- -

Temperature and ph responsive behaviour of antifouling zwitterionic mesoporous silica nanoparticles.

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Temperature and ph responsive behaviour of antifouling zwitterionic mesoporous silica nanoparticles.

Mostrar el registro completo del ítem

Beltran-Osuna, AA.; Gómez Ribelles, JL.; Perilla, JE. (2020). Temperature and ph responsive behaviour of antifouling zwitterionic mesoporous silica nanoparticles. Journal of Applied Physics. 127(13):135106-1-135106-11. https://doi.org/10.1063/1.5140707

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165719

Ficheros en el ítem

Metadatos del ítem

Título: Temperature and ph responsive behaviour of antifouling zwitterionic mesoporous silica nanoparticles.
Autor: Beltran-Osuna, Angela A. Gómez Ribelles, José Luís Perilla, Jairo E.
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Zwitterionic brush grafting is considered a serious strategy for surface modification on mesoporous silica nanoparticles (MSN) and a prominent alternative to polyethylene glycol films for antifouling applications. In ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Applied Physics. (issn: 0021-8979 )
DOI: 10.1063/1.5140707
Editorial:
American Institute of Physics
Versión del editor: https://doi.org/10.1063/1.5140707
Código del Proyecto:
info:eu-repo/grantAgreement/UNAL//DIB 201010021438/
info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/
Agradecimientos:
Jose L. Gomez Ribelles acknowledges support of the Ministerio de Economia y Competitividad, MINECO (Research No. MAT2016-76039-C4-1-R). CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa ...[+]
Tipo: Artículo

References

Mirza, A. Z., & Siddiqui, F. A. (2014). Nanomedicine and drug delivery: a mini review. International Nano Letters, 4(1). doi:10.1007/s40089-014-0094-7

E. van Andel, “Romantic surfaces—Zwitterionic polymer brushes for biomedical applications,” Doctoral thesis (Wageningen University, 2018).

Lombardo, D., Kiselev, M. A., & Caccamo, M. T. (2019). Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. Journal of Nanomaterials, 2019, 1-26. doi:10.1155/2019/3702518 [+]
Mirza, A. Z., & Siddiqui, F. A. (2014). Nanomedicine and drug delivery: a mini review. International Nano Letters, 4(1). doi:10.1007/s40089-014-0094-7

E. van Andel, “Romantic surfaces—Zwitterionic polymer brushes for biomedical applications,” Doctoral thesis (Wageningen University, 2018).

Lombardo, D., Kiselev, M. A., & Caccamo, M. T. (2019). Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. Journal of Nanomaterials, 2019, 1-26. doi:10.1155/2019/3702518

Salmaso, S., & Caliceti, P. (2013). Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers. Journal of Drug Delivery, 2013, 1-19. doi:10.1155/2013/374252

Beltrán-Osuna, Á. A., & Perilla, J. E. (2015). Colloidal and spherical mesoporous silica particles: synthesis and new technologies for delivery applications. Journal of Sol-Gel Science and Technology, 77(2), 480-496. doi:10.1007/s10971-015-3874-2

Bhattacharyya, S., Wang, H., & Ducheyne, P. (2012). Polymer-coated mesoporous silica nanoparticles for the controlled release of macromolecules. Acta Biomaterialia, 8(9), 3429-3435. doi:10.1016/j.actbio.2012.06.003

Peng, H., Dong, R., Wang, S., Zhang, Z., Luo, M., Bai, C., … Xiong, H. (2013). A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly(acrylic acid) shell-layers: Fabrication, characterization and properties for controlled release of salidroside. International Journal of Pharmaceutics, 446(1-2), 153-159. doi:10.1016/j.ijpharm.2013.01.071

DeMuth, P., Hurley, M., Wu, C., Galanie, S., Zachariah, M. R., & DeShong, P. (2011). Mesoscale porous silica as drug delivery vehicles: Synthesis, characterization, and pH-sensitive release profiles. Microporous and Mesoporous Materials, 141(1-3), 128-134. doi:10.1016/j.micromeso.2010.10.035

Lin, C.-Y., Yang, C.-M., & Lindén, M. (2019). Influence of serum concentration and surface functionalization on the protein adsorption to mesoporous silica nanoparticles. RSC Advances, 9(58), 33912-33921. doi:10.1039/c9ra05585a

Li, G., Cheng, G., Xue, H., Chen, S., Zhang, F., & Jiang, S. (2008). Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials, 29(35), 4592-4597. doi:10.1016/j.biomaterials.2008.08.021

Wang, H., Cheng, F., Shen, W., Cheng, G., Zhao, J., Peng, W., & Qu, J. (2016). Amino acid-based anti-fouling functionalization of silica nanoparticles using divinyl sulfone. Acta Biomaterialia, 40, 273-281. doi:10.1016/j.actbio.2016.03.035

Khutoryanskiy, V. V. (2018). Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials. Advanced Drug Delivery Reviews, 124, 140-149. doi:10.1016/j.addr.2017.07.015

Dogra, P., Adolphi, N. L., Wang, Z., Lin, Y.-S., Butler, K. S., Durfee, P. N., … Brinker, C. J. (2018). Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics. Nature Communications, 9(1). doi:10.1038/s41467-018-06730-z

Blackman, L. D., Gunatillake, P. A., Cass, P., & Locock, K. E. S. (2019). An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chemical Society Reviews, 48(3), 757-770. doi:10.1039/c8cs00508g

D. Jana, S. Unser, I. Bruzas, and L. Sagle, in World Scientific Encyclopedia of Nanomedicine and Bioengineering I, edited by D. Shi (World Scientific Publishing Co. Pte. Ltd., 2017), pp. 103–150.

Wu, C., Zhou, Y., Wang, H., & Hu, J. (2019). P4VP Modified Zwitterionic Polymer for the Preparation of Antifouling Functionalized Surfaces. Nanomaterials, 9(5), 706. doi:10.3390/nano9050706

Knowles, B. R., Yang, D., Wagner, P., Maclaughlin, S., Higgins, M. J., & Molino, P. J. (2018). Zwitterion Functionalized Silica Nanoparticle Coatings: The Effect of Particle Size on Protein, Bacteria, and Fungal Spore Adhesion. Langmuir, 35(5), 1335-1345. doi:10.1021/acs.langmuir.8b01550

Chang, Y., Chen, W.-Y., Yandi, W., Shih, Y.-J., Chu, W.-L., Liu, Y.-L., … Higuchi, A. (2009). Dual-Thermoresponsive Phase Behavior of Blood Compatible Zwitterionic Copolymers Containing Nonionic Poly(N-isopropyl acrylamide). Biomacromolecules, 10(8), 2092-2100. doi:10.1021/bm900208u

Zhao, Y., Bai, T., Shao, Q., Jiang, S., & Shen, A. Q. (2015). Thermoresponsive self-assembled NiPAm-zwitterion copolymers. Polymer Chemistry, 6(7), 1066-1077. doi:10.1039/c4py01553c

Zhou, Y., Dong, P., Wei, Y., Qian, J., & Hua, D. (2015). Synthesis of poly(sulfobetaine methacrylate)-grafted chitosan under γ-ray irradiation for alamethicin assembly. Colloids and Surfaces B: Biointerfaces, 132, 132-137. doi:10.1016/j.colsurfb.2015.05.019

Chen, C.-Y., & Wang, H.-L. (2014). Dual Thermo- and pH-Responsive Zwitterionic Sulfobataine Copolymers for Oral Delivery System. Macromolecular Rapid Communications, 35(17), 1534-1540. doi:10.1002/marc.201400161

Vasantha, V. A., Rusli, W., Junhui, C., Wenguang, Z., Sreekanth, K. V., Singh, R., & Parthiban, A. (2019). Highly monodisperse zwitterion functionalized non-spherical polymer particles with tunable iridescence. RSC Advances, 9(47), 27199-27207. doi:10.1039/c9ra05162g

Suzuki, H., Murou, M., Kitano, H., Ohno, K., & Saruwatari, Y. (2011). Silica particles coated with zwitterionic polymer brush: Formation of colloidal crystals and anti-biofouling properties in aqueous medium. Colloids and Surfaces B: Biointerfaces, 84(1), 111-116. doi:10.1016/j.colsurfb.2010.12.023

Dong, Z., Mao, J., Wang, D., Yang, M., Wang, W., Bo, S., & Ji, X. (2013). Tunable Dual-Thermoresponsive Phase Behavior of Zwitterionic Polysulfobetaine Copolymers Containing Poly(N,N -dimethylaminoethyl methacrylate)-Grafted Silica Nanoparticles in Aqueous Solution. Macromolecular Chemistry and Physics, 215(1), 111-120. doi:10.1002/macp.201300552

Zhu, J., Zhao, X., & He, C. (2015). Zwitterionic SiO2 nanoparticles as novel additives to improve the antifouling properties of PVDF membranes. RSC Advances, 5(66), 53653-53659. doi:10.1039/c5ra05571g

Teng, I.-T., Chang, Y.-J., Wang, L.-S., Lu, H.-Y., Wu, L.-C., Yang, C.-M., … Ho, J. A. (2013). Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials, 34(30), 7462-7470. doi:10.1016/j.biomaterials.2013.06.001

Sun, J.-T., Yu, Z.-Q., Hong, C.-Y., & Pan, C.-Y. (2012). Biocompatible Zwitterionic Sulfobetaine Copolymer-Coated Mesoporous Silica Nanoparticles for Temperature-Responsive Drug Release. Macromolecular Rapid Communications, 33(9), 811-818. doi:10.1002/marc.201100876

Khatoon, S., Han, H. S., Lee, M., Lee, H., Jung, D.-W., Thambi, T., … Park, J. H. (2016). Zwitterionic mesoporous nanoparticles with a bioresponsive gatekeeper for cancer therapy. Acta Biomaterialia, 40, 282-292. doi:10.1016/j.actbio.2016.04.011

Beltrán-Osuna, Á. A., Ródenas-Rochina, J., Gómez Ribelles, J. L., & Perilla, J. E. (2018). Antifouling zwitterionic pSBMA-MSN particles for biomedical applications. Polymers for Advanced Technologies, 30(3), 688-697. doi:10.1002/pat.4505

Beltrán-Osuna, Á. A., Gómez Ribelles, J. L., & Perilla, J. E. (2017). A study of some fundamental physicochemical variables on the morphology of mesoporous silica nanoparticles MCM-41 type. Journal of Nanoparticle Research, 19(12). doi:10.1007/s11051-017-4077-2

Bhattacharjee, S. (2016). DLS and zeta potential – What they are and what they are not? Journal of Controlled Release, 235, 337-351. doi:10.1016/j.jconrel.2016.06.017

Kirby, B. J., & Hasselbrink, E. F. (2004). Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. ELECTROPHORESIS, 25(2), 187-202. doi:10.1002/elps.200305754

Characteristics of Zeta Potential Distribution in Silica Particles. (2005). Bulletin of the Korean Chemical Society, 26(7), 1083-1089. doi:10.5012/bkcs.2005.26.7.1083

Khung, Y. L., & Narducci, D. (2015). Surface modification strategies on mesoporous silica nanoparticles for anti-biofouling zwitterionic film grafting. Advances in Colloid and Interface Science, 226, 166-186. doi:10.1016/j.cis.2015.10.009

Shih, Y.-J., & Chang, Y. (2010). Tunable Blood Compatibility of Polysulfobetaine from Controllable Molecular-Weight Dependence of Zwitterionic Nonfouling Nature in Aqueous Solution. Langmuir, 26(22), 17286-17294. doi:10.1021/la103186y

Antonio Alves Júnior, J., & Baptista Baldo, J. (2014). The Behavior of Zeta Potential of Silica Suspensions. New Journal of Glass and Ceramics, 04(02), 29-37. doi:10.4236/njgc.2014.42004

C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, Inc., 1990), p. 377.

Guo, S., Jańczewski, D., Zhu, X., Quintana, R., He, T., & Neoh, K. G. (2015). Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications. Journal of Colloid and Interface Science, 452, 43-53. doi:10.1016/j.jcis.2015.04.013

Chen, X., Cheng, X., Soeriyadi, A. H., Sagnella, S. M., Lu, X., Scott, J. A., … Gooding, J. J. (2014). Stimuli-responsive functionalized mesoporous silica nanoparticles for drug release in response to various biological stimuli. Biomater. Sci., 2(1), 121-130. doi:10.1039/c3bm60148j

Venditti, R., Xuan, X., & Li, D. (2006). Experimental characterization of the temperature dependence of zeta potential and its effect on electroosmotic flow velocity in microchannels. Microfluidics and Nanofluidics, 2(6), 493-499. doi:10.1007/s10404-006-0100-0

Evenhuis, C. J., Guijt, R. M., Macka, M., Marriott, P. J., & Haddad, P. R. (2006). Variation of zeta-potential with temperature in fused-silica capillaries used for capillary electrophoresis. ELECTROPHORESIS, 27(3), 672-676. doi:10.1002/elps.200500566

Du, M., Ma, Y., Su, H., Wang, X., & Zheng, Q. (2015). Rheological behavior of hydrophobically modified polysulfobetaine methacrylate aqueous solution. RSC Advances, 5(43), 33905-33913. doi:10.1039/c5ra05017k

Jhan, Y.-Y., & Tsay, R.-Y. (2014). Salt effects on the hydration behavior of zwitterionic poly(sulfobetaine methacrylate) aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 45(6), 3139-3145. doi:10.1016/j.jtice.2014.08.022

Liu, P., & Song, J. (2013). Sulfobetaine as a zwitterionic mediator for 3D hydroxyapatite mineralization. Biomaterials, 34(10), 2442-2454. doi:10.1016/j.biomaterials.2012.12.029

Ni, L., Meng, J., Geise, G. M., Zhang, Y., & Zhou, J. (2015). Water and salt transport properties of zwitterionic polymers film. Journal of Membrane Science, 491, 73-81. doi:10.1016/j.memsci.2015.05.030

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem