- -

Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bori, Lorena es_ES
dc.contributor.author Paya-Bosch, Elena es_ES
dc.contributor.author Alegre, Lucía es_ES
dc.contributor.author Viloria, Thamara es_ES
dc.contributor.author Remohí, José es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.contributor.author Meseguer, Marcos es_ES
dc.date.accessioned 2021-04-28T03:31:50Z
dc.date.available 2021-04-28T03:31:50Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 0015-0282 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165718
dc.description.abstract [ES] Objetivo: Describir nuevas características de embriones capaces de predecir el potencial de implantación como datos de entrada para un modelo de red neuronal artificial (ANN). Diseño: Estudio de cohorte retrospectivo. Entorno: Centro de FIV privado afiliado a la universidad. Paciente (s): Este estudio incluyó a 637 pacientes del programa de donación de ovocitos que se sometieron a transferencia de un solo blastocisto durante dos años consecutivos. Intervención (es): Ninguna. Principales medidas de resultado: La investigación se dividió en dos fases. La fase 1 consistió en la descripción y análisis de las siguientes características embrionarias en embriones implantados y no implantados: distancia y velocidad de migración pronuclear, diámetro del blastocisto expandido, área de masa celular interna y duración del ciclo celular del trofoectodermo. La fase 2 consistió en el desarrollo de un algoritmo ANN para la predicción de la implantación. Se obtuvieron resultados para cuatro modelos alimentados con diferentes datos de entrada. El poder predictivo se midió con el uso del área bajo la curva característica operativa del receptor (AUC). Resultado (s): De los cinco nuevos parámetros descritos, el diámetro expandido del blastocisto y la duración del ciclo celular del trofoectodermo tenían valores estadísticamente diferentes en los embriones implantados y no implantados. Después de que los modelos ANN fueron entrenados y validados mediante validación cruzada cinco veces, estos fueron capaces de predecir la implantación en los datos de prueba con AUC de 0,64 para ANN1 (morfocinética convencional), 0,73 para ANN2 (morfodinámica novedosa), 0,77 para ANN3 (morfocinética convencional þ morfodinámica novedosa) y 0,68 para ANN4 (variables discriminatorias de prueba estadística). Conclusión (es): Las nuevas características embrionarias propuestas afectan al potencial de implantación y su combinación con parámetros morfocinéticos convencionales es eficaz como datos de entrada para un modelo predictivo basado en inteligencia artificial. es_ES
dc.description.abstract [EN] Objective: To describe novel embryo features capable of predicting implantation potential as input data for an artificial neural network (ANN) model. Design: Retrospective cohort study. Setting: University-affiliated private IVF center. Patient(s): This study included 637 patients from the oocyte donation program who underwent single-blastocyst transfer during two consecutive years. Intervention(s): None. Main Outcome Measure(s): The research was divided into two phases. Phase 1 consisted of the description and analysis of the following embryo features in implanted and nonimplanted embryos: distance and speed of pronuclear migration, blastocyst expanded diameter, inner cell mass area, and trophectoderm cell cycle length. Phase 2 consisted of the development of an ANN algorithm for implantation prediction. Results were obtained for four models fed with different input data. The predictive power was measured with the use of the area under the receiver operating characteristic curve (AUC). Result(s): Out of the five novel described parameters, blastocyst expanded diameter and trophectoderm cell cycle length had statistically different values in implanted and nonimplanted embryos. After the ANN models were trained and validated using fivefold cross validation, they were capable of predicting implantation on testing data with AUCs of 0.64 for ANN1 (conventional morphokinetics), 0.73 for ANN2 (novel morphodynamics), 0.77 for ANN3 (conventional morphokinetics thorn novel morphodynamics), and 0.68 for ANN4 (discriminatory variables from statistical test). Conclusion(s): The novel proposed embryo features affect the implantation potential, and their combination with conventional morphokinetic parameters is effective as input data for a predictive model based on artificial intelligence. ((c) 2020 by American Society for Reproductive Medicine.) es_ES
dc.description.sponsorship Supported by the Ministry of Science, Innovation, and Universities CDTI (IDI-20191102), an Industrial Ph.D. grant (DIN2018-009911), and Agencia Valenciana de Innovacio (INNCAD00-18-009) to E.P. and M.M. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Fertility and Sterility es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Words es_ES
dc.subject Embryo parameters es_ES
dc.subject Implantation es_ES
dc.subject Artificial intelligence es_ES
dc.subject Time-lapse es_ES
dc.subject Artificial neural network es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.fertnstert.2020.08.023 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNCAD00%2F18%2F009/ES/Nuevo sistema de predicción del éxito de implantación embrionaria basado en Inteligencia Artificial/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//DIN2018-009911/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CDTI//IDI-20191102/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Bori, L.; Paya-Bosch, E.; Alegre, L.; Viloria, T.; Remohí, J.; Naranjo Ornedo, V.; Meseguer, M. (2020). Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential. Fertility and Sterility. 114(6):1232-1241. https://doi.org/10.1016/j.fertnstert.2020.08.023 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.fertnstert.2020.08.023 es_ES
dc.description.upvformatpinicio 1232 es_ES
dc.description.upvformatpfin 1241 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 114 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 32917380 es_ES
dc.relation.pasarela S\418107 es_ES
dc.contributor.funder Agència Valenciana de la Innovació es_ES
dc.contributor.funder Centro para el Desarrollo Tecnológico Industrial es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references De Geyter, C., Calhaz-Jorge, C., Kupka, M. S., Wyns, C., Mocanu, E., Motrenko, T., … Goossens, V. (2018). ART in Europe, 2014: results generated from European registries by ESHRE†. Human Reproduction, 33(9), 1586-1601. doi:10.1093/humrep/dey242 es_ES
dc.description.references Edwards, R. G., Fishel, S. B., Cohen, J., Fehilly, C. B., Purdy, J. M., Slater, J. M., … Webster, J. M. (1984). Factors influencing the success of in vitro fertilization for alleviating human infertility. Journal of In Vitro Fertilization and Embryo Transfer, 1(1), 3-23. doi:10.1007/bf01129615 es_ES
dc.description.references Ferraretti, A. P., Goossens, V., de Mouzon, J., Bhattacharya, S., Castilla, J. A., … Korsak, V. (2012). Assisted reproductive technology in Europe, 2008: results generated from European registers by ESHRE†. Human Reproduction, 27(9), 2571-2584. doi:10.1093/humrep/des255 es_ES
dc.description.references Zhang, J. Q., Li, X. L., Peng, Y., Guo, X., Heng, B. C., & Tong, G. Q. (2010). Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate. Reproductive BioMedicine Online, 20(4), 510-515. doi:10.1016/j.rbmo.2009.12.027 es_ES
dc.description.references Cruz, M., Garrido, N., Herrero, J., Pérez-Cano, I., Muñoz, M., & Meseguer, M. (2012). Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reproductive BioMedicine Online, 25(4), 371-381. doi:10.1016/j.rbmo.2012.06.017 es_ES
dc.description.references Kirkegaard, K., Agerholm, I. E., & Ingerslev, H. J. (2012). Time-lapse monitoring as a tool for clinical embryo assessment. Human Reproduction, 27(5), 1277-1285. doi:10.1093/humrep/des079 es_ES
dc.description.references Montag, M., Liebenthron, J., & Köster, M. (2011). Which morphological scoring system is relevant in human embryo development? Placenta, 32, S252-S256. doi:10.1016/j.placenta.2011.07.009 es_ES
dc.description.references Aparicio, B., Cruz, M., & Meseguer, M. (2013). Is morphokinetic analysis the answer? Reproductive BioMedicine Online, 27(6), 654-663. doi:10.1016/j.rbmo.2013.07.017 es_ES
dc.description.references Gallego, R. D., Remohí, J., & Meseguer, M. (2019). Time-lapse imaging: the state of the art†. Biology of Reproduction, 101(6), 1146-1154. doi:10.1093/biolre/ioz035 es_ES
dc.description.references Zaninovic, N., Irani, M., & Meseguer, M. (2017). Assessment of embryo morphology and developmental dynamics by time-lapse microscopy: is there a relation to implantation and ploidy? Fertility and Sterility, 108(5), 722-729. doi:10.1016/j.fertnstert.2017.10.002 es_ES
dc.description.references Athayde Wirka, K., Chen, A. A., Conaghan, J., Ivani, K., Gvakharia, M., Behr, B., … Shen, S. (2014). Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development. Fertility and Sterility, 101(6), 1637-1648.e5. doi:10.1016/j.fertnstert.2014.02.050 es_ES
dc.description.references Zhan, Q., Ye, Z., Clarke, R., Rosenwaks, Z., & Zaninovic, N. (2016). Direct Unequal Cleavages: Embryo Developmental Competence, Genetic Constitution and Clinical Outcome. PLOS ONE, 11(12), e0166398. doi:10.1371/journal.pone.0166398 es_ES
dc.description.references Goodman, L. R., Goldberg, J., Falcone, T., Austin, C., & Desai, N. (2016). Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertility and Sterility, 105(2), 275-285.e10. doi:10.1016/j.fertnstert.2015.10.013 es_ES
dc.description.references Desai, N., Ploskonka, S., Goodman, L., Attaran, M., Goldberg, J. M., Austin, C., & Falcone, T. (2016). Delayed blastulation, multinucleation, and expansion grade are independently associated with live-birth rates in frozen blastocyst transfer cycles. Fertility and Sterility, 106(6), 1370-1378. doi:10.1016/j.fertnstert.2016.07.1095 es_ES
dc.description.references Aguilar, J., Rubio, I., Muñoz, E., Pellicer, A., & Meseguer, M. (2016). Study of nucleation status in the second cell cycle of human embryo and its impact on implantation rate. Fertility and Sterility, 106(2), 291-299.e2. doi:10.1016/j.fertnstert.2016.03.036 es_ES
dc.description.references Rubio, I., Kuhlmann, R., Agerholm, I., Kirk, J., Herrero, J., Escribá, M.-J., … Meseguer, M. (2012). Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertility and Sterility, 98(6), 1458-1463. doi:10.1016/j.fertnstert.2012.07.1135 es_ES
dc.description.references Desai, N., Ploskonka, S., Goodman, L. R., Austin, C., Goldberg, J., & Falcone, T. (2014). Analysis of embryo morphokinetics, multinucleation and cleavage anomalies using continuous time-lapse monitoring in blastocyst transfer cycles. Reproductive Biology and Endocrinology, 12(1), 54. doi:10.1186/1477-7827-12-54 es_ES
dc.description.references Ebner, T., Höggerl, A., Oppelt, P., Radler, E., Enzelsberger, S.-H., Mayer, R. B., … Shebl, O. (2017). Time-lapse imaging provides further evidence that planar arrangement of blastomeres is highly abnormal. Archives of Gynecology and Obstetrics, 296(6), 1199-1205. doi:10.1007/s00404-017-4531-5 es_ES
dc.description.references Azzarello, A., Hoest, T., Hay-Schmidt, A., & Mikkelsen, A. L. (2017). Live birth potential of good morphology and vitrified blastocysts presenting abnormal cell divisions. Reproductive Biology, 17(2), 144-150. doi:10.1016/j.repbio.2017.03.004 es_ES
dc.description.references Desch, L., Bruno, C., Luu, M., Barberet, J., Choux, C., Lamotte, M., … Fauque, P. (2017). Embryo multinucleation at the two-cell stage is an independent predictor of intracytoplasmic sperm injection outcomes. Fertility and Sterility, 107(1), 97-103.e4. doi:10.1016/j.fertnstert.2016.09.022 es_ES
dc.description.references Kirkegaard, K., Hindkjaer, J. J., Grøndahl, M. L., Kesmodel, U. S., & Ingerslev, H. J. (2012). A randomized clinical trial comparing embryo culture in a conventional incubator with a time-lapse incubator. Journal of Assisted Reproduction and Genetics, 29(6), 565-572. doi:10.1007/s10815-012-9750-x es_ES
dc.description.references Wong, C. C., Loewke, K. E., Bossert, N. L., Behr, B., De Jonge, C. J., Baer, T. M., & Pera, R. A. R. (2010). Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nature Biotechnology, 28(10), 1115-1121. doi:10.1038/nbt.1686 es_ES
dc.description.references Conaghan, J., Chen, A. A., Willman, S. P., Ivani, K., Chenette, P. E., Boostanfar, R., … Shen, S. (2013). Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertility and Sterility, 100(2), 412-419.e5. doi:10.1016/j.fertnstert.2013.04.021 es_ES
dc.description.references Milewski, R., Kuć, P., Kuczyńska, A., Stankiewicz, B., Łukaszuk, K., & Kuczyński, W. (2015). A predictive model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring of embryo development. Journal of Assisted Reproduction and Genetics, 32(4), 571-579. doi:10.1007/s10815-015-0440-3 es_ES
dc.description.references Chamayou, S., Patrizio, P., Storaci, G., Tomaselli, V., Alecci, C., Ragolia, C., … Guglielmino, A. (2013). The use of morphokinetic parameters to select all embryos with full capacity to implant. Journal of Assisted Reproduction and Genetics, 30(5), 703-710. doi:10.1007/s10815-013-9992-2 es_ES
dc.description.references Milewski, R., Czerniecki, J., Kuczyńska, A., Stankiewicz, B., & Kuczyński, W. (2016). Morphokinetic parameters as a source of information concerning embryo developmental and implantation potential. Ginekologia Polska, 87(10), 677-684. doi:10.5603/gp.2016.0067 es_ES
dc.description.references Motato, Y., de los Santos, M. J., Escriba, M. J., Ruiz, B. A., Remohí, J., & Meseguer, M. (2016). Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system. Fertility and Sterility, 105(2), 376-384.e9. doi:10.1016/j.fertnstert.2015.11.001 es_ES
dc.description.references Petersen, B. M., Boel, M., Montag, M., & Gardner, D. K. (2016). Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3. Human Reproduction, 31(10), 2231-2244. doi:10.1093/humrep/dew188 es_ES
dc.description.references Meseguer, M., Herrero, J., Tejera, A., Hilligsoe, K. M., Ramsing, N. B., & Remohi, J. (2011). The use of morphokinetics as a predictor of embryo implantation. Human Reproduction, 26(10), 2658-2671. doi:10.1093/humrep/der256 es_ES
dc.description.references Liu, Y., Chapple, V., Feenan, K., Roberts, P., & Matson, P. (2016). Time-lapse deselection model for human day 3 in vitro fertilization embryos: the combination of qualitative and quantitative measures of embryo growth. Fertility and Sterility, 105(3), 656-662.e1. doi:10.1016/j.fertnstert.2015.11.003 es_ES
dc.description.references VerMilyea, M. D., Tan, L., Anthony, J. T., Conaghan, J., Ivani, K., Gvakharia, M., … Shen, S. (2014). Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: A blinded, multi-centre study. Reproductive BioMedicine Online, 29(6), 729-736. doi:10.1016/j.rbmo.2014.09.005 es_ES
dc.description.references Basile, N., Vime, P., Florensa, M., Aparicio Ruiz, B., García Velasco, J. A., Remohí, J., & Meseguer, M. (2014). The use of morphokinetics as a predictor of  implantation: a multicentric study to define and validate an algorithm for embryo selection. Human Reproduction, 30(2), 276-283. doi:10.1093/humrep/deu331 es_ES
dc.description.references Aparicio-Ruiz, B., Romany, L., & Meseguer, M. (2018). Selection of preimplantation embryos using time-lapse microscopy in in vitro fertilization: State of the technology and future directions. Birth Defects Research, 110(8), 648-653. doi:10.1002/bdr2.1226 es_ES
dc.description.references Barrie, A., Homburg, R., McDowell, G., Brown, J., Kingsland, C., & Troup, S. (2017). Preliminary investigation of the prevalence and implantation potential of abnormal embryonic phenotypes assessed using time-lapse imaging. Reproductive BioMedicine Online, 34(5), 455-462. doi:10.1016/j.rbmo.2017.02.011 es_ES
dc.description.references Campbell, A., Fishel, S., Bowman, N., Duffy, S., Sedler, M., & Hickman, C. F. L. (2013). Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reproductive BioMedicine Online, 26(5), 477-485. doi:10.1016/j.rbmo.2013.02.006 es_ES
dc.description.references Desai, N., Goldberg, J. M., Austin, C., & Falcone, T. (2018). Are cleavage anomalies, multinucleation, or specific cell cycle kinetics observed with time-lapse imaging predictive of embryo developmental capacity or ploidy? Fertility and Sterility, 109(4), 665-674. doi:10.1016/j.fertnstert.2017.12.025 es_ES
dc.description.references Amir, H., Barbash-Hazan, S., Kalma, Y., Frumkin, T., Malcov, M., Samara, N., … Ben-Yosef, D. (2018). Time-lapse imaging reveals delayed development of embryos carrying unbalanced chromosomal translocations. Journal of Assisted Reproduction and Genetics, 36(2), 315-324. doi:10.1007/s10815-018-1361-8 es_ES
dc.description.references Del Carmen Nogales, M., Bronet, F., Basile, N., Martínez, E. M., Liñán, A., Rodrigo, L., & Meseguer, M. (2017). Type of chromosome abnormality affects embryo morphology dynamics. Fertility and Sterility, 107(1), 229-235.e2. doi:10.1016/j.fertnstert.2016.09.019 es_ES
dc.description.references Dyer, S., Chambers, G. M., de Mouzon, J., Nygren, K. G., Zegers-Hochschild, F., Mansour, R., … Adamson, G. D. (2016). International Committee for Monitoring Assisted Reproductive Technologies world report: Assisted Reproductive Technology 2008, 2009 and 2010. Human Reproduction, 31(7), 1588-1609. doi:10.1093/humrep/dew082 es_ES
dc.description.references Simopoulou, M., Sfakianoudis, K., Maziotis, E., Antoniou, N., Rapani, A., Anifandis, G., … Koutsilieris, M. (2018). Are computational applications the «crystal ball» in the IVF laboratory? The evolution from mathematics to artificial intelligence. Journal of Assisted Reproduction and Genetics, 35(9), 1545-1557. doi:10.1007/s10815-018-1266-6 es_ES
dc.description.references Milewski, R., Kuczyńska, A., Stankiewicz, B., & Kuczyński, W. (2017). How much information about embryo implantation potential is included in morphokinetic data? A prediction model based on artificial neural networks and principal component analysis. Advances in Medical Sciences, 62(1), 202-206. doi:10.1016/j.advms.2017.02.001 es_ES
dc.description.references Curchoe, C. L., & Bormann, C. L. (2019). Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. Journal of Assisted Reproduction and Genetics, 36(4), 591-600. doi:10.1007/s10815-019-01408-x es_ES
dc.description.references Tran, D., Cooke, S., Illingworth, P. J., & Gardner, D. K. (2019). Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Human Reproduction, 34(6), 1011-1018. doi:10.1093/humrep/dez064 es_ES
dc.description.references Khosravi, P., Kazemi, E., Zhan, Q., Malmsten, J. E., Toschi, M., Zisimopoulos, P., … Hajirasouliha, I. (2019). Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. npj Digital Medicine, 2(1). doi:10.1038/s41746-019-0096-y es_ES
dc.description.references Cerrillo, M., Herrero, L., Guillén, A., Mayoral, M., & García-Velasco, J. A. (2017). Impact of Endometrial Preparation Protocols for Frozen Embryo Transfer on Live Birth Rates. Rambam Maimonides Medical Journal, 8(2), e0020. doi:10.5041/rmmj.10297 es_ES
dc.description.references Panchal, G., Ganatra, A., Kosta, Y. P., & Panchal, D. (2011). Behaviour Analysis of Multilayer Perceptronswith Multiple Hidden Neurons and Hidden Layers. International Journal of Computer Theory and Engineering, 332-337. doi:10.7763/ijcte.2011.v3.328 es_ES
dc.description.references Azzarello, A., Hoest, T., & Mikkelsen, A. L. (2012). The impact of pronuclei morphology and dynamicity on live birth outcome after time-lapse culture. Human Reproduction, 27(9), 2649-2657. doi:10.1093/humrep/des210 es_ES
dc.description.references Dal Canto, M., Coticchio, G., Mignini Renzini, M., De Ponti, E., Novara, P. V., Brambillasca, F., … Fadini, R. (2012). Cleavage kinetics analysis of human embryos predicts development to blastocyst and implantation. Reproductive BioMedicine Online, 25(5), 474-480. doi:10.1016/j.rbmo.2012.07.016 es_ES
dc.description.references Barrie, A., Homburg, R., McDowell, G., Brown, J., Kingsland, C., & Troup, S. (2017). Examining the efficacy of six published time-lapse imaging embryo selection algorithms to predict implantation to demonstrate the need for the development of specific, in-house morphokinetic selection algorithms. Fertility and Sterility, 107(3), 613-621. doi:10.1016/j.fertnstert.2016.11.014 es_ES
dc.description.references Coticchio, G., Mignini Renzini, M., Novara, P. V., Lain, M., De Ponti, E., Turchi, D., … Dal Canto, M. (2017). Focused time-lapse analysis reveals novel aspects of human fertilization and suggests new parameters of embryo viability. Human Reproduction, 33(1), 23-31. doi:10.1093/humrep/dex344 es_ES
dc.description.references Aguilar, J., Motato, Y., Escribá, M. J., Ojeda, M., Muñoz, E., & Meseguer, M. (2014). The human first cell cycle: impact on implantation. Reproductive BioMedicine Online, 28(4), 475-484. doi:10.1016/j.rbmo.2013.11.014 es_ES
dc.description.references Barberet, J., Bruno, C., Valot, E., Antunes-Nunes, C., Jonval, L., Chammas, J., … Fauque, P. (2019). Can novel early non-invasive biomarkers of embryo quality be identified with time-lapse imaging to predict live birth? Human Reproduction, 34(8), 1439-1449. doi:10.1093/humrep/dez085 es_ES
dc.description.references Richter, K. S., Harris, D. C., Daneshmand, S. T., & Shapiro, B. S. (2001). Quantitative grading of a human blastocyst: optimal inner cell mass size and shape. Fertility and Sterility, 76(6), 1157-1167. doi:10.1016/s0015-0282(01)02870-9 es_ES
dc.description.references Shapiro, B. S., Daneshmand, S. T., Garner, F. C., Aguirre, M., & Thomas, S. (2008). Large blastocyst diameter, early blastulation, and low preovulatory serum progesterone are dominant predictors of clinical pregnancy in fresh autologous cycles. Fertility and Sterility, 90(2), 302-309. doi:10.1016/j.fertnstert.2007.06.062 es_ES
dc.description.references Almagor, M., Harir, Y., Fieldust, S., Or, Y., & Shoham, Z. (2016). Ratio between inner cell mass diameter and blastocyst diameter is correlated with successful pregnancy outcomes of single blastocyst transfers. Fertility and Sterility, 106(6), 1386-1391. doi:10.1016/j.fertnstert.2016.08.009 es_ES
dc.description.references Shapiro, B. S., Harris, D. C., & Richter, K. S. (2000). Predictive value of 72-hour blastomere cell number on blastocyst development and success of subsequent transfer based on the degree of blastocyst development. Fertility and Sterility, 73(3), 582-586. doi:10.1016/s0015-0282(99)00586-5 es_ES
dc.description.references Coello, A., Meseguer, M., Galán, A., Alegre, L., Remohí, J., & Cobo, A. (2017). Analysis of the morphological dynamics of blastocysts after vitrification/warming: defining new predictive variables of implantation. Fertility and Sterility, 108(4), 659-666.e4. doi:10.1016/j.fertnstert.2017.07.1157 es_ES
dc.description.references Huang, T. T., Huang, D. H., Ahn, H. J., Arnett, C., & Huang, C. T. (2019). Early blastocyst expansion in euploid and aneuploid human embryos: evidence for a non-invasive and quantitative marker for embryo selection. Reproductive BioMedicine Online, 39(1), 27-39. doi:10.1016/j.rbmo.2019.01.010 es_ES
dc.description.references Sundvall, L., Ingerslev, H. J., Breth Knudsen, U., & Kirkegaard, K. (2013). Inter- and intra-observer variability of time-lapse annotations. Human Reproduction, 28(12), 3215-3221. doi:10.1093/humrep/det366 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem