- -

Configurational landscape of chiral iron(II) bis(phosphane) complexes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Configurational landscape of chiral iron(II) bis(phosphane) complexes

Mostrar el registro completo del ítem

Estevan, F.; Feliz Rodriguez, M. (2020). Configurational landscape of chiral iron(II) bis(phosphane) complexes. Dalton Transactions. 49(14):4528-4538. https://doi.org/10.1039/c9dt04821a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165717

Ficheros en el ítem

Metadatos del ítem

Título: Configurational landscape of chiral iron(II) bis(phosphane) complexes
Autor: Estevan, Francisco Feliz Rodriguez, Marta
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] The reaction of a chiral [FeH(¿2-H2){(R,R)-Me-DuPhos}2]+ ((R,R)-Me-DuPhos = (¿)-1,2-bis[(2R,5R)-2,5-dimethylphospholano]benzene) complex with ethers and halides is investigated by NMR techniques. From this study, it ...[+]
Palabras clave: Iron , DuPhos , Hydride , Isomerization , Configuration
Derechos de uso: Cerrado
Fuente:
Dalton Transactions. (issn: 1477-9226 )
DOI: 10.1039/c9dt04821a
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c9dt04821a
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096399-A-I00/ES/CLUSTERES MULTIMETALICOS Y SUBNANOMETRICOS SOPORTADOS: SINTESIS, ESTRUCTURA Y DINAMISMO ATOMICO, Y EMPLEO COMO CATALIZADORES EN LA VALORIZACION DE METANO Y ALCANOS LIGEROS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
This research was supported by the Severo Ochoa Program (SEV-2016-0683), Ministerio de Ciencia e Innovacion (RTI2018-096399), and the Consejo Superior de Investigaciones Cientificas (CSIC) of the Universitat de Valencia. ...[+]
Tipo: Artículo

References

Belkova, N. V., Epstein, L. M., Filippov, O. A., & Shubina, E. S. (2016). Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides. Chemical Reviews, 116(15), 8545-8587. doi:10.1021/acs.chemrev.6b00091

Esteruelas, M. A., & Oro, L. A. (1998). Dihydrogen Complexes as Homogeneous Reduction Catalysts. Chemical Reviews, 98(2), 577-588. doi:10.1021/cr970322u

Bullock, R. M. (1991). Metal-Hydrogen Bond Cleavage Reactions of Transition Metal Hydrides: Hydrogen Atom, Hydride, and Proton Transfer Reactions. Comments on Inorganic Chemistry, 12(1), 1-33. doi:10.1080/02603599108018617 [+]
Belkova, N. V., Epstein, L. M., Filippov, O. A., & Shubina, E. S. (2016). Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides. Chemical Reviews, 116(15), 8545-8587. doi:10.1021/acs.chemrev.6b00091

Esteruelas, M. A., & Oro, L. A. (1998). Dihydrogen Complexes as Homogeneous Reduction Catalysts. Chemical Reviews, 98(2), 577-588. doi:10.1021/cr970322u

Bullock, R. M. (1991). Metal-Hydrogen Bond Cleavage Reactions of Transition Metal Hydrides: Hydrogen Atom, Hydride, and Proton Transfer Reactions. Comments on Inorganic Chemistry, 12(1), 1-33. doi:10.1080/02603599108018617

R. H. Morris , in Encyclopedia of Inorganic and Bioinorganic Chemistry , ed. R. H. Crabtree , 2018 , pp. 1–12

Catalysis without Precious Metals , ed. R. M. Bullock , Wiley-VCH , Weinheim , 2010

Robinson, S. J. C., & Heinekey, D. M. (2017). Hydride & dihydrogen complexes of earth abundant metals: structure, reactivity, and applications to catalysis. Chemical Communications, 53(4), 669-676. doi:10.1039/c6cc07529k

Bianchini, C., Meli, A., Peruzzini, M., Frediani, P., Bohanna, C., Esteruelas, M. A., & Oro, L. A. (1992). Selective hydrogenation of 1-alkynes to alkenes catalyzed by an iron(II) cis-hydride .eta.2-dihydrogen complex. A case of intramolecular reaction between .eta.2-H2 and .sigma.-vinyl ligands. Organometallics, 11(1), 138-145. doi:10.1021/om00037a029

Fürstner, A. (2016). Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion. ACS Central Science, 2(11), 778-789. doi:10.1021/acscentsci.6b00272

Wei, D., & Darcel, C. (2018). Iron Catalysis in Reduction and Hydrometalation Reactions. Chemical Reviews, 119(4), 2550-2610. doi:10.1021/acs.chemrev.8b00372

Bullock, R. M., & Chambers, G. M. (2017). Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2101), 20170002. doi:10.1098/rsta.2017.0002

Ho, C.-Y., Chan, C.-W., & He, L. (2015). Catalytic Asymmetric Hydroalkenylation of Vinylarenes: Electronic Effects of Substrates and Chiral N-Heterocyclic Carbene Ligands. Angewandte Chemie International Edition, 54(15), 4512-4516. doi:10.1002/anie.201411882

Timsina, Y. N., Sharma, R. K., & RajanBabu, T. V. (2015). Cobalt-catalysed asymmetric hydrovinylation of 1,3-dienes. Chemical Science, 6(7), 3994-4008. doi:10.1039/c5sc00929d

Morris, R. H. (2015). Exploiting Metal–Ligand Bifunctional Reactions in the Design of Iron Asymmetric Hydrogenation Catalysts. Accounts of Chemical Research, 48(5), 1494-1502. doi:10.1021/acs.accounts.5b00045

Morris, R. H. (2018). Mechanisms of the H2- and transfer hydrogenation of polar bonds catalyzed by iron group hydrides. Dalton Transactions, 47(32), 10809-10826. doi:10.1039/c8dt01804a

Morris, R. H. (2009). Asymmetric hydrogenation, transfer hydrogenation and hydrosilylation of ketones catalyzed by iron complexes. Chemical Society Reviews, 38(8), 2282. doi:10.1039/b806837m

Bigler, R., & Mezzetti, A. (2016). Highly Enantioselective Transfer Hydrogenation of Polar Double Bonds by Macrocyclic Iron(II)/(NH)2P2 Catalysts. Organic Process Research & Development, 20(2), 253-261. doi:10.1021/acs.oprd.5b00391

Mezzetti, A. (2017). Iron Complexes with Chiral N/P Macrocycles as Catalysts for Asymmetric Transfer Hydrogenation. Israel Journal of Chemistry, 57(12), 1090-1105. doi:10.1002/ijch.201700035

Huber, R., Passera, A., & Mezzetti, A. (2018). Iron(II)-Catalyzed Hydrogenation of Acetophenone with a Chiral, Pyridine-Based PNP Pincer Ligand: Support for an Outer-Sphere Mechanism. Organometallics, 37(3), 396-405. doi:10.1021/acs.organomet.7b00816

De Luca, L., Passera, A., & Mezzetti, A. (2019). Asymmetric Transfer Hydrogenation with a Bifunctional Iron(II) Hydride: Experiment Meets Computation. Journal of the American Chemical Society, 141(6), 2545-2556. doi:10.1021/jacs.8b12506

Darwish, M., & Wills, M. (2012). Asymmetric catalysis using iron complexes – ‘Ruthenium Lite’? Catal. Sci. Technol., 2(2), 243-255. doi:10.1039/c1cy00390a

Berkessel, A., Reichau, S., von der Höh, A., Leconte, N., & Neudörfl, J.-M. (2011). Light-Induced Enantioselective Hydrogenation Using Chiral Derivatives of Casey’s Iron–Cyclopentadienone Catalyst. Organometallics, 30(14), 3880-3887. doi:10.1021/om200459s

Huber, R., Passera, A., Gubler, E., & Mezzetti, A. (2018). P-Stereogenic PN(H)P Iron(II) Catalysts for the Asymmetric Hydrogenation of Ketones: The Importance of Non-Covalent Interactions in Rational Ligand Design by Computation. Advanced Synthesis & Catalysis, 360(15), 2900-2913. doi:10.1002/adsc.201800433

De Luca, L., & Mezzetti, A. (2017). Base-Free Asymmetric Transfer Hydrogenation of 1,2-Di- and Monoketones Catalyzed by a (NH)2 P2 -Macrocyclic Iron(II) Hydride. Angewandte Chemie International Edition, 56(39), 11949-11953. doi:10.1002/anie.201706261

Passera, A., & Mezzetti, A. (2019). Mn(I) and Fe(II)/PN(H)P Catalysts for the Hydrogenation of Ketones: A Comparison by Experiment and Calculation. Advanced Synthesis & Catalysis, 361(20), 4691-4706. doi:10.1002/adsc.201900671

T. Ollevier and H.Keipour , in Iron Catalysis II , ed. E. Bauer , Springer International Publishing , Cham , 2015 , pp. 259–309

Shaikh, N. S., Enthaler, S., Junge, K., & Beller, M. (2008). Iron-Catalyzed Enantioselective Hydrosilylation of Ketones. Angewandte Chemie International Edition, 47(13), 2497-2501. doi:10.1002/anie.200705624

Burk, M. J., Feaster, J. E., Nugent, W. A., & Harlow, R. L. (1993). Preparation and use of C2-symmetric bis(phospholanes): production of .alpha.-amino acid derivatives via highly enantioselective hydrogenation reactions. Journal of the American Chemical Society, 115(22), 10125-10138. doi:10.1021/ja00075a031

Burk, M. J. (2000). Modular Phospholane Ligands in Asymmetric Catalysis. Accounts of Chemical Research, 33(6), 363-372. doi:10.1021/ar990085c

Crépy, K. V. L., & Imamoto, T. (2003). Recent Developments in Catalytic Asymmetric Hydrogenation Employing P-Chirogenic Diphosphine Ligands. Advanced Synthesis & Catalysis, 345(12), 79-101. doi:10.1002/adsc.200390031

E. M. Carreira and L.Kvaerno , Classics in Stereoselective Synthesis , Wiley , 2008

P. A. Evans , Science of Synthesis: Stereoselective Synthesis. Stereoselective Pericyclic Reactions, Cross Coupling, and C–H and C–X Activation , Georg Thieme Verlag KG , 2011

Rast, S., Stephan, M., & Mohar, B. (2015). Olefin Hydrogenation with Rigid Mono-P-stereogenic Diphosphines: A Flexible Rhodium Ring to Rule Them All? European Journal of Organic Chemistry, 2015(10), 2214-2225. doi:10.1002/ejoc.201403570

Hoyt, J. M., Shevlin, M., Margulieux, G. W., Krska, S. W., Tudge, M. T., & Chirik, P. J. (2014). Synthesis and Hydrogenation Activity of Iron Dialkyl Complexes with Chiral Bidentate Phosphines. Organometallics, 33(20), 5781-5790. doi:10.1021/om500329q

Huber, R., Passera, A., & Mezzetti, A. (2019). Which future for stereogenic phosphorus? Lessons from P* pincer complexes of iron(ii). Chemical Communications, 55(63), 9251-9266. doi:10.1039/c9cc03910d

Tang, W., & Zhang, X. (2003). New Chiral Phosphorus Ligands for Enantioselective Hydrogenation. Chemical Reviews, 103(8), 3029-3070. doi:10.1021/cr020049i

Gohdes, J. W., Zakharov, L. N., & Tyler, D. R. (2013). Structure and reactivity of iron(II) complexes of a polymerizable bis-phosphine ligand. Polyhedron, 52, 1169-1176. doi:10.1016/j.poly.2012.06.050

Wiesler, B., Tuczek, F., Näther, C., & Bensch, W. (1998). [FeHCl(C10H24P2)2]. Acta Crystallographica Section C Crystal Structure Communications, 54(1), 44-46. doi:10.1107/s0108270197012754

Evans, D. J., Henderson, R. A., Hills, A., Hughes, D. L., & Oglieve, K. E. (1992). Involvement of iron alkyl complexes and alkyl radicals in the Kharasch reactions: probing the catalysis using iron phosphine complexes. Journal of the Chemical Society, Dalton Transactions, (7), 1259. doi:10.1039/dt9920001259

Lee, J.-K., & Shin, J.-H. (2002). Triboelectrostatic separation of pvc materials from mixed plastics for waste plastic recycling. Korean Journal of Chemical Engineering, 19(2), 267-272. doi:10.1007/bf02698412

Field, L. D., Li, H. L., Dalgarno, S. J., Jensen, P., & McIntosh, R. D. (2011). Synthesis and Characterization of Iron(II) and Ruthenium(II) Hydrido Hydrazine Complexes. Inorganic Chemistry, 50(12), 5468-5476. doi:10.1021/ic102519f

Bautista, M., Earl, K., & Morris, R. (1988). NMR Studies of the Complexes trans-[M(η2-H2)(H)(Ph2PCH2CH2PEt2)2]X (M=Fe, X = BPh4; M = Os, X = BF4): Evidence for Unexpected Shortening of the H-H Bond. Inorganic Chemistry, 27(7), 1124-1125. doi:10.1021/ic00280a600

Bautista, M., Earl, K. A., Morris, R. H., & Sella, A. (1987). NMR properties of the complexes trans-[M(.eta.2-H2)(H)(PEt2CH2CH2PEt2)2]+ (M = Fe, Ru, Os). Intramolecular exchange of atoms between .eta.2-dihydrogen and hydride ligands. Journal of the American Chemical Society, 109(12), 3780-3782. doi:10.1021/ja00246a045

Bautista, M. T., Cappellani, E. P., Drouin, S. D., Morris, R. H., Schweitzer, C. T., Sella, A., & Zubkowski, J. (1991). Preparation and spectroscopic properties of the .eta.2-dihydrogen complexes [MH(.eta.2-H2)PR2CH2CH2PR2)2] + (M = iron, ruthenium; R = Ph, Et) and trends in properties down the iron group triad. Journal of the American Chemical Society, 113(13), 4876-4887. doi:10.1021/ja00013a025

Cappellani, E. P., Drouin, S. D., Jia, G., Maltby, P. A., Morris, R. H., & Schweitzer, C. T. (1994). Effect of the Ligand and Metal on the pKa Values of the Dihydrogen Ligand in the Series of Complexes [M(H2)H(L)2]+, M = Fe, Ru, Os, Containing Isosteric Ditertiaryphosphine Ligands, L. Journal of the American Chemical Society, 116(8), 3375-3388. doi:10.1021/ja00087a024

Ricci, J. S., Koetzle, T. F., Bautista, M. T., Hofstede, T. M., Morris, R. H., & Sawyer, J. F. (1989). Single-crystal x-ray and neutron diffraction studies of an .eta.2-dihydrogen transition-metal complex: trans-[Fe(.eta.2-H2)(H)(PPh2CH2CH2PPh2)2]BPh4. Journal of the American Chemical Society, 111(24), 8823-8827. doi:10.1021/ja00206a009

Baker, M. V., Field, L. D., & Young, D. J. (1988). Formation of molecular hydrogen complexes of iron by the reversible protonation of iron dihydrides with alcohols. Journal of the Chemical Society, Chemical Communications, (8), 546. doi:10.1039/c39880000546

Baker, M. V., & Field, L. D. (1988). Molecular hydrogen complexes as intermediates in the synthesis of iron phosphine complexes; a reinvestigataion of the preparation of bis(diphosphine) chlorohydridoiron complexes. Journal of Organometallic Chemistry, 354(3), 351-356. doi:10.1016/0022-328x(88)80660-0

Gilbertson, J. D., Szymczak, N. K., Crossland, J. L., Miller, W. K., Lyon, D. K., Foxman, B. M., … Tyler, D. R. (2007). Coordination Chemistry of H2 and N2 in Aqueous Solution. Reactivity and Mechanistic Studies Using trans-FeII(P2)2X2-Type Complexes (P2 = a Chelating, Water-Solubilizing Phosphine). Inorganic Chemistry, 46(4), 1205-1214. doi:10.1021/ic061570o

Gilbertson, J. D., Szymczak, N. K., & Tyler, D. R. (2004). H2 Activation in Aqueous Solution:  Formation of trans-[Fe(DMeOPrPE)2H(H2)]+ via the Heterolysis of H2 in Water. Inorganic Chemistry, 43(11), 3341-3343. doi:10.1021/ic0498642

Crossland, J. L., Young, D. M., Zakharov, L. N., & Tyler, D. R. (2009). Precursors to dinitrogen reduction: structures and reactivity of trans-[Fe(DMeOPrPE)2(η2-H2)H]+ and trans-[Fe(DMeOPrPE)2(N2)H]+. Dalton Transactions, (42), 9253. doi:10.1039/b911066f

Hills, A., Hughes, D. L., Jimenez-Tenorio, M., & Leigh, G. J. (1990). Complexes of tertiary phosphines with iron(II) and dinitrogen, dihydrogen, and other small molecules. Journal of Organometallic Chemistry, 391(3), C41-C44. doi:10.1016/0022-328x(90)85070-f

Hills, A., Hughes, D. L., Jimenez-Tenorio, M., Leigh, G. J., & Rowley, A. T. (1993). Bis[1,2-bis(dimethylphosphino)ethane]dihydrogenhydridoiron(II) tetraphenylborate as a model for the function of nitrogenases. Journal of the Chemical Society, Dalton Transactions, (20), 3041. doi:10.1039/dt9930003041

Basallote, M. G., Durán, J., Fernández-Trujillo, M. J., González, G., Máñez, M. A., & Martínez, M. (1998). Unexpected Mechanism for Substitution of Coordinated Dihydrogen in trans-[FeH(H2)(DPPE)2]+. Inorganic Chemistry, 37(7), 1623-1628. doi:10.1021/ic970493h

Basallote, M. G., Durán, J., Fernández-Trujillo, M. J., & Máñez, M. A. (2000). The kinetics and mechanisms of reactions involving the dihydrogen complex trans-[FeH(H2)(DPPE)2]+ and related compounds. Journal of Organometallic Chemistry, 609(1-2), 29-35. doi:10.1016/s0022-328x(00)00350-8

A. Helleren, C., A. Henderson, R., & Jeffery Leigh, G. (1999). The mechanism of displacement of dihydrogen and dinitrogen from iron, ruthenium and osmium hydrides and implications for models of nitrogenase action. Journal of the Chemical Society, Dalton Transactions, (8), 1213. doi:10.1039/a810001b

Feliz, M., & Estevan, F. (2015). Synthesis, Structure, and Reactivity of (Dihydrogen)(hydrido)iron(II) Complexes Bearing Chiral Diphos­phanes. European Journal of Inorganic Chemistry, 2016(1), 92-102. doi:10.1002/ejic.201501085

Chatt, J., & Hayter, R. G. (1961). 1079. Some hydrido-complexes of iron(II). Journal of the Chemical Society (Resumed), 5507. doi:10.1039/jr9610005507

Field, L. D., Magill, A. M., Pike, S. R., Turnbull, A. J., Dalgarno, S. J., Turner, P., & Willis, A. C. (2010). Unsymmetrically Substituted Butenynyl-Iron(II) Complexes. European Journal of Inorganic Chemistry, 2010(16), 2406-2414. doi:10.1002/ejic.201000281

Giannoccaro, P., Rossi, M., & Sacco, A. (1972). New cationic hydrido and hydrido-dinitrogen complexes of iron. Coordination Chemistry Reviews, 8(1-2), 77-79. doi:10.1016/s0010-8545(00)80054-5

Franke, O., Wiesler, B. E., Lehnert, N., Peters, G., Burger, P., & Tuczek, F. (2006). The Iron Hydrido Complex [FeH(dppe)2]+: Solution and Solid-State Reactivity with Dinitrogen. Zeitschrift für anorganische und allgemeine Chemie, 632(7), 1247-1256. doi:10.1002/zaac.200500502

Barclay, J. E., Leigh, G. J., Houlton, A., & Silver, J. (1988). Mössbauer and preparative studies of some iron(II) complexes of diphosphines. J. Chem. Soc., Dalton Trans., (11), 2865-2870. doi:10.1039/dt9880002865

Cecconi, F., Di Vaira, M., Midollini, S., Orlandini, A., & Sacconi, L. (1981). Singlet .dblharw. quintet spin transitions of iron(II) complexes with a P4Cl2 donor set. X-ray structures of the compound FeCl2(Ph2PCH:CHPPh2)2 and of its acetone solvate at 130 and 295 K. Inorganic Chemistry, 20(10), 3423-3430. doi:10.1021/ic50224a053

Barclay, J. E., Hills, A., Hughes, D. L., & Leigh, G. J. (1988). Crystal and molecular structures of four bis(diphosphine) complexes of iron(II): bis[1,2-bis(diethylphosphino)ethane]di-iodoiron(II), dichloro-bis[o-phenylenebis(diphenylphosphine)]iron(II), bis(acetonitrile)bis-[o-phenylenebis(diphenylphosphine)]iron(II) di-iodide, and iodobis-[o-phenylenebis(diphenylphosphine)]iron(II) iodide. Journal of the Chemical Society, Dalton Transactions, (11), 2871. doi:10.1039/dt9880002871

Redshaw, C., Wilkinson, G., Hussain-Bates, B., & Hursthouse, M. B. (1993). Synthesis and characterization of 1,2-bis(phosphino)benzene (diphos) and related complexes of vanadium, chromium, iron and cobalt. X-ray crystal structures of MCl2(DIPHOS)2 (M = V, Cr and Fe) and [Fe(DIPHOS)2(MeCN)2](BPh4)2. Polyhedron, 12(4), 363-370. doi:10.1016/s0277-5387(00)81739-8

Field, L. D., Thomas, I. P., Hambley, T. W., & Turner, P. (1998). Iron(II) Complexes Containing the 1,2-Diphospholanoethane Ligand. Inorganic Chemistry, 37(4), 612-618. doi:10.1021/ic9701928

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J., & Verschoor, G. C. (1984). Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans., (7), 1349-1356. doi:10.1039/dt9840001349

Coggin, D. K., Gonzalez, J. A., Kook, A. M., Stanbury, D. M., & Wilson, L. J. (1991). Ligand dynamics in pentacoordinate copper(I) and zinc(II) complexes. Inorganic Chemistry, 30(5), 1115-1125. doi:10.1021/ic00005a044

Seitz, M., Stempfhuber, S., Zabel, M., Schütz, M., & Reiser, O. (2004). Helical Chirality in Pentacoordinate Zinc Complexes-Selective Access to Both Pseudoenantiomers with One Ligand Configuration. Angewandte Chemie International Edition, 44(2), 242-245. doi:10.1002/anie.200460843

Franke, O., Wiesler, B. E., Lehnert, N., Näther, C., Ksenofontov, V., Neuhausen, J., & Tuczek, F. (2002). Five-Coordinate Complexes [FeX(depe)2]BPh4, X = Cl, Br:  Electronic Structure and Spin-Forbidden Reaction with N2. Inorganic Chemistry, 41(13), 3491-3499. doi:10.1021/ic0111987

Bedford, R. B., Carter, E., Cogswell, P. M., Gower, N. J., Haddow, M. F., Harvey, J. N., … Nunn, J. (2012). Simplifying Iron-Phosphine Catalysts for Cross-Coupling Reactions. Angewandte Chemie International Edition, 52(4), 1285-1288. doi:10.1002/anie.201207868

Adams, C. J., Bedford, R. B., Carter, E., Gower, N. J., Haddow, M. F., Harvey, J. N., … Nunn, J. (2012). Iron(I) in Negishi Cross-Coupling Reactions. Journal of the American Chemical Society, 134(25), 10333-10336. doi:10.1021/ja303250t

Higgins, S. J., Jewiss, H. C., Levason, W., & Webster, M. (1985). Structure of trans-dichlorobis[3,4,5,6-tetrafluoro-o-phenylenebis(dimethylphosphine)]iron(III) tetrafluoroborate, [FeCl2(C10H12F4P2)2]BF4. Acta Crystallographica Section C Crystal Structure Communications, 41(5), 695-697. doi:10.1107/s0108270185005157

Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930

Sheldrick, G. M. (2015). Crystal structure refinement withSHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), 3-8. doi:10.1107/s2053229614024218

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi:10.1107/s0021889808042726

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913

Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785

Dolg, M., Wedig, U., Stoll, H., & Preuss, H. (1987). Energy‐adjustedabinitiopseudopotentials for the first row transition elements. The Journal of Chemical Physics, 86(2), 866-872. doi:10.1063/1.452288

Bergner, A., Dolg, M., Küchle, W., Stoll, H., & Preuß, H. (1993). Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Molecular Physics, 80(6), 1431-1441. doi:10.1080/00268979300103121

Ehlers, A. W., Böhme, M., Dapprich, S., Gobbi, A., Höllwarth, A., Jonas, V., … Frenking, G. (1993). A set of f-polarization functions for pseudo-potential basis sets of the transition metals ScCu, YAg and LaAu. Chemical Physics Letters, 208(1-2), 111-114. doi:10.1016/0009-2614(93)80086-5

Höllwarth, A., Böhme, M., Dapprich, S., Ehlers, A. W., Gobbi, A., Jonas, V., … Frenking, G. (1993). A set of d-polarization functions for pseudo-potential basis sets of the main group elements AlBi and f-type polarization functions for Zn, Cd, Hg. Chemical Physics Letters, 208(3-4), 237-240. doi:10.1016/0009-2614(93)89068-s

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem