- -

Temperature and ph responsive behaviour of antifouling zwitterionic mesoporous silica nanoparticles.

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Temperature and ph responsive behaviour of antifouling zwitterionic mesoporous silica nanoparticles.

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Beltran-Osuna, Angela A. es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Perilla, Jairo E. es_ES
dc.date.accessioned 2021-04-28T03:31:54Z
dc.date.available 2021-04-28T03:31:54Z
dc.date.issued 2020-04-07 es_ES
dc.identifier.issn 0021-8979 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165719
dc.description.abstract [EN] Zwitterionic brush grafting is considered a serious strategy for surface modification on mesoporous silica nanoparticles (MSN) and a prominent alternative to polyethylene glycol films for antifouling applications. In this study, the solution behavior of poly(sulfobetaine methacrylate) (pSBMA) polymer brushes grafted on MSN (95 +/- 15nm particle diameter, 2.8nm pore size) was evaluated. The layers increased their hydrodynamic diameter (d(H)) with increasing temperature, indicating a conformational change from a surface-collapsed state to a fully solvated brush. This development was marked by a transition temperature, related to the molecular weight and the theoretical length of the polymer chains. Variation of d(H) with pH values was studied and a zwitterionic range of 5-9 was established where the electric charges in the molecule were balanced. Zeta potential (ZP) values for all pSBMA-MSN products were also measured. A decreasing trend of ZP with pH and an isoelectric point around 5.5-6.5 was obtained for all dispersions. Furthermore, the influence of temperature was analyzed on ZP and a directly proportional correlation was found, with increasing rates of 0.50-0.87%/degrees C. Finally, ZP variation with electrolyte concentration was determined and a range of 40-60mM of NaCl concentration was established to reach an almost zero-charge point for all nanoparticles. It was demonstrated that the solution response of pSBMA-MSN can be modulated by temperature, pH, and ionic concentration of the media. These behaviors could be used as controlled release mechanisms for the application of pSBMA-MSN as carriers in biomedicine and nanophamaceutical fields in the future. Published under license by AIP Publishing. es_ES
dc.description.sponsorship Jose L. Gomez Ribelles acknowledges support of the Ministerio de Economia y Competitividad, MINECO (Research No. MAT2016-76039-C4-1-R). CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. This work was also supported by Ministerio de Ciencia, Tecnologia e Innovacion (MINCIENCIAS), Convocatoria 567 Doctorados Nacionales, and Universidad Nacional de Colombia (Grant No. DIB 201010021438). The authors acknowledge the effort of Ramon Martinez Manez, Scientific Director of the Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), and Head of the Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) at Universitat Politecnica de Valencia, where all measurements were performed es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof Journal of Applied Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Temperature and ph responsive behaviour of antifouling zwitterionic mesoporous silica nanoparticles. es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.5140707 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAL//DIB 201010021438/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Beltran-Osuna, AA.; Gómez Ribelles, JL.; Perilla, JE. (2020). Temperature and ph responsive behaviour of antifouling zwitterionic mesoporous silica nanoparticles. Journal of Applied Physics. 127(13):135106-1-135106-11. https://doi.org/10.1063/1.5140707 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1063/1.5140707 es_ES
dc.description.upvformatpinicio 135106-1 es_ES
dc.description.upvformatpfin 135106-11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 127 es_ES
dc.description.issue 13 es_ES
dc.relation.pasarela S\433275 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Universidad Nacional de Colombia es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Mirza, A. Z., & Siddiqui, F. A. (2014). Nanomedicine and drug delivery: a mini review. International Nano Letters, 4(1). doi:10.1007/s40089-014-0094-7 es_ES
dc.description.references E. van Andel, “Romantic surfaces—Zwitterionic polymer brushes for biomedical applications,” Doctoral thesis (Wageningen University, 2018). es_ES
dc.description.references Lombardo, D., Kiselev, M. A., & Caccamo, M. T. (2019). Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. Journal of Nanomaterials, 2019, 1-26. doi:10.1155/2019/3702518 es_ES
dc.description.references Salmaso, S., & Caliceti, P. (2013). Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers. Journal of Drug Delivery, 2013, 1-19. doi:10.1155/2013/374252 es_ES
dc.description.references Beltrán-Osuna, Á. A., & Perilla, J. E. (2015). Colloidal and spherical mesoporous silica particles: synthesis and new technologies for delivery applications. Journal of Sol-Gel Science and Technology, 77(2), 480-496. doi:10.1007/s10971-015-3874-2 es_ES
dc.description.references Bhattacharyya, S., Wang, H., & Ducheyne, P. (2012). Polymer-coated mesoporous silica nanoparticles for the controlled release of macromolecules. Acta Biomaterialia, 8(9), 3429-3435. doi:10.1016/j.actbio.2012.06.003 es_ES
dc.description.references Peng, H., Dong, R., Wang, S., Zhang, Z., Luo, M., Bai, C., … Xiong, H. (2013). A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly(acrylic acid) shell-layers: Fabrication, characterization and properties for controlled release of salidroside. International Journal of Pharmaceutics, 446(1-2), 153-159. doi:10.1016/j.ijpharm.2013.01.071 es_ES
dc.description.references DeMuth, P., Hurley, M., Wu, C., Galanie, S., Zachariah, M. R., & DeShong, P. (2011). Mesoscale porous silica as drug delivery vehicles: Synthesis, characterization, and pH-sensitive release profiles. Microporous and Mesoporous Materials, 141(1-3), 128-134. doi:10.1016/j.micromeso.2010.10.035 es_ES
dc.description.references Lin, C.-Y., Yang, C.-M., & Lindén, M. (2019). Influence of serum concentration and surface functionalization on the protein adsorption to mesoporous silica nanoparticles. RSC Advances, 9(58), 33912-33921. doi:10.1039/c9ra05585a es_ES
dc.description.references Li, G., Cheng, G., Xue, H., Chen, S., Zhang, F., & Jiang, S. (2008). Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials, 29(35), 4592-4597. doi:10.1016/j.biomaterials.2008.08.021 es_ES
dc.description.references Wang, H., Cheng, F., Shen, W., Cheng, G., Zhao, J., Peng, W., & Qu, J. (2016). Amino acid-based anti-fouling functionalization of silica nanoparticles using divinyl sulfone. Acta Biomaterialia, 40, 273-281. doi:10.1016/j.actbio.2016.03.035 es_ES
dc.description.references Khutoryanskiy, V. V. (2018). Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials. Advanced Drug Delivery Reviews, 124, 140-149. doi:10.1016/j.addr.2017.07.015 es_ES
dc.description.references Dogra, P., Adolphi, N. L., Wang, Z., Lin, Y.-S., Butler, K. S., Durfee, P. N., … Brinker, C. J. (2018). Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics. Nature Communications, 9(1). doi:10.1038/s41467-018-06730-z es_ES
dc.description.references Blackman, L. D., Gunatillake, P. A., Cass, P., & Locock, K. E. S. (2019). An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chemical Society Reviews, 48(3), 757-770. doi:10.1039/c8cs00508g es_ES
dc.description.references D. Jana, S. Unser, I. Bruzas, and L. Sagle, in World Scientific Encyclopedia of Nanomedicine and Bioengineering I, edited by D. Shi (World Scientific Publishing Co. Pte. Ltd., 2017), pp. 103–150. es_ES
dc.description.references Wu, C., Zhou, Y., Wang, H., & Hu, J. (2019). P4VP Modified Zwitterionic Polymer for the Preparation of Antifouling Functionalized Surfaces. Nanomaterials, 9(5), 706. doi:10.3390/nano9050706 es_ES
dc.description.references Knowles, B. R., Yang, D., Wagner, P., Maclaughlin, S., Higgins, M. J., & Molino, P. J. (2018). Zwitterion Functionalized Silica Nanoparticle Coatings: The Effect of Particle Size on Protein, Bacteria, and Fungal Spore Adhesion. Langmuir, 35(5), 1335-1345. doi:10.1021/acs.langmuir.8b01550 es_ES
dc.description.references Chang, Y., Chen, W.-Y., Yandi, W., Shih, Y.-J., Chu, W.-L., Liu, Y.-L., … Higuchi, A. (2009). Dual-Thermoresponsive Phase Behavior of Blood Compatible Zwitterionic Copolymers Containing Nonionic Poly(N-isopropyl acrylamide). Biomacromolecules, 10(8), 2092-2100. doi:10.1021/bm900208u es_ES
dc.description.references Zhao, Y., Bai, T., Shao, Q., Jiang, S., & Shen, A. Q. (2015). Thermoresponsive self-assembled NiPAm-zwitterion copolymers. Polymer Chemistry, 6(7), 1066-1077. doi:10.1039/c4py01553c es_ES
dc.description.references Zhou, Y., Dong, P., Wei, Y., Qian, J., & Hua, D. (2015). Synthesis of poly(sulfobetaine methacrylate)-grafted chitosan under γ-ray irradiation for alamethicin assembly. Colloids and Surfaces B: Biointerfaces, 132, 132-137. doi:10.1016/j.colsurfb.2015.05.019 es_ES
dc.description.references Chen, C.-Y., & Wang, H.-L. (2014). Dual Thermo- and pH-Responsive Zwitterionic Sulfobataine Copolymers for Oral Delivery System. Macromolecular Rapid Communications, 35(17), 1534-1540. doi:10.1002/marc.201400161 es_ES
dc.description.references Vasantha, V. A., Rusli, W., Junhui, C., Wenguang, Z., Sreekanth, K. V., Singh, R., & Parthiban, A. (2019). Highly monodisperse zwitterion functionalized non-spherical polymer particles with tunable iridescence. RSC Advances, 9(47), 27199-27207. doi:10.1039/c9ra05162g es_ES
dc.description.references Suzuki, H., Murou, M., Kitano, H., Ohno, K., & Saruwatari, Y. (2011). Silica particles coated with zwitterionic polymer brush: Formation of colloidal crystals and anti-biofouling properties in aqueous medium. Colloids and Surfaces B: Biointerfaces, 84(1), 111-116. doi:10.1016/j.colsurfb.2010.12.023 es_ES
dc.description.references Dong, Z., Mao, J., Wang, D., Yang, M., Wang, W., Bo, S., & Ji, X. (2013). Tunable Dual-Thermoresponsive Phase Behavior of Zwitterionic Polysulfobetaine Copolymers Containing Poly(N,N -dimethylaminoethyl methacrylate)-Grafted Silica Nanoparticles in Aqueous Solution. Macromolecular Chemistry and Physics, 215(1), 111-120. doi:10.1002/macp.201300552 es_ES
dc.description.references Zhu, J., Zhao, X., & He, C. (2015). Zwitterionic SiO2 nanoparticles as novel additives to improve the antifouling properties of PVDF membranes. RSC Advances, 5(66), 53653-53659. doi:10.1039/c5ra05571g es_ES
dc.description.references Teng, I.-T., Chang, Y.-J., Wang, L.-S., Lu, H.-Y., Wu, L.-C., Yang, C.-M., … Ho, J. A. (2013). Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials, 34(30), 7462-7470. doi:10.1016/j.biomaterials.2013.06.001 es_ES
dc.description.references Sun, J.-T., Yu, Z.-Q., Hong, C.-Y., & Pan, C.-Y. (2012). Biocompatible Zwitterionic Sulfobetaine Copolymer-Coated Mesoporous Silica Nanoparticles for Temperature-Responsive Drug Release. Macromolecular Rapid Communications, 33(9), 811-818. doi:10.1002/marc.201100876 es_ES
dc.description.references Khatoon, S., Han, H. S., Lee, M., Lee, H., Jung, D.-W., Thambi, T., … Park, J. H. (2016). Zwitterionic mesoporous nanoparticles with a bioresponsive gatekeeper for cancer therapy. Acta Biomaterialia, 40, 282-292. doi:10.1016/j.actbio.2016.04.011 es_ES
dc.description.references Beltrán-Osuna, Á. A., Ródenas-Rochina, J., Gómez Ribelles, J. L., & Perilla, J. E. (2018). Antifouling zwitterionic pSBMA-MSN particles for biomedical applications. Polymers for Advanced Technologies, 30(3), 688-697. doi:10.1002/pat.4505 es_ES
dc.description.references Beltrán-Osuna, Á. A., Gómez Ribelles, J. L., & Perilla, J. E. (2017). A study of some fundamental physicochemical variables on the morphology of mesoporous silica nanoparticles MCM-41 type. Journal of Nanoparticle Research, 19(12). doi:10.1007/s11051-017-4077-2 es_ES
dc.description.references Bhattacharjee, S. (2016). DLS and zeta potential – What they are and what they are not? Journal of Controlled Release, 235, 337-351. doi:10.1016/j.jconrel.2016.06.017 es_ES
dc.description.references Kirby, B. J., & Hasselbrink, E. F. (2004). Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. ELECTROPHORESIS, 25(2), 187-202. doi:10.1002/elps.200305754 es_ES
dc.description.references Characteristics of Zeta Potential Distribution in Silica Particles. (2005). Bulletin of the Korean Chemical Society, 26(7), 1083-1089. doi:10.5012/bkcs.2005.26.7.1083 es_ES
dc.description.references Khung, Y. L., & Narducci, D. (2015). Surface modification strategies on mesoporous silica nanoparticles for anti-biofouling zwitterionic film grafting. Advances in Colloid and Interface Science, 226, 166-186. doi:10.1016/j.cis.2015.10.009 es_ES
dc.description.references Shih, Y.-J., & Chang, Y. (2010). Tunable Blood Compatibility of Polysulfobetaine from Controllable Molecular-Weight Dependence of Zwitterionic Nonfouling Nature in Aqueous Solution. Langmuir, 26(22), 17286-17294. doi:10.1021/la103186y es_ES
dc.description.references Antonio Alves Júnior, J., & Baptista Baldo, J. (2014). The Behavior of Zeta Potential of Silica Suspensions. New Journal of Glass and Ceramics, 04(02), 29-37. doi:10.4236/njgc.2014.42004 es_ES
dc.description.references C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, Inc., 1990), p. 377. es_ES
dc.description.references Guo, S., Jańczewski, D., Zhu, X., Quintana, R., He, T., & Neoh, K. G. (2015). Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications. Journal of Colloid and Interface Science, 452, 43-53. doi:10.1016/j.jcis.2015.04.013 es_ES
dc.description.references Chen, X., Cheng, X., Soeriyadi, A. H., Sagnella, S. M., Lu, X., Scott, J. A., … Gooding, J. J. (2014). Stimuli-responsive functionalized mesoporous silica nanoparticles for drug release in response to various biological stimuli. Biomater. Sci., 2(1), 121-130. doi:10.1039/c3bm60148j es_ES
dc.description.references Venditti, R., Xuan, X., & Li, D. (2006). Experimental characterization of the temperature dependence of zeta potential and its effect on electroosmotic flow velocity in microchannels. Microfluidics and Nanofluidics, 2(6), 493-499. doi:10.1007/s10404-006-0100-0 es_ES
dc.description.references Evenhuis, C. J., Guijt, R. M., Macka, M., Marriott, P. J., & Haddad, P. R. (2006). Variation of zeta-potential with temperature in fused-silica capillaries used for capillary electrophoresis. ELECTROPHORESIS, 27(3), 672-676. doi:10.1002/elps.200500566 es_ES
dc.description.references Du, M., Ma, Y., Su, H., Wang, X., & Zheng, Q. (2015). Rheological behavior of hydrophobically modified polysulfobetaine methacrylate aqueous solution. RSC Advances, 5(43), 33905-33913. doi:10.1039/c5ra05017k es_ES
dc.description.references Jhan, Y.-Y., & Tsay, R.-Y. (2014). Salt effects on the hydration behavior of zwitterionic poly(sulfobetaine methacrylate) aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 45(6), 3139-3145. doi:10.1016/j.jtice.2014.08.022 es_ES
dc.description.references Liu, P., & Song, J. (2013). Sulfobetaine as a zwitterionic mediator for 3D hydroxyapatite mineralization. Biomaterials, 34(10), 2442-2454. doi:10.1016/j.biomaterials.2012.12.029 es_ES
dc.description.references Ni, L., Meng, J., Geise, G. M., Zhang, Y., & Zhou, J. (2015). Water and salt transport properties of zwitterionic polymers film. Journal of Membrane Science, 491, 73-81. doi:10.1016/j.memsci.2015.05.030 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem