Mostrar el registro sencillo del ítem
dc.contributor.author | Estevan, Francisco | es_ES |
dc.contributor.author | Feliz Rodriguez, Marta | es_ES |
dc.date.accessioned | 2021-04-28T03:31:48Z | |
dc.date.available | 2021-04-28T03:31:48Z | |
dc.date.issued | 2020-04-14 | es_ES |
dc.identifier.issn | 1477-9226 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165717 | |
dc.description.abstract | [EN] The reaction of a chiral [FeH(¿2-H2){(R,R)-Me-DuPhos}2]+ ((R,R)-Me-DuPhos = (¿)-1,2-bis[(2R,5R)-2,5-dimethylphospholano]benzene) complex with ethers and halides is investigated by NMR techniques. From this study, it is apparent that dihydrogen ligand exchange by poorly-coordinating donor molecules, such as THF or Et2O, is feasible under mild conditions. The cis-[FeH(THF-d8){(R,R)-Me-DuPhos}2]+ complex is identified as the product in THF-d8 solution. A mixture of cis- and trans-[FeH(ether){(R,R)-Me-DuPhos}2]+ isomers is obtained after the addition of small quantities of THF or Et2O to a CD2Cl2 solution of [FeH(¿2-H2){(R,R)-Me-DuPhos}2]+. The reaction of [FeH(¿2-H2){(R,R)-Me-DuPhos}2]+ with an excess of iodide or chloride salts in THF-d8 or CD2Cl2 affords initially cis- and trans-[FeHX{(R,R)-Me-DuPhos}2] (X = Cl or I) isomers. The trans complex is the thermodynamic product obtained when X = Cl, whereas the cis isomer is obtained when X = I. These complexes evolve with time, and the pentacoordinated [FeX{(R,R)-Me-DuPhos}2](A) (X = Cl, A = BF4; X = A = I) and hexacoordinated trans-[FeCl2{(R,R)-Me-DuPhos}2] compounds are obtained as air-stable crystals and identified by X-ray diffraction and NMR techniques. Experiments done with (S,S)-Me-DuPhos ((+)-1,2-bis[(2S,5S)-2,5-dimethylphospholano]benzene) gave similar results, and the [FeI{(S,S)-Me-DuPhos}2](ClO4) compound has been crystallographically characterized. | es_ES |
dc.description.sponsorship | This research was supported by the Severo Ochoa Program (SEV-2016-0683), Ministerio de Ciencia e Innovacion (RTI2018-096399), and the Consejo Superior de Investigaciones Cientificas (CSIC) of the Universitat de Valencia. We would like to thank the Servei Central d'Instrumetacion Cientifica (SCIC) of the Universitat Jaume I for the X-ray facilities and the Servicio Central de Apoyo a la Investigacion Experimental (SCSIE) of the Universitat de Valencia for the NMR facilities. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Dalton Transactions | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Iron | es_ES |
dc.subject | DuPhos | es_ES |
dc.subject | Hydride | es_ES |
dc.subject | Isomerization | es_ES |
dc.subject | Configuration | es_ES |
dc.title | Configurational landscape of chiral iron(II) bis(phosphane) complexes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c9dt04821a | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096399-A-I00/ES/CLUSTERES MULTIMETALICOS Y SUBNANOMETRICOS SOPORTADOS: SINTESIS, ESTRUCTURA Y DINAMISMO ATOMICO, Y EMPLEO COMO CATALIZADORES EN LA VALORIZACION DE METANO Y ALCANOS LIGEROS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Estevan, F.; Feliz Rodriguez, M. (2020). Configurational landscape of chiral iron(II) bis(phosphane) complexes. Dalton Transactions. 49(14):4528-4538. https://doi.org/10.1039/c9dt04821a | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c9dt04821a | es_ES |
dc.description.upvformatpinicio | 4528 | es_ES |
dc.description.upvformatpfin | 4538 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 49 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.pasarela | S\410831 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Belkova, N. V., Epstein, L. M., Filippov, O. A., & Shubina, E. S. (2016). Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides. Chemical Reviews, 116(15), 8545-8587. doi:10.1021/acs.chemrev.6b00091 | es_ES |
dc.description.references | Esteruelas, M. A., & Oro, L. A. (1998). Dihydrogen Complexes as Homogeneous Reduction Catalysts. Chemical Reviews, 98(2), 577-588. doi:10.1021/cr970322u | es_ES |
dc.description.references | Bullock, R. M. (1991). Metal-Hydrogen Bond Cleavage Reactions of Transition Metal Hydrides: Hydrogen Atom, Hydride, and Proton Transfer Reactions. Comments on Inorganic Chemistry, 12(1), 1-33. doi:10.1080/02603599108018617 | es_ES |
dc.description.references | R. H. Morris , in Encyclopedia of Inorganic and Bioinorganic Chemistry , ed. R. H. Crabtree , 2018 , pp. 1–12 | es_ES |
dc.description.references | Catalysis without Precious Metals , ed. R. M. Bullock , Wiley-VCH , Weinheim , 2010 | es_ES |
dc.description.references | Robinson, S. J. C., & Heinekey, D. M. (2017). Hydride & dihydrogen complexes of earth abundant metals: structure, reactivity, and applications to catalysis. Chemical Communications, 53(4), 669-676. doi:10.1039/c6cc07529k | es_ES |
dc.description.references | Bianchini, C., Meli, A., Peruzzini, M., Frediani, P., Bohanna, C., Esteruelas, M. A., & Oro, L. A. (1992). Selective hydrogenation of 1-alkynes to alkenes catalyzed by an iron(II) cis-hydride .eta.2-dihydrogen complex. A case of intramolecular reaction between .eta.2-H2 and .sigma.-vinyl ligands. Organometallics, 11(1), 138-145. doi:10.1021/om00037a029 | es_ES |
dc.description.references | Fürstner, A. (2016). Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion. ACS Central Science, 2(11), 778-789. doi:10.1021/acscentsci.6b00272 | es_ES |
dc.description.references | Wei, D., & Darcel, C. (2018). Iron Catalysis in Reduction and Hydrometalation Reactions. Chemical Reviews, 119(4), 2550-2610. doi:10.1021/acs.chemrev.8b00372 | es_ES |
dc.description.references | Bullock, R. M., & Chambers, G. M. (2017). Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2101), 20170002. doi:10.1098/rsta.2017.0002 | es_ES |
dc.description.references | Ho, C.-Y., Chan, C.-W., & He, L. (2015). Catalytic Asymmetric Hydroalkenylation of Vinylarenes: Electronic Effects of Substrates and Chiral N-Heterocyclic Carbene Ligands. Angewandte Chemie International Edition, 54(15), 4512-4516. doi:10.1002/anie.201411882 | es_ES |
dc.description.references | Timsina, Y. N., Sharma, R. K., & RajanBabu, T. V. (2015). Cobalt-catalysed asymmetric hydrovinylation of 1,3-dienes. Chemical Science, 6(7), 3994-4008. doi:10.1039/c5sc00929d | es_ES |
dc.description.references | Morris, R. H. (2015). Exploiting Metal–Ligand Bifunctional Reactions in the Design of Iron Asymmetric Hydrogenation Catalysts. Accounts of Chemical Research, 48(5), 1494-1502. doi:10.1021/acs.accounts.5b00045 | es_ES |
dc.description.references | Morris, R. H. (2018). Mechanisms of the H2- and transfer hydrogenation of polar bonds catalyzed by iron group hydrides. Dalton Transactions, 47(32), 10809-10826. doi:10.1039/c8dt01804a | es_ES |
dc.description.references | Morris, R. H. (2009). Asymmetric hydrogenation, transfer hydrogenation and hydrosilylation of ketones catalyzed by iron complexes. Chemical Society Reviews, 38(8), 2282. doi:10.1039/b806837m | es_ES |
dc.description.references | Bigler, R., & Mezzetti, A. (2016). Highly Enantioselective Transfer Hydrogenation of Polar Double Bonds by Macrocyclic Iron(II)/(NH)2P2 Catalysts. Organic Process Research & Development, 20(2), 253-261. doi:10.1021/acs.oprd.5b00391 | es_ES |
dc.description.references | Mezzetti, A. (2017). Iron Complexes with Chiral N/P Macrocycles as Catalysts for Asymmetric Transfer Hydrogenation. Israel Journal of Chemistry, 57(12), 1090-1105. doi:10.1002/ijch.201700035 | es_ES |
dc.description.references | Huber, R., Passera, A., & Mezzetti, A. (2018). Iron(II)-Catalyzed Hydrogenation of Acetophenone with a Chiral, Pyridine-Based PNP Pincer Ligand: Support for an Outer-Sphere Mechanism. Organometallics, 37(3), 396-405. doi:10.1021/acs.organomet.7b00816 | es_ES |
dc.description.references | De Luca, L., Passera, A., & Mezzetti, A. (2019). Asymmetric Transfer Hydrogenation with a Bifunctional Iron(II) Hydride: Experiment Meets Computation. Journal of the American Chemical Society, 141(6), 2545-2556. doi:10.1021/jacs.8b12506 | es_ES |
dc.description.references | Darwish, M., & Wills, M. (2012). Asymmetric catalysis using iron complexes – ‘Ruthenium Lite’? Catal. Sci. Technol., 2(2), 243-255. doi:10.1039/c1cy00390a | es_ES |
dc.description.references | Berkessel, A., Reichau, S., von der Höh, A., Leconte, N., & Neudörfl, J.-M. (2011). Light-Induced Enantioselective Hydrogenation Using Chiral Derivatives of Casey’s Iron–Cyclopentadienone Catalyst. Organometallics, 30(14), 3880-3887. doi:10.1021/om200459s | es_ES |
dc.description.references | Huber, R., Passera, A., Gubler, E., & Mezzetti, A. (2018). P-Stereogenic PN(H)P Iron(II) Catalysts for the Asymmetric Hydrogenation of Ketones: The Importance of Non-Covalent Interactions in Rational Ligand Design by Computation. Advanced Synthesis & Catalysis, 360(15), 2900-2913. doi:10.1002/adsc.201800433 | es_ES |
dc.description.references | De Luca, L., & Mezzetti, A. (2017). Base-Free Asymmetric Transfer Hydrogenation of 1,2-Di- and Monoketones Catalyzed by a (NH)2 P2 -Macrocyclic Iron(II) Hydride. Angewandte Chemie International Edition, 56(39), 11949-11953. doi:10.1002/anie.201706261 | es_ES |
dc.description.references | Passera, A., & Mezzetti, A. (2019). Mn(I) and Fe(II)/PN(H)P Catalysts for the Hydrogenation of Ketones: A Comparison by Experiment and Calculation. Advanced Synthesis & Catalysis, 361(20), 4691-4706. doi:10.1002/adsc.201900671 | es_ES |
dc.description.references | T. Ollevier and H.Keipour , in Iron Catalysis II , ed. E. Bauer , Springer International Publishing , Cham , 2015 , pp. 259–309 | es_ES |
dc.description.references | Shaikh, N. S., Enthaler, S., Junge, K., & Beller, M. (2008). Iron-Catalyzed Enantioselective Hydrosilylation of Ketones. Angewandte Chemie International Edition, 47(13), 2497-2501. doi:10.1002/anie.200705624 | es_ES |
dc.description.references | Burk, M. J., Feaster, J. E., Nugent, W. A., & Harlow, R. L. (1993). Preparation and use of C2-symmetric bis(phospholanes): production of .alpha.-amino acid derivatives via highly enantioselective hydrogenation reactions. Journal of the American Chemical Society, 115(22), 10125-10138. doi:10.1021/ja00075a031 | es_ES |
dc.description.references | Burk, M. J. (2000). Modular Phospholane Ligands in Asymmetric Catalysis. Accounts of Chemical Research, 33(6), 363-372. doi:10.1021/ar990085c | es_ES |
dc.description.references | Crépy, K. V. L., & Imamoto, T. (2003). Recent Developments in Catalytic Asymmetric Hydrogenation Employing P-Chirogenic Diphosphine Ligands. Advanced Synthesis & Catalysis, 345(12), 79-101. doi:10.1002/adsc.200390031 | es_ES |
dc.description.references | E. M. Carreira and L.Kvaerno , Classics in Stereoselective Synthesis , Wiley , 2008 | es_ES |
dc.description.references | P. A. Evans , Science of Synthesis: Stereoselective Synthesis. Stereoselective Pericyclic Reactions, Cross Coupling, and C–H and C–X Activation , Georg Thieme Verlag KG , 2011 | es_ES |
dc.description.references | Rast, S., Stephan, M., & Mohar, B. (2015). Olefin Hydrogenation with Rigid Mono-P-stereogenic Diphosphines: A Flexible Rhodium Ring to Rule Them All? European Journal of Organic Chemistry, 2015(10), 2214-2225. doi:10.1002/ejoc.201403570 | es_ES |
dc.description.references | Hoyt, J. M., Shevlin, M., Margulieux, G. W., Krska, S. W., Tudge, M. T., & Chirik, P. J. (2014). Synthesis and Hydrogenation Activity of Iron Dialkyl Complexes with Chiral Bidentate Phosphines. Organometallics, 33(20), 5781-5790. doi:10.1021/om500329q | es_ES |
dc.description.references | Huber, R., Passera, A., & Mezzetti, A. (2019). Which future for stereogenic phosphorus? Lessons from P* pincer complexes of iron(ii). Chemical Communications, 55(63), 9251-9266. doi:10.1039/c9cc03910d | es_ES |
dc.description.references | Tang, W., & Zhang, X. (2003). New Chiral Phosphorus Ligands for Enantioselective Hydrogenation. Chemical Reviews, 103(8), 3029-3070. doi:10.1021/cr020049i | es_ES |
dc.description.references | Gohdes, J. W., Zakharov, L. N., & Tyler, D. R. (2013). Structure and reactivity of iron(II) complexes of a polymerizable bis-phosphine ligand. Polyhedron, 52, 1169-1176. doi:10.1016/j.poly.2012.06.050 | es_ES |
dc.description.references | Wiesler, B., Tuczek, F., Näther, C., & Bensch, W. (1998). [FeHCl(C10H24P2)2]. Acta Crystallographica Section C Crystal Structure Communications, 54(1), 44-46. doi:10.1107/s0108270197012754 | es_ES |
dc.description.references | Evans, D. J., Henderson, R. A., Hills, A., Hughes, D. L., & Oglieve, K. E. (1992). Involvement of iron alkyl complexes and alkyl radicals in the Kharasch reactions: probing the catalysis using iron phosphine complexes. Journal of the Chemical Society, Dalton Transactions, (7), 1259. doi:10.1039/dt9920001259 | es_ES |
dc.description.references | Lee, J.-K., & Shin, J.-H. (2002). Triboelectrostatic separation of pvc materials from mixed plastics for waste plastic recycling. Korean Journal of Chemical Engineering, 19(2), 267-272. doi:10.1007/bf02698412 | es_ES |
dc.description.references | Field, L. D., Li, H. L., Dalgarno, S. J., Jensen, P., & McIntosh, R. D. (2011). Synthesis and Characterization of Iron(II) and Ruthenium(II) Hydrido Hydrazine Complexes. Inorganic Chemistry, 50(12), 5468-5476. doi:10.1021/ic102519f | es_ES |
dc.description.references | Bautista, M., Earl, K., & Morris, R. (1988). NMR Studies of the Complexes trans-[M(η2-H2)(H)(Ph2PCH2CH2PEt2)2]X (M=Fe, X = BPh4; M = Os, X = BF4): Evidence for Unexpected Shortening of the H-H Bond. Inorganic Chemistry, 27(7), 1124-1125. doi:10.1021/ic00280a600 | es_ES |
dc.description.references | Bautista, M., Earl, K. A., Morris, R. H., & Sella, A. (1987). NMR properties of the complexes trans-[M(.eta.2-H2)(H)(PEt2CH2CH2PEt2)2]+ (M = Fe, Ru, Os). Intramolecular exchange of atoms between .eta.2-dihydrogen and hydride ligands. Journal of the American Chemical Society, 109(12), 3780-3782. doi:10.1021/ja00246a045 | es_ES |
dc.description.references | Bautista, M. T., Cappellani, E. P., Drouin, S. D., Morris, R. H., Schweitzer, C. T., Sella, A., & Zubkowski, J. (1991). Preparation and spectroscopic properties of the .eta.2-dihydrogen complexes [MH(.eta.2-H2)PR2CH2CH2PR2)2] + (M = iron, ruthenium; R = Ph, Et) and trends in properties down the iron group triad. Journal of the American Chemical Society, 113(13), 4876-4887. doi:10.1021/ja00013a025 | es_ES |
dc.description.references | Cappellani, E. P., Drouin, S. D., Jia, G., Maltby, P. A., Morris, R. H., & Schweitzer, C. T. (1994). Effect of the Ligand and Metal on the pKa Values of the Dihydrogen Ligand in the Series of Complexes [M(H2)H(L)2]+, M = Fe, Ru, Os, Containing Isosteric Ditertiaryphosphine Ligands, L. Journal of the American Chemical Society, 116(8), 3375-3388. doi:10.1021/ja00087a024 | es_ES |
dc.description.references | Ricci, J. S., Koetzle, T. F., Bautista, M. T., Hofstede, T. M., Morris, R. H., & Sawyer, J. F. (1989). Single-crystal x-ray and neutron diffraction studies of an .eta.2-dihydrogen transition-metal complex: trans-[Fe(.eta.2-H2)(H)(PPh2CH2CH2PPh2)2]BPh4. Journal of the American Chemical Society, 111(24), 8823-8827. doi:10.1021/ja00206a009 | es_ES |
dc.description.references | Baker, M. V., Field, L. D., & Young, D. J. (1988). Formation of molecular hydrogen complexes of iron by the reversible protonation of iron dihydrides with alcohols. Journal of the Chemical Society, Chemical Communications, (8), 546. doi:10.1039/c39880000546 | es_ES |
dc.description.references | Baker, M. V., & Field, L. D. (1988). Molecular hydrogen complexes as intermediates in the synthesis of iron phosphine complexes; a reinvestigataion of the preparation of bis(diphosphine) chlorohydridoiron complexes. Journal of Organometallic Chemistry, 354(3), 351-356. doi:10.1016/0022-328x(88)80660-0 | es_ES |
dc.description.references | Gilbertson, J. D., Szymczak, N. K., Crossland, J. L., Miller, W. K., Lyon, D. K., Foxman, B. M., … Tyler, D. R. (2007). Coordination Chemistry of H2 and N2 in Aqueous Solution. Reactivity and Mechanistic Studies Using trans-FeII(P2)2X2-Type Complexes (P2 = a Chelating, Water-Solubilizing Phosphine). Inorganic Chemistry, 46(4), 1205-1214. doi:10.1021/ic061570o | es_ES |
dc.description.references | Gilbertson, J. D., Szymczak, N. K., & Tyler, D. R. (2004). H2 Activation in Aqueous Solution: Formation of trans-[Fe(DMeOPrPE)2H(H2)]+ via the Heterolysis of H2 in Water. Inorganic Chemistry, 43(11), 3341-3343. doi:10.1021/ic0498642 | es_ES |
dc.description.references | Crossland, J. L., Young, D. M., Zakharov, L. N., & Tyler, D. R. (2009). Precursors to dinitrogen reduction: structures and reactivity of trans-[Fe(DMeOPrPE)2(η2-H2)H]+ and trans-[Fe(DMeOPrPE)2(N2)H]+. Dalton Transactions, (42), 9253. doi:10.1039/b911066f | es_ES |
dc.description.references | Hills, A., Hughes, D. L., Jimenez-Tenorio, M., & Leigh, G. J. (1990). Complexes of tertiary phosphines with iron(II) and dinitrogen, dihydrogen, and other small molecules. Journal of Organometallic Chemistry, 391(3), C41-C44. doi:10.1016/0022-328x(90)85070-f | es_ES |
dc.description.references | Hills, A., Hughes, D. L., Jimenez-Tenorio, M., Leigh, G. J., & Rowley, A. T. (1993). Bis[1,2-bis(dimethylphosphino)ethane]dihydrogenhydridoiron(II) tetraphenylborate as a model for the function of nitrogenases. Journal of the Chemical Society, Dalton Transactions, (20), 3041. doi:10.1039/dt9930003041 | es_ES |
dc.description.references | Basallote, M. G., Durán, J., Fernández-Trujillo, M. J., González, G., Máñez, M. A., & Martínez, M. (1998). Unexpected Mechanism for Substitution of Coordinated Dihydrogen in trans-[FeH(H2)(DPPE)2]+. Inorganic Chemistry, 37(7), 1623-1628. doi:10.1021/ic970493h | es_ES |
dc.description.references | Basallote, M. G., Durán, J., Fernández-Trujillo, M. J., & Máñez, M. A. (2000). The kinetics and mechanisms of reactions involving the dihydrogen complex trans-[FeH(H2)(DPPE)2]+ and related compounds. Journal of Organometallic Chemistry, 609(1-2), 29-35. doi:10.1016/s0022-328x(00)00350-8 | es_ES |
dc.description.references | A. Helleren, C., A. Henderson, R., & Jeffery Leigh, G. (1999). The mechanism of displacement of dihydrogen and dinitrogen from iron, ruthenium and osmium hydrides and implications for models of nitrogenase action. Journal of the Chemical Society, Dalton Transactions, (8), 1213. doi:10.1039/a810001b | es_ES |
dc.description.references | Feliz, M., & Estevan, F. (2015). Synthesis, Structure, and Reactivity of (Dihydrogen)(hydrido)iron(II) Complexes Bearing Chiral Diphosphanes. European Journal of Inorganic Chemistry, 2016(1), 92-102. doi:10.1002/ejic.201501085 | es_ES |
dc.description.references | Chatt, J., & Hayter, R. G. (1961). 1079. Some hydrido-complexes of iron(II). Journal of the Chemical Society (Resumed), 5507. doi:10.1039/jr9610005507 | es_ES |
dc.description.references | Field, L. D., Magill, A. M., Pike, S. R., Turnbull, A. J., Dalgarno, S. J., Turner, P., & Willis, A. C. (2010). Unsymmetrically Substituted Butenynyl-Iron(II) Complexes. European Journal of Inorganic Chemistry, 2010(16), 2406-2414. doi:10.1002/ejic.201000281 | es_ES |
dc.description.references | Giannoccaro, P., Rossi, M., & Sacco, A. (1972). New cationic hydrido and hydrido-dinitrogen complexes of iron. Coordination Chemistry Reviews, 8(1-2), 77-79. doi:10.1016/s0010-8545(00)80054-5 | es_ES |
dc.description.references | Franke, O., Wiesler, B. E., Lehnert, N., Peters, G., Burger, P., & Tuczek, F. (2006). The Iron Hydrido Complex [FeH(dppe)2]+: Solution and Solid-State Reactivity with Dinitrogen. Zeitschrift für anorganische und allgemeine Chemie, 632(7), 1247-1256. doi:10.1002/zaac.200500502 | es_ES |
dc.description.references | Barclay, J. E., Leigh, G. J., Houlton, A., & Silver, J. (1988). Mössbauer and preparative studies of some iron(II) complexes of diphosphines. J. Chem. Soc., Dalton Trans., (11), 2865-2870. doi:10.1039/dt9880002865 | es_ES |
dc.description.references | Cecconi, F., Di Vaira, M., Midollini, S., Orlandini, A., & Sacconi, L. (1981). Singlet .dblharw. quintet spin transitions of iron(II) complexes with a P4Cl2 donor set. X-ray structures of the compound FeCl2(Ph2PCH:CHPPh2)2 and of its acetone solvate at 130 and 295 K. Inorganic Chemistry, 20(10), 3423-3430. doi:10.1021/ic50224a053 | es_ES |
dc.description.references | Barclay, J. E., Hills, A., Hughes, D. L., & Leigh, G. J. (1988). Crystal and molecular structures of four bis(diphosphine) complexes of iron(II): bis[1,2-bis(diethylphosphino)ethane]di-iodoiron(II), dichloro-bis[o-phenylenebis(diphenylphosphine)]iron(II), bis(acetonitrile)bis-[o-phenylenebis(diphenylphosphine)]iron(II) di-iodide, and iodobis-[o-phenylenebis(diphenylphosphine)]iron(II) iodide. Journal of the Chemical Society, Dalton Transactions, (11), 2871. doi:10.1039/dt9880002871 | es_ES |
dc.description.references | Redshaw, C., Wilkinson, G., Hussain-Bates, B., & Hursthouse, M. B. (1993). Synthesis and characterization of 1,2-bis(phosphino)benzene (diphos) and related complexes of vanadium, chromium, iron and cobalt. X-ray crystal structures of MCl2(DIPHOS)2 (M = V, Cr and Fe) and [Fe(DIPHOS)2(MeCN)2](BPh4)2. Polyhedron, 12(4), 363-370. doi:10.1016/s0277-5387(00)81739-8 | es_ES |
dc.description.references | Field, L. D., Thomas, I. P., Hambley, T. W., & Turner, P. (1998). Iron(II) Complexes Containing the 1,2-Diphospholanoethane Ligand. Inorganic Chemistry, 37(4), 612-618. doi:10.1021/ic9701928 | es_ES |
dc.description.references | Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J., & Verschoor, G. C. (1984). Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans., (7), 1349-1356. doi:10.1039/dt9840001349 | es_ES |
dc.description.references | Coggin, D. K., Gonzalez, J. A., Kook, A. M., Stanbury, D. M., & Wilson, L. J. (1991). Ligand dynamics in pentacoordinate copper(I) and zinc(II) complexes. Inorganic Chemistry, 30(5), 1115-1125. doi:10.1021/ic00005a044 | es_ES |
dc.description.references | Seitz, M., Stempfhuber, S., Zabel, M., Schütz, M., & Reiser, O. (2004). Helical Chirality in Pentacoordinate Zinc Complexes-Selective Access to Both Pseudoenantiomers with One Ligand Configuration. Angewandte Chemie International Edition, 44(2), 242-245. doi:10.1002/anie.200460843 | es_ES |
dc.description.references | Franke, O., Wiesler, B. E., Lehnert, N., Näther, C., Ksenofontov, V., Neuhausen, J., & Tuczek, F. (2002). Five-Coordinate Complexes [FeX(depe)2]BPh4, X = Cl, Br: Electronic Structure and Spin-Forbidden Reaction with N2. Inorganic Chemistry, 41(13), 3491-3499. doi:10.1021/ic0111987 | es_ES |
dc.description.references | Bedford, R. B., Carter, E., Cogswell, P. M., Gower, N. J., Haddow, M. F., Harvey, J. N., … Nunn, J. (2012). Simplifying Iron-Phosphine Catalysts for Cross-Coupling Reactions. Angewandte Chemie International Edition, 52(4), 1285-1288. doi:10.1002/anie.201207868 | es_ES |
dc.description.references | Adams, C. J., Bedford, R. B., Carter, E., Gower, N. J., Haddow, M. F., Harvey, J. N., … Nunn, J. (2012). Iron(I) in Negishi Cross-Coupling Reactions. Journal of the American Chemical Society, 134(25), 10333-10336. doi:10.1021/ja303250t | es_ES |
dc.description.references | Higgins, S. J., Jewiss, H. C., Levason, W., & Webster, M. (1985). Structure of trans-dichlorobis[3,4,5,6-tetrafluoro-o-phenylenebis(dimethylphosphine)]iron(III) tetrafluoroborate, [FeCl2(C10H12F4P2)2]BF4. Acta Crystallographica Section C Crystal Structure Communications, 41(5), 695-697. doi:10.1107/s0108270185005157 | es_ES |
dc.description.references | Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930 | es_ES |
dc.description.references | Sheldrick, G. M. (2015). Crystal structure refinement withSHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), 3-8. doi:10.1107/s2053229614024218 | es_ES |
dc.description.references | Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi:10.1107/s0021889808042726 | es_ES |
dc.description.references | Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 | es_ES |
dc.description.references | Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785 | es_ES |
dc.description.references | Dolg, M., Wedig, U., Stoll, H., & Preuss, H. (1987). Energy‐adjustedabinitiopseudopotentials for the first row transition elements. The Journal of Chemical Physics, 86(2), 866-872. doi:10.1063/1.452288 | es_ES |
dc.description.references | Bergner, A., Dolg, M., Küchle, W., Stoll, H., & Preuß, H. (1993). Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Molecular Physics, 80(6), 1431-1441. doi:10.1080/00268979300103121 | es_ES |
dc.description.references | Ehlers, A. W., Böhme, M., Dapprich, S., Gobbi, A., Höllwarth, A., Jonas, V., … Frenking, G. (1993). A set of f-polarization functions for pseudo-potential basis sets of the transition metals ScCu, YAg and LaAu. Chemical Physics Letters, 208(1-2), 111-114. doi:10.1016/0009-2614(93)80086-5 | es_ES |
dc.description.references | Höllwarth, A., Böhme, M., Dapprich, S., Ehlers, A. W., Gobbi, A., Jonas, V., … Frenking, G. (1993). A set of d-polarization functions for pseudo-potential basis sets of the main group elements AlBi and f-type polarization functions for Zn, Cd, Hg. Chemical Physics Letters, 208(3-4), 237-240. doi:10.1016/0009-2614(93)89068-s | es_ES |