydrogenation, transfer hydrogenation and hydrosilylation of ketones catalyzed by iron complexes. Chemical Society Reviews, 38(8), 2282. doi:10.1039/b806837m es_ES
dc.description.references Bigler, R., & Mezzetti, A. (2016). Highly Enantioselective Transfer Hydrogenation of Polar Double Bonds by Macrocyclic Iron(II)/(NH)2P2 Catalysts. Organic Process Research & Development, 20(2), 253-261. doi:10.1021/acs.oprd.5b00391 es_ES
dc.description.references Mezzetti, A. (2017). Iron Complexes with Chiral N/P Macrocycles as Catalysts for Asymmetric Transfer Hydrogenation. Israel Journal of Chemistry, 57(12), 1090-1105. doi:10.1002/ijch.201700035 es_ES
dc.description.references Huber, R., Passera, A., & Mezzetti, A. (2018). Iron(II)-Catalyzed Hydrogenation of Acetophenone with a Chiral, Pyridine-Based PNP Pincer Ligand: Support for an Outer-Sphere Mechanism. Organometallics, 37(3), 396-405. doi:10.1021/acs.organomet.7b00816 es_ES
dc.description.references De Luca, L., Passera, A., & Mezzetti, A. (2019). Asymmetric Transfer Hydrogenation with a Bifunctional Iron(II) Hydride: Experiment Meets Computation. Journal of the American Chemical Society, 141(6), 2545-2556. doi:10.1021/jacs.8b12506 es_ES
dc.description.references Darwish, M., & Wills, M. (2012). Asymmetric catalysis using iron complexes – ‘Ruthenium Lite’? Catal. Sci. Technol., 2(2), 243-255. doi:10.1039/c1cy00390a es_ES
dc.description.references Berkessel, A., Reichau, S., von der Höh, A., Leconte, N., & Neudörfl, J.-M. (2011). Light-Induced Enantioselective Hydrogenation Using Chiral Derivatives of Casey’s Iron–Cyclopentadienone Catalyst. Organometallics, 30(14), 3880-3887. doi:10.1021/om200459s es_ES
dc.description.references Huber, R., Passera, A., Gubler, E., & Mezzetti, A. (2018). P-Stereogenic PN(H)P Iron(II) Catalysts for the Asymmetric Hydrogenation of Ketones: The Importance of Non-Covalent Interactions in Rational Ligand Design by Computation. Advanced Synthesis & Catalysis, 360(15), 2900-2913. doi:10.1002/adsc.201800433 es_ES
dc.description.references De Luca, L., & Mezzetti, A. (2017). Base-Free Asymmetric Transfer Hydrogenation of 1,2-Di- and Monoketones Catalyzed by a (NH)2 P2 -Macrocyclic Iron(II) Hydride. Angewandte Chemie International Edition, 56(39), 11949-11953. doi:10.1002/anie.201706261 es_ES
dc.description.references Passera, A., & Mezzetti, A. (2019). Mn(I) and Fe(II)/PN(H)P Catalysts for the Hydrogenation of Ketones: A Comparison by Experiment and Calculation. Advanced Synthesis & Catalysis, 361(20), 4691-4706. doi:10.1002/adsc.201900671 es_ES
dc.description.references T. Ollevier and H.Keipour , in Iron Catalysis II , ed. E. Bauer , Springer International Publishing , Cham , 2015 , pp. 259–309 es_ES
dc.description.references Shaikh, N. S., Enthaler, S., Junge, K., & Beller, M. (2008). Iron-Catalyzed Enantioselective Hydrosilylation of Ketones. Angewandte Chemie International Edition, 47(13), 2497-2501. doi:10.1002/anie.200705624 es_ES
dc.description.references Burk, M. J., Feaster, J. E., Nugent, W. A., & Harlow, R. L. (1993). Preparation and use of C2-symmetric bis(phospholanes): production of .alpha.-amino acid derivatives via highly enantioselective hydrogenation reactions. Journal of the American Chemical Society, 115(22), 10125-10138. doi:10.1021/ja00075a031 es_ES
dc.description.references Burk, M. J. (2000). Modular Phospholane Ligands in Asymmetric Catalysis. Accounts of Chemical Research, 33(6), 363-372. doi:10.1021/ar990085c es_ES
dc.description.references Crépy, K. V. L., & Imamoto, T. (2003). Recent Developments in Catalytic Asymmetric Hydrogenation Employing P-Chirogenic Diphosphine Ligands. Advanced Synthesis & Catalysis, 345(12), 79-101. doi:10.1002/adsc.200390031 es_ES
dc.description.references E. M. Carreira and L.Kvaerno , Classics in Stereoselective Synthesis , Wiley , 2008 es_ES
dc.description.references P. A. Evans , Science of Synthesis: Stereoselective Synthesis. Stereoselective Pericyclic Reactions, Cross Coupling, and C–H and C–X Activation , Georg Thieme Verlag KG , 2011 es_ES
dc.description.references Rast, S., Stephan, M., & Mohar, B. (2015). Olefin Hydrogenation with Rigid Mono-P-stereogenic Diphosphines: A Flexible Rhodium Ring to Rule Them All? European Journal of Organic Chemistry, 2015(10), 2214-2225. doi:10.1002/ejoc.201403570 es_ES
dc.description.references Hoyt, J. M., Shevlin, M., Margulieux, G. W., Krska, S. W., Tudge, M. T., & Chirik, P. J. (2014). Synthesis and Hydrogenation Activity of Iron Dialkyl Complexes with Chiral Bidentate Phosphines. Organometallics, 33(20), 5781-5790. doi:10.1021/om500329q es_ES
dc.description.references Huber, R., Passera, A., & Mezzetti, A. (2019). Which future for stereogenic phosphorus? Lessons from P* pincer complexes of iron(ii). Chemical Communications, 55(63), 9251-9266. doi:10.1039/c9cc03910d es_ES
dc.description.references Tang, W., & Zhang, X. (2003). New Chiral Phosphorus Ligands for Enantioselective Hydrogenation. Chemical Reviews, 103(8), 3029-3070. doi:10.1021/cr020049i es_ES
dc.description.references Gohdes, J. W., Zakharov, L. N., & Tyler, D. R. (2013). Structure and reactivity of iron(II) complexes of a polymerizable bis-phosphine ligand. Polyhedron, 52, 1169-1176. doi:10.1016/j.poly.2012.06.050 es_ES
dc.description.references Wiesler, B., Tuczek, F., Näther, C., & Bensch, W. (1998). [FeHCl(C10H24P2)2]. Acta Crystallographica Section C Crystal Structure Communications, 54(1), 44-46. doi:10.1107/s0108270197012754 es_ES
dc.description.references Evans, D. J., Henderson, R. A., Hills, A., Hughes, D. L., & Oglieve, K. E. (1992). Involvement of iron alkyl complexes and alkyl radicals in the Kharasch reactions: probing the catalysis using iron phosphine complexes. Journal of the Chemical Society, Dalton Transactions, (7), 1259. doi:10.1039/dt9920001259 es_ES
dc.description.references Lee, J.-K., & Shin, J.-H. (2002). Triboelectrostatic separation of pvc materials from mixed plastics for waste plastic recycling. Korean Journal of Chemical Engineering, 19(2), 267-272. doi:10.1007/bf02698412 es_ES
dc.description.references Field, L. D., Li, H. L., Dalgarno, S. J., Jensen, P., & McIntosh, R. D. (2011). Synthesis and Characterization of Iron(II) and Ruthenium(II) Hydrido Hydrazine Complexes. Inorganic Chemistry, 50(12), 5468-5476. doi:10.1021/ic102519f es_ES
dc.description.references Bautista, M., Earl, K., & Morris, R. (1988). NMR Studies of the Complexes trans-[M(η2-H2)(H)(Ph2PCH2CH2PEt2)2]X (M=Fe, X = BPh4; M = Os, X = BF4): Evidence for Unexpected Shortening of the H-H Bond. Inorganic Chemistry, 27(7), 1124-1125. doi:10.1021/ic00280a600 es_ES
dc.description.references Bautista, M., Earl, K. A., Morris, R. H., & Sella, A. (1987). NMR properties of the complexes trans-[M(.eta.2-H2)(H)(PEt2CH2CH2PEt2)2]+ (M = Fe, Ru, Os). Intramolecular exchange of atoms between .eta.2-dihydrogen and hydride ligands. Journal of the American Chemical Society, 109(12), 3780-3782. doi:10.1021/ja00246a045 es_ES
dc.description.references Bautista, M. T., Cappellani, E. P., Drouin, S. D., Morris, R. H., Schweitzer, C. T., Sella, A., & Zubkowski, J. (1991). Preparation and spectroscopic properties of the .eta.2-dihydrogen complexes [MH(.eta.2-H2)PR2CH2CH2PR2)2] + (M = iron, ruthenium; R = Ph, Et) and trends in properties down the iron group triad. Journal of the American Chemical Society, 113(13), 4876-4887. doi:10.1021/ja00013a025 es_ES
dc.description.references Cappellani, E. P., Drouin, S. D., Jia, G., Maltby, P. A., Morris, R. H., & Schweitzer, C. T. (1994). Effect of the Ligand and Metal on the pKa Values of the Dihydrogen Ligand in the Series of Complexes [M(H2)H(L)2]+, M = Fe, Ru, Os, Containing Isosteric Ditertiaryphosphine Ligands, L. Journal of the American Chemical Society, 116(8), 3375-3388. doi:10.1021/ja00087a024 es_ES
dc.description.references Ricci, J. S., Koetzle, T. F., Bautista, M. T., Hofstede, T. M., Morris, R. H., & Sawyer, J. F. (1989). Single-crystal x-ray and neutron diffraction studies of an .eta.2-dihydrogen transition-metal complex: trans-[Fe(.eta.2-H2)(H)(PPh2CH2CH2PPh2)2]BPh4. Journal of the American Chemical Society, 111(24), 8823-8827. doi:10.1021/ja00206a009 es_ES
dc.description.references Baker, M. V., Field, L. D., & Young, D. J. (1988). Formation of molecular hydrogen complexes of iron by the reversible protonation of iron dihydrides with alcohols. Journal of the Chemical Society, Chemical Communications, (8), 546. doi:10.1039/c39880000546 es_ES
dc.description.references Baker, M. V., & Field, L. D. (1988). Molecular hydrogen complexes as intermediates in the synthesis of iron phosphine complexes; a reinvestigataion of the preparation of bis(diphosphine) chlorohydridoiron complexes. Journal of Organometallic Chemistry, 354(3), 351-356. doi:10.1016/0022-328x(88)80660-0 es_ES
dc.description.references Gilbertson, J. D., Szymczak, N. K., Crossland, J. L., Miller, W. K., Lyon, D. K., Foxman, B. M., … Tyler, D. R. (2007). Coordination Chemistry of H2 and N2 in Aqueous Solution. Reactivity and Mechanistic Studies Using trans-FeII(P2)2X2-Type Complexes (P2 = a Chelating, Water-Solubilizing Phosphine). Inorganic Chemistry, 46(4), 1205-1214. doi:10.1021/ic061570o es_ES
dc.description.references Gilbertson, J. D., Szymczak, N. K., & Tyler, D. R. (2004). H2 Activation in Aqueous Solution:  Formation of trans-[Fe(DMeOPrPE)2H(H2)]+ via the Heterolysis of H2 in Water. Inorganic Chemistry, 43(11), 3341-3343. doi:10.1021/ic0498642 es_ES
dc.description.references Crossland, J. L., Young, D. M., Zakharov, L. N., & Tyler, D. R. (2009). Precursors to dinitrogen reduction: structures and reactivity of trans-[Fe(DMeOPrPE)2(η2-H2)H]+ and trans-[Fe(DMeOPrPE)2(N2)H]+. Dalton Transactions, (42), 9253. doi:10.1039/b911066f es_ES
dc.description.references Hills, A., Hughes, D. L., Jimenez-Tenorio, M., & Leigh, G. J. (1990). Complexes of tertiary phosphines with iron(II) and dinitrogen, dihydrogen, and other small molecules. Journal of Organometallic Chemistry, 391(3), C41-C44. doi:10.1016/0022-328x(90)85070-f es_ES
dc.description.references Hills, A., Hughes, D. L., Jimenez-Tenorio, M., Leigh, G. J., & Rowley, A. T. (1993). Bis[1,2-bis(dimethylphosphino)ethane]dihydrogenhydridoiron(II) tetraphenylborate as a model for the function of nitrogenases. Journal of the Chemical Society, Dalton Transactions, (20), 3041. doi:10.1039/dt9930003041 es_ES
dc.description.references Basallote, M. G., Durán, J., Fernández-Trujillo, M. J., González, G., Máñez, M. A., & Martínez, M. (1998). Unexpected Mechanism for Substitution of Coordinated Dihydrogen in trans-[FeH(H2)(DPPE)2]+. Inorganic Chemistry, 37(7), 1623-1628. doi:10.1021/ic970493h es_ES
dc.description.references Basallote, M. G., Durán, J., Fernández-Trujillo, M. J., & Máñez, M. A. (2000). The kinetics and mechanisms of reactions involving the dihydrogen complex trans-[FeH(H2)(DPPE)2]+ and related compounds. Journal of Organometallic Chemistry, 609(1-2), 29-35. doi:10.1016/s0022-328x(00)00350-8 es_ES
dc.description.references A. Helleren, C., A. Henderson, R., & Jeffery Leigh, G. (1999). The mechanism of displacement of dihydrogen and dinitrogen from iron, ruthenium and osmium hydrides and implications for models of nitrogenase action. Journal of the Chemical Society, Dalton Transactions, (8), 1213. doi:10.1039/a810001b es_ES
dc.description.references Feliz, M., & Estevan, F. (2015). Synthesis, Structure, and Reactivity of (Dihydrogen)(hydrido)iron(II) Complexes Bearing Chiral Diphos­phanes. European Journal of Inorganic Chemistry, 2016(1), 92-102. doi:10.1002/ejic.201501085 es_ES
dc.description.references Chatt, J., & Hayter, R. G. (1961). 1079. Some hydrido-complexes of iron(II). Journal of the Chemical Society (Resumed), 5507. doi:10.1039/jr9610005507 es_ES
dc.description.references Field, L. D., Magill, A. M., Pike, S. R., Turnbull, A. J., Dalgarno, S. J., Turner, P., & Willis, A. C. (2010). Unsymmetrically Substituted Butenynyl-Iron(II) Complexes. European Journal of Inorganic Chemistry, 2010(16), 2406-2414. doi:10.1002/ejic.201000281 es_ES
dc.description.references Giannoccaro, P., Rossi, M., & Sacco, A. (1972). New cationic hydrido and hydrido-dinitrogen complexes of iron. Coordination Chemistry Reviews, 8(1-2), 77-79. doi:10.1016/s0010-8545(00)80054-5 es_ES
dc.description.references Franke, O., Wiesler, B. E., Lehnert, N., Peters, G., Burger, P., & Tuczek, F. (2006). The Iron Hydrido Complex [FeH(dppe)2]+: Solution and Solid-State Reactivity with Dinitrogen. Zeitschrift für anorganische und allgemeine Chemie, 632(7), 1247-1256. doi:10.1002/zaac.200500502 es_ES
dc.description.references Barclay, J. E., Leigh, G. J., Houlton, A., & Silver, J. (1988). Mössbauer and preparative studies of some iron(II) complexes of diphosphines. J. Chem. Soc., Dalton Trans., (11), 2865-2870. doi:10.1039/dt9880002865 es_ES
dc.description.references Cecconi, F., Di Vaira, M., Midollini, S., Orlandini, A., & Sacconi, L. (1981). Singlet .dblharw. quintet spin transitions of iron(II) complexes with a P4Cl2 donor set. X-ray structures of the compound FeCl2(Ph2PCH:CHPPh2)2 and of its acetone solvate at 130 and 295 K. Inorganic Chemistry, 20(10), 3423-3430. doi:10.1021/ic50224a053 es_ES
dc.description.references Barclay, J. E., Hills, A., Hughes, D. L., & Leigh, G. J. (1988). Crystal and molecular structures of four bis(diphosphine) complexes of iron(II): bis[1,2-bis(diethylphosphino)ethane]di-iodoiron(II), dichloro-bis[o-phenylenebis(diphenylphosphine)]iron(II), bis(acetonitrile)bis-[o-phenylenebis(diphenylphosphine)]iron(II) di-iodide, and iodobis-[o-phenylenebis(diphenylphosphine)]iron(II) iodide. Journal of the Chemical Society, Dalton Transactions, (11), 2871. doi:10.1039/dt9880002871 es_ES
dc.description.references Redshaw, C., Wilkinson, G., Hussain-Bates, B., & Hursthouse, M. B. (1993). Synthesis and characterization of 1,2-bis(phosphino)benzene (diphos) and related complexes of vanadium, chromium, iron and cobalt. X-ray crystal structures of MCl2(DIPHOS)2 (M = V, Cr and Fe) and [Fe(DIPHOS)2(MeCN)2](BPh4)2. Polyhedron, 12(4), 363-370. doi:10.1016/s0277-5387(00)81739-8 es_ES
dc.description.references Field, L. D., Thomas, I. P., Hambley, T. W., & Turner, P. (1998). Iron(II) Complexes Containing the 1,2-Diphospholanoethane Ligand. Inorganic Chemistry, 37(4), 612-618. doi:10.1021/ic9701928 es_ES
dc.description.references Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J., & Verschoor, G. C. (1984). Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans., (7), 1349-1356. doi:10.1039/dt9840001349 es_ES
dc.description.references Coggin, D. K., Gonzalez, J. A., Kook, A. M., Stanbury, D. M., & Wilson, L. J. (1991). Ligand dynamics in pentacoordinate copper(I) and zinc(II) complexes. Inorganic Chemistry, 30(5), 1115-1125. doi:10.1021/ic00005a044 es_ES
dc.description.references Seitz, M., Stempfhuber, S., Zabel, M., Schütz, M., & Reiser, O. (2004). Helical Chirality in Pentacoordinate Zinc Complexes-Selective Access to Both Pseudoenantiomers with One Ligand Configuration. Angewandte Chemie International Edition, 44(2), 242-245. doi:10.1002/anie.200460843 es_ES
dc.description.references Franke, O., Wiesler, B. E., Lehnert, N., Näther, C., Ksenofontov, V., Neuhausen, J., & Tuczek, F. (2002). Five-Coordinate Complexes [FeX(depe)2]BPh4, X = Cl, Br:  Electronic Structure and Spin-Forbidden Reaction with N2. Inorganic Chemistry, 41(13), 3491-3499. doi:10.1021/ic0111987 es_ES
dc.description.references Bedford, R. B., Carter, E., Cogswell, P. M., Gower, N. J., Haddow, M. F., Harvey, J. N., … Nunn, J. (2012). Simplifying Iron-Phosphine Catalysts for Cross-Coupling Reactions. Angewandte Chemie International Edition, 52(4), 1285-1288. doi:10.1002/anie.201207868 es_ES
dc.description.references Adams, C. J., Bedford, R. B., Carter, E., Gower, N. J., Haddow, M. F., Harvey, J. N., … Nunn, J. (2012). Iron(I) in Negishi Cross-Coupling Reactions. Journal of the American Chemical Society, 134(25), 10333-10336. doi:10.1021/ja303250t es_ES
dc.description.references Higgins, S. J., Jewiss, H. C., Levason, W., & Webster, M. (1985). Structure of trans-dichlorobis[3,4,5,6-tetrafluoro-o-phenylenebis(dimethylphosphine)]iron(III) tetrafluoroborate, [FeCl2(C10H12F4P2)2]BF4. Acta Crystallographica Section C Crystal Structure Communications, 41(5), 695-697. doi:10.1107/s0108270185005157 es_ES
dc.description.references Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930 es_ES
dc.description.references Sheldrick, G. M. (2015). Crystal structure refinement withSHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), 3-8. doi:10.1107/s2053229614024218 es_ES
dc.description.references Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi:10.1107/s0021889808042726 es_ES
dc.description.references Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 es_ES
dc.description.references Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785 es_ES
dc.description.references Dolg, M., Wedig, U., Stoll, H., & Preuss, H. (1987). Energy‐adjustedabinitiopseudopotentials for the first row transition elements. The Journal of Chemical Physics, 86(2), 866-872. doi:10.1063/1.452288 es_ES
dc.description.references Bergner, A., Dolg, M., Küchle, W., Stoll, H., & Preuß, H. (1993). Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Molecular Physics, 80(6), 1431-1441. doi:10.1080/00268979300103121 es_ES
dc.description.references Ehlers, A. W., Böhme, M., Dapprich, S., Gobbi, A., Höllwarth, A., Jonas, V., … Frenking, G. (1993). A set of f-polarization functions for pseudo-potential basis sets of the transition metals ScCu, YAg and LaAu. Chemical Physics Letters, 208(1-2), 111-114. doi:10.1016/0009-2614(93)80086-5 es_ES
dc.description.references Höllwarth, A., Böhme, M., Dapprich, S., Ehlers, A. W., Gobbi, A., Jonas, V., … Frenking, G. (1993). A set of d-polarization functions for pseudo-potential basis sets of the main group elements AlBi and f-type polarization functions for Zn, Cd, Hg. Chemical Physics Letters, 208(3-4), 237-240. doi:10.1016/0009-2614(93)89068-s es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem