- -

Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential

Mostrar el registro completo del ítem

Bori, L.; Paya-Bosch, E.; Alegre, L.; Viloria, T.; Remohí, J.; Naranjo Ornedo, V.; Meseguer, M. (2020). Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential. Fertility and Sterility. 114(6):1232-1241. https://doi.org/10.1016/j.fertnstert.2020.08.023

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165718

Ficheros en el ítem

Metadatos del ítem

Título: Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential
Autor: Bori, Lorena Paya-Bosch, Elena Alegre, Lucía Viloria, Thamara Remohí, José Naranjo Ornedo, Valeriana Meseguer, Marcos
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[ES] Objetivo: Describir nuevas características de embriones capaces de predecir el potencial de implantación como datos de entrada para un modelo de red neuronal artificial (ANN). Diseño: Estudio de cohorte ...[+]


[EN] Objective: To describe novel embryo features capable of predicting implantation potential as input data for an artificial neural network (ANN) model. Design: Retrospective cohort study. Setting: University-affiliated ...[+]
Palabras clave: Words , Embryo parameters , Implantation , Artificial intelligence , Time-lapse , Artificial neural network
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Fertility and Sterility. (issn: 0015-0282 )
DOI: 10.1016/j.fertnstert.2020.08.023
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.fertnstert.2020.08.023
Código del Proyecto:
info:eu-repo/grantAgreement/AVI//INNCAD00%2F18%2F009/ES/Nuevo sistema de predicción del éxito de implantación embrionaria basado en Inteligencia Artificial/
info:eu-repo/grantAgreement/AEI//DIN2018-009911/
info:eu-repo/grantAgreement/CDTI//IDI-20191102/
Agradecimientos:
Supported by the Ministry of Science, Innovation, and Universities CDTI (IDI-20191102), an Industrial Ph.D. grant (DIN2018-009911), and Agencia Valenciana de Innovacio (INNCAD00-18-009) to E.P. and M.M.
Tipo: Artículo

References

De Geyter, C., Calhaz-Jorge, C., Kupka, M. S., Wyns, C., Mocanu, E., Motrenko, T., … Goossens, V. (2018). ART in Europe, 2014: results generated from European registries by ESHRE†. Human Reproduction, 33(9), 1586-1601. doi:10.1093/humrep/dey242

Edwards, R. G., Fishel, S. B., Cohen, J., Fehilly, C. B., Purdy, J. M., Slater, J. M., … Webster, J. M. (1984). Factors influencing the success of in vitro fertilization for alleviating human infertility. Journal of In Vitro Fertilization and Embryo Transfer, 1(1), 3-23. doi:10.1007/bf01129615

Ferraretti, A. P., Goossens, V., de Mouzon, J., Bhattacharya, S., Castilla, J. A., … Korsak, V. (2012). Assisted reproductive technology in Europe, 2008: results generated from European registers by ESHRE†. Human Reproduction, 27(9), 2571-2584. doi:10.1093/humrep/des255 [+]
De Geyter, C., Calhaz-Jorge, C., Kupka, M. S., Wyns, C., Mocanu, E., Motrenko, T., … Goossens, V. (2018). ART in Europe, 2014: results generated from European registries by ESHRE†. Human Reproduction, 33(9), 1586-1601. doi:10.1093/humrep/dey242

Edwards, R. G., Fishel, S. B., Cohen, J., Fehilly, C. B., Purdy, J. M., Slater, J. M., … Webster, J. M. (1984). Factors influencing the success of in vitro fertilization for alleviating human infertility. Journal of In Vitro Fertilization and Embryo Transfer, 1(1), 3-23. doi:10.1007/bf01129615

Ferraretti, A. P., Goossens, V., de Mouzon, J., Bhattacharya, S., Castilla, J. A., … Korsak, V. (2012). Assisted reproductive technology in Europe, 2008: results generated from European registers by ESHRE†. Human Reproduction, 27(9), 2571-2584. doi:10.1093/humrep/des255

Zhang, J. Q., Li, X. L., Peng, Y., Guo, X., Heng, B. C., & Tong, G. Q. (2010). Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate. Reproductive BioMedicine Online, 20(4), 510-515. doi:10.1016/j.rbmo.2009.12.027

Cruz, M., Garrido, N., Herrero, J., Pérez-Cano, I., Muñoz, M., & Meseguer, M. (2012). Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reproductive BioMedicine Online, 25(4), 371-381. doi:10.1016/j.rbmo.2012.06.017

Kirkegaard, K., Agerholm, I. E., & Ingerslev, H. J. (2012). Time-lapse monitoring as a tool for clinical embryo assessment. Human Reproduction, 27(5), 1277-1285. doi:10.1093/humrep/des079

Montag, M., Liebenthron, J., & Köster, M. (2011). Which morphological scoring system is relevant in human embryo development? Placenta, 32, S252-S256. doi:10.1016/j.placenta.2011.07.009

Aparicio, B., Cruz, M., & Meseguer, M. (2013). Is morphokinetic analysis the answer? Reproductive BioMedicine Online, 27(6), 654-663. doi:10.1016/j.rbmo.2013.07.017

Gallego, R. D., Remohí, J., & Meseguer, M. (2019). Time-lapse imaging: the state of the art†. Biology of Reproduction, 101(6), 1146-1154. doi:10.1093/biolre/ioz035

Zaninovic, N., Irani, M., & Meseguer, M. (2017). Assessment of embryo morphology and developmental dynamics by time-lapse microscopy: is there a relation to implantation and ploidy? Fertility and Sterility, 108(5), 722-729. doi:10.1016/j.fertnstert.2017.10.002

Athayde Wirka, K., Chen, A. A., Conaghan, J., Ivani, K., Gvakharia, M., Behr, B., … Shen, S. (2014). Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development. Fertility and Sterility, 101(6), 1637-1648.e5. doi:10.1016/j.fertnstert.2014.02.050

Zhan, Q., Ye, Z., Clarke, R., Rosenwaks, Z., & Zaninovic, N. (2016). Direct Unequal Cleavages: Embryo Developmental Competence, Genetic Constitution and Clinical Outcome. PLOS ONE, 11(12), e0166398. doi:10.1371/journal.pone.0166398

Goodman, L. R., Goldberg, J., Falcone, T., Austin, C., & Desai, N. (2016). Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertility and Sterility, 105(2), 275-285.e10. doi:10.1016/j.fertnstert.2015.10.013

Desai, N., Ploskonka, S., Goodman, L., Attaran, M., Goldberg, J. M., Austin, C., & Falcone, T. (2016). Delayed blastulation, multinucleation, and expansion grade are independently associated with live-birth rates in frozen blastocyst transfer cycles. Fertility and Sterility, 106(6), 1370-1378. doi:10.1016/j.fertnstert.2016.07.1095

Aguilar, J., Rubio, I., Muñoz, E., Pellicer, A., & Meseguer, M. (2016). Study of nucleation status in the second cell cycle of human embryo and its impact on implantation rate. Fertility and Sterility, 106(2), 291-299.e2. doi:10.1016/j.fertnstert.2016.03.036

Rubio, I., Kuhlmann, R., Agerholm, I., Kirk, J., Herrero, J., Escribá, M.-J., … Meseguer, M. (2012). Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertility and Sterility, 98(6), 1458-1463. doi:10.1016/j.fertnstert.2012.07.1135

Desai, N., Ploskonka, S., Goodman, L. R., Austin, C., Goldberg, J., & Falcone, T. (2014). Analysis of embryo morphokinetics, multinucleation and cleavage anomalies using continuous time-lapse monitoring in blastocyst transfer cycles. Reproductive Biology and Endocrinology, 12(1), 54. doi:10.1186/1477-7827-12-54

Ebner, T., Höggerl, A., Oppelt, P., Radler, E., Enzelsberger, S.-H., Mayer, R. B., … Shebl, O. (2017). Time-lapse imaging provides further evidence that planar arrangement of blastomeres is highly abnormal. Archives of Gynecology and Obstetrics, 296(6), 1199-1205. doi:10.1007/s00404-017-4531-5

Azzarello, A., Hoest, T., Hay-Schmidt, A., & Mikkelsen, A. L. (2017). Live birth potential of good morphology and vitrified blastocysts presenting abnormal cell divisions. Reproductive Biology, 17(2), 144-150. doi:10.1016/j.repbio.2017.03.004

Desch, L., Bruno, C., Luu, M., Barberet, J., Choux, C., Lamotte, M., … Fauque, P. (2017). Embryo multinucleation at the two-cell stage is an independent predictor of intracytoplasmic sperm injection outcomes. Fertility and Sterility, 107(1), 97-103.e4. doi:10.1016/j.fertnstert.2016.09.022

Kirkegaard, K., Hindkjaer, J. J., Grøndahl, M. L., Kesmodel, U. S., & Ingerslev, H. J. (2012). A randomized clinical trial comparing embryo culture in a conventional incubator with a time-lapse incubator. Journal of Assisted Reproduction and Genetics, 29(6), 565-572. doi:10.1007/s10815-012-9750-x

Wong, C. C., Loewke, K. E., Bossert, N. L., Behr, B., De Jonge, C. J., Baer, T. M., & Pera, R. A. R. (2010). Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nature Biotechnology, 28(10), 1115-1121. doi:10.1038/nbt.1686

Conaghan, J., Chen, A. A., Willman, S. P., Ivani, K., Chenette, P. E., Boostanfar, R., … Shen, S. (2013). Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertility and Sterility, 100(2), 412-419.e5. doi:10.1016/j.fertnstert.2013.04.021

Milewski, R., Kuć, P., Kuczyńska, A., Stankiewicz, B., Łukaszuk, K., & Kuczyński, W. (2015). A predictive model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring of embryo development. Journal of Assisted Reproduction and Genetics, 32(4), 571-579. doi:10.1007/s10815-015-0440-3

Chamayou, S., Patrizio, P., Storaci, G., Tomaselli, V., Alecci, C., Ragolia, C., … Guglielmino, A. (2013). The use of morphokinetic parameters to select all embryos with full capacity to implant. Journal of Assisted Reproduction and Genetics, 30(5), 703-710. doi:10.1007/s10815-013-9992-2

Milewski, R., Czerniecki, J., Kuczyńska, A., Stankiewicz, B., & Kuczyński, W. (2016). Morphokinetic parameters as a source of information concerning embryo developmental and implantation potential. Ginekologia Polska, 87(10), 677-684. doi:10.5603/gp.2016.0067

Motato, Y., de los Santos, M. J., Escriba, M. J., Ruiz, B. A., Remohí, J., & Meseguer, M. (2016). Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system. Fertility and Sterility, 105(2), 376-384.e9. doi:10.1016/j.fertnstert.2015.11.001

Petersen, B. M., Boel, M., Montag, M., & Gardner, D. K. (2016). Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3. Human Reproduction, 31(10), 2231-2244. doi:10.1093/humrep/dew188

Meseguer, M., Herrero, J., Tejera, A., Hilligsoe, K. M., Ramsing, N. B., & Remohi, J. (2011). The use of morphokinetics as a predictor of embryo implantation. Human Reproduction, 26(10), 2658-2671. doi:10.1093/humrep/der256

Liu, Y., Chapple, V., Feenan, K., Roberts, P., & Matson, P. (2016). Time-lapse deselection model for human day 3 in vitro fertilization embryos: the combination of qualitative and quantitative measures of embryo growth. Fertility and Sterility, 105(3), 656-662.e1. doi:10.1016/j.fertnstert.2015.11.003

VerMilyea, M. D., Tan, L., Anthony, J. T., Conaghan, J., Ivani, K., Gvakharia, M., … Shen, S. (2014). Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: A blinded, multi-centre study. Reproductive BioMedicine Online, 29(6), 729-736. doi:10.1016/j.rbmo.2014.09.005

Basile, N., Vime, P., Florensa, M., Aparicio Ruiz, B., García Velasco, J. A., Remohí, J., & Meseguer, M. (2014). The use of morphokinetics as a predictor of  implantation: a multicentric study to define and validate an algorithm for embryo selection. Human Reproduction, 30(2), 276-283. doi:10.1093/humrep/deu331

Aparicio-Ruiz, B., Romany, L., & Meseguer, M. (2018). Selection of preimplantation embryos using time-lapse microscopy in in vitro fertilization: State of the technology and future directions. Birth Defects Research, 110(8), 648-653. doi:10.1002/bdr2.1226

Barrie, A., Homburg, R., McDowell, G., Brown, J., Kingsland, C., & Troup, S. (2017). Preliminary investigation of the prevalence and implantation potential of abnormal embryonic phenotypes assessed using time-lapse imaging. Reproductive BioMedicine Online, 34(5), 455-462. doi:10.1016/j.rbmo.2017.02.011

Campbell, A., Fishel, S., Bowman, N., Duffy, S., Sedler, M., & Hickman, C. F. L. (2013). Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reproductive BioMedicine Online, 26(5), 477-485. doi:10.1016/j.rbmo.2013.02.006

Desai, N., Goldberg, J. M., Austin, C., & Falcone, T. (2018). Are cleavage anomalies, multinucleation, or specific cell cycle kinetics observed with time-lapse imaging predictive of embryo developmental capacity or ploidy? Fertility and Sterility, 109(4), 665-674. doi:10.1016/j.fertnstert.2017.12.025

Amir, H., Barbash-Hazan, S., Kalma, Y., Frumkin, T., Malcov, M., Samara, N., … Ben-Yosef, D. (2018). Time-lapse imaging reveals delayed development of embryos carrying unbalanced chromosomal translocations. Journal of Assisted Reproduction and Genetics, 36(2), 315-324. doi:10.1007/s10815-018-1361-8

Del Carmen Nogales, M., Bronet, F., Basile, N., Martínez, E. M., Liñán, A., Rodrigo, L., & Meseguer, M. (2017). Type of chromosome abnormality affects embryo morphology dynamics. Fertility and Sterility, 107(1), 229-235.e2. doi:10.1016/j.fertnstert.2016.09.019

Dyer, S., Chambers, G. M., de Mouzon, J., Nygren, K. G., Zegers-Hochschild, F., Mansour, R., … Adamson, G. D. (2016). International Committee for Monitoring Assisted Reproductive Technologies world report: Assisted Reproductive Technology 2008, 2009 and 2010. Human Reproduction, 31(7), 1588-1609. doi:10.1093/humrep/dew082

Simopoulou, M., Sfakianoudis, K., Maziotis, E., Antoniou, N., Rapani, A., Anifandis, G., … Koutsilieris, M. (2018). Are computational applications the «crystal ball» in the IVF laboratory? The evolution from mathematics to artificial intelligence. Journal of Assisted Reproduction and Genetics, 35(9), 1545-1557. doi:10.1007/s10815-018-1266-6

Milewski, R., Kuczyńska, A., Stankiewicz, B., & Kuczyński, W. (2017). How much information about embryo implantation potential is included in morphokinetic data? A prediction model based on artificial neural networks and principal component analysis. Advances in Medical Sciences, 62(1), 202-206. doi:10.1016/j.advms.2017.02.001

Curchoe, C. L., & Bormann, C. L. (2019). Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. Journal of Assisted Reproduction and Genetics, 36(4), 591-600. doi:10.1007/s10815-019-01408-x

Tran, D., Cooke, S., Illingworth, P. J., & Gardner, D. K. (2019). Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Human Reproduction, 34(6), 1011-1018. doi:10.1093/humrep/dez064

Khosravi, P., Kazemi, E., Zhan, Q., Malmsten, J. E., Toschi, M., Zisimopoulos, P., … Hajirasouliha, I. (2019). Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. npj Digital Medicine, 2(1). doi:10.1038/s41746-019-0096-y

Cerrillo, M., Herrero, L., Guillén, A., Mayoral, M., & García-Velasco, J. A. (2017). Impact of Endometrial Preparation Protocols for Frozen Embryo Transfer on Live Birth Rates. Rambam Maimonides Medical Journal, 8(2), e0020. doi:10.5041/rmmj.10297

Panchal, G., Ganatra, A., Kosta, Y. P., & Panchal, D. (2011). Behaviour Analysis of Multilayer Perceptronswith Multiple Hidden Neurons and Hidden Layers. International Journal of Computer Theory and Engineering, 332-337. doi:10.7763/ijcte.2011.v3.328

Azzarello, A., Hoest, T., & Mikkelsen, A. L. (2012). The impact of pronuclei morphology and dynamicity on live birth outcome after time-lapse culture. Human Reproduction, 27(9), 2649-2657. doi:10.1093/humrep/des210

Dal Canto, M., Coticchio, G., Mignini Renzini, M., De Ponti, E., Novara, P. V., Brambillasca, F., … Fadini, R. (2012). Cleavage kinetics analysis of human embryos predicts development to blastocyst and implantation. Reproductive BioMedicine Online, 25(5), 474-480. doi:10.1016/j.rbmo.2012.07.016

Barrie, A., Homburg, R., McDowell, G., Brown, J., Kingsland, C., & Troup, S. (2017). Examining the efficacy of six published time-lapse imaging embryo selection algorithms to predict implantation to demonstrate the need for the development of specific, in-house morphokinetic selection algorithms. Fertility and Sterility, 107(3), 613-621. doi:10.1016/j.fertnstert.2016.11.014

Coticchio, G., Mignini Renzini, M., Novara, P. V., Lain, M., De Ponti, E., Turchi, D., … Dal Canto, M. (2017). Focused time-lapse analysis reveals novel aspects of human fertilization and suggests new parameters of embryo viability. Human Reproduction, 33(1), 23-31. doi:10.1093/humrep/dex344

Aguilar, J., Motato, Y., Escribá, M. J., Ojeda, M., Muñoz, E., & Meseguer, M. (2014). The human first cell cycle: impact on implantation. Reproductive BioMedicine Online, 28(4), 475-484. doi:10.1016/j.rbmo.2013.11.014

Barberet, J., Bruno, C., Valot, E., Antunes-Nunes, C., Jonval, L., Chammas, J., … Fauque, P. (2019). Can novel early non-invasive biomarkers of embryo quality be identified with time-lapse imaging to predict live birth? Human Reproduction, 34(8), 1439-1449. doi:10.1093/humrep/dez085

Richter, K. S., Harris, D. C., Daneshmand, S. T., & Shapiro, B. S. (2001). Quantitative grading of a human blastocyst: optimal inner cell mass size and shape. Fertility and Sterility, 76(6), 1157-1167. doi:10.1016/s0015-0282(01)02870-9

Shapiro, B. S., Daneshmand, S. T., Garner, F. C., Aguirre, M., & Thomas, S. (2008). Large blastocyst diameter, early blastulation, and low preovulatory serum progesterone are dominant predictors of clinical pregnancy in fresh autologous cycles. Fertility and Sterility, 90(2), 302-309. doi:10.1016/j.fertnstert.2007.06.062

Almagor, M., Harir, Y., Fieldust, S., Or, Y., & Shoham, Z. (2016). Ratio between inner cell mass diameter and blastocyst diameter is correlated with successful pregnancy outcomes of single blastocyst transfers. Fertility and Sterility, 106(6), 1386-1391. doi:10.1016/j.fertnstert.2016.08.009

Shapiro, B. S., Harris, D. C., & Richter, K. S. (2000). Predictive value of 72-hour blastomere cell number on blastocyst development and success of subsequent transfer based on the degree of blastocyst development. Fertility and Sterility, 73(3), 582-586. doi:10.1016/s0015-0282(99)00586-5

Coello, A., Meseguer, M., Galán, A., Alegre, L., Remohí, J., & Cobo, A. (2017). Analysis of the morphological dynamics of blastocysts after vitrification/warming: defining new predictive variables of implantation. Fertility and Sterility, 108(4), 659-666.e4. doi:10.1016/j.fertnstert.2017.07.1157

Huang, T. T., Huang, D. H., Ahn, H. J., Arnett, C., & Huang, C. T. (2019). Early blastocyst expansion in euploid and aneuploid human embryos: evidence for a non-invasive and quantitative marker for embryo selection. Reproductive BioMedicine Online, 39(1), 27-39. doi:10.1016/j.rbmo.2019.01.010

Sundvall, L., Ingerslev, H. J., Breth Knudsen, U., & Kirkegaard, K. (2013). Inter- and intra-observer variability of time-lapse annotations. Human Reproduction, 28(12), 3215-3221. doi:10.1093/humrep/det366

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem