Fortuin, J. P., & Waterman, H. I. (1953). Production of phenol from cumene. Chemical Engineering Science, 2(4), 182-192. doi:10.1016/0009-2509(53)80040-0
Luyben, W. L. (2009). Design and Control of the Cumene Process. Industrial & Engineering Chemistry Research, 49(2), 719-734. doi:10.1021/ie9011535
Matsui, S., & Fujita, T. (2001). New cumene-oxidation systems. Catalysis Today, 71(1-2), 145-152. doi:10.1016/s0920-5861(01)00450-3
[+]
Fortuin, J. P., & Waterman, H. I. (1953). Production of phenol from cumene. Chemical Engineering Science, 2(4), 182-192. doi:10.1016/0009-2509(53)80040-0
Luyben, W. L. (2009). Design and Control of the Cumene Process. Industrial & Engineering Chemistry Research, 49(2), 719-734. doi:10.1021/ie9011535
Matsui, S., & Fujita, T. (2001). New cumene-oxidation systems. Catalysis Today, 71(1-2), 145-152. doi:10.1016/s0920-5861(01)00450-3
Opeida, I. A., Kytsya, A. R., Bazylyak, L. I., & Pobigun, O. I. (2017). Silver Nanoparticle Catalysis of the Liquid-Phase Radical Chain Oxidation of Cumene by Molecular Oxygen. Theoretical and Experimental Chemistry, 52(6), 369-374. doi:10.1007/s11237-017-9492-z
Tsodikov, M. V., Kugel, V. Y., Slivinskii, E. V., Bondarenko, G. N., Maksimov, Y. V., Alvarez, M. A., … Navio, J. A. (2000). Selectivity and mechanism of cumene liquid-phase oxidation in the presence of powdered mixed iron–aluminum oxides prepared by alkoxy method. Applied Catalysis A: General, 193(1-2), 237-242. doi:10.1016/s0926-860x(99)00438-x
Zhang, M., Wang, L., Ji, H., Wu, B., & Zeng, X. (2007). Cumene Liquid Oxidation to Cumene Hydroperoxide over CuO Nanoparticle with Molecular Oxygen under Mild Condition. Journal of Natural Gas Chemistry, 16(4), 393-398. doi:10.1016/s1003-9953(08)60010-9
Hsu, Y. F., & Cheng, C. P. (1998). Mechanistic investigation of the autooxidation of cumene catalyzed by transition metal salts supported on polymer. Journal of Molecular Catalysis A: Chemical, 136(1), 1-11. doi:10.1016/s1381-1169(98)00016-8
Hsu, Y. F., & Cheng, C. P. (1997). Polymer supported catalyst for the effective autoxidation of cumene to cumene hydroperoxide. Journal of Molecular Catalysis A: Chemical, 120(1-3), 109-116. doi:10.1016/s1381-1169(96)00442-6
Ying Fang, H., Mei Huei, Y., & Cheu Pyeng, C. (1996). Autooxidation of cumene catalyzed by transition metal compounds on polymeric supports. Journal of Molecular Catalysis A: Chemical, 105(3), 137-144. doi:10.1016/1381-1169(95)00205-7
Narulkar, D. D., Srivastava, A. K., Butcher, R. J., Ansy, K. M., & Dhuri, S. N. (2017). Synthesis and characterization of N3Py2 ligand-based cobalt(II), nickel(II) and copper(II) catalysts for efficient conversion of hydrocarbons to alcohols. Inorganica Chimica Acta, 467, 405-414. doi:10.1016/j.ica.2017.08.027
Wang, R.-M., Duan, Z.-F., He, Y.-F., & Lei, Z.-Q. (2006). Heterogeneous catalytic aerobic oxidation behavior of Co–Na heterodinuclear polymeric complex of Salen-crown ether. Journal of Molecular Catalysis A: Chemical, 260(1-2), 280-287. doi:10.1016/j.molcata.2006.07.049
Rogovin, M., & Neumann, R. (1999). Silicate xerogels containing cobalt as heterogeneous catalysts for the side-chain oxidation of alkyl aromatic compounds with tert-butyl hydroperoxide. Journal of Molecular Catalysis A: Chemical, 138(2-3), 315-318. doi:10.1016/s1381-1169(98)00207-6
Konopińska, A. (2017). <i>N</i>-Hydroxyphthalimide as a Catalyst of Cumene Oxidation with Hydroperoxide. Modern Chemistry, 5(2), 29. doi:10.11648/j.mc.20170502.12
VARMA, G. (1973). Heterogeneous catalytic oxidation of cumene (isopropyl benzene) in liquid phase. Journal of Catalysis, 28(2), 236-244. doi:10.1016/0021-9517(73)90006-7
Collom, S. L., Bloomfield, A. J., & Anastas, P. T. (2016). Advancing Sustainable Manufacturing through a Heterogeneous Cobalt Catalyst for Selective C–H Oxidation. Industrial & Engineering Chemistry Research, 55(12), 3308-3312. doi:10.1021/acs.iecr.5b03674
Scognamiglio, J., Jones, L., Letizia, C. S., & Api, A. M. (2012). Fragrance material review on 2-phenyl-2-propanol. Food and Chemical Toxicology, 50, S130-S133. doi:10.1016/j.fct.2011.10.011
Rossin, A., Tuci, G., Luconi, L., & Giambastiani, G. (2017). Metal–Organic Frameworks as Heterogeneous Catalysts in Hydrogen Production from Lightweight Inorganic Hydrides. ACS Catalysis, 7(8), 5035-5045. doi:10.1021/acscatal.7b01495
Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395k
Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094c
Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k
Luo, S., Zeng, Z., Zeng, G., Liu, Z., Xiao, R., Chen, M., … Jiang, D. (2019). Metal Organic Frameworks as Robust Host of Palladium Nanoparticles in Heterogeneous Catalysis: Synthesis, Application, and Prospect. ACS Applied Materials & Interfaces, 11(36), 32579-32598. doi:10.1021/acsami.9b11990
Deng, X., Li, Z., & García, H. (2017). Visible Light Induced Organic Transformations Using Metal-Organic-Frameworks (MOFs). Chemistry - A European Journal, 23(47), 11189-11209. doi:10.1002/chem.201701460
Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141
Song, X., Hu, D., Yang, X., Zhang, H., Zhang, W., Li, J., … Yu, J. (2019). Polyoxomolybdic Cobalt Encapsulated within Zr-Based Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for Olefins Epoxidation. ACS Sustainable Chemistry & Engineering, 7(3), 3624-3631. doi:10.1021/acssuschemeng.8b06736
Zhang, T., Hu, Y.-Q., Han, T., Zhai, Y.-Q., & Zheng, Y.-Z. (2018). Redox-Active Cobalt(II/III) Metal–Organic Framework for Selective Oxidation of Cyclohexene. ACS Applied Materials & Interfaces, 10(18), 15786-15792. doi:10.1021/acsami.7b19323
Ma, Y., Peng, H., Liu, J., Wang, Y., Hao, X., Feng, X., … Li, Y. (2018). Polyoxometalate-Based Metal–Organic Frameworks for Selective Oxidation of Aryl Alkenes to Aldehydes. Inorganic Chemistry, 57(7), 4109-4116. doi:10.1021/acs.inorgchem.8b00282
Othong, J., Boonmak, J., Ha, J., Leelasubcharoen, S., & Youngme, S. (2017). Thermally Induced Single-Crystal-to-Single-Crystal Transformation and Heterogeneous Catalysts for Epoxidation Reaction of Co(II) Based Metal–Organic Frameworks Containing 1,4-Phenylenediacetic Acid. Crystal Growth & Design, 17(4), 1824-1835. doi:10.1021/acs.cgd.6b01788
Wang, J.-C., Ding, F.-W., Ma, J.-P., Liu, Q.-K., Cheng, J.-Y., & Dong, Y.-B. (2015). Co(II)-MOF: A Highly Efficient Organic Oxidation Catalyst with Open Metal Sites. Inorganic Chemistry, 54(22), 10865-10872. doi:10.1021/acs.inorgchem.5b01938
Tuci, G., Giambastiani, G., Kwon, S., Stair, P. C., Snurr, R. Q., & Rossin, A. (2014). Chiral Co(II) Metal–Organic Framework in the Heterogeneous Catalytic Oxidation of Alkenes under Aerobic and Anaerobic Conditions. ACS Catalysis, 4(3), 1032-1039. doi:10.1021/cs401003d
Hamidipour, L., & Farzaneh, F. (2013). Cobalt metal organic framework as an efficient heterogeneous catalyst for the oxidation of alkanes and alkenes. Reaction Kinetics, Mechanisms and Catalysis, 109(1), 67-75. doi:10.1007/s11144-012-0533-2
Luz, I., León, A., Boronat, M., Llabrés i Xamena, F. X., & Corma, A. (2013). Selective aerobic oxidation of activated alkanes with MOFs and their use for epoxidation of olefins with oxygen in a tandem reaction. Catal. Sci. Technol., 3(2), 371-379. doi:10.1039/c2cy20449e
Santiago-Portillo, A., Navalón, S., Cirujano, F. G., Xamena, F. X. L. i, Alvaro, M., & Garcia, H. (2015). MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 5(6), 3216-3224. doi:10.1021/acscatal.5b00411
Nowacka, A., Briantais, P., Prestipino, C., & Llabrés i Xamena, F. X. (2019). Selective Aerobic Oxidation of Cumene to Cumene Hydroperoxide over Mono- and Bimetallic Trimesate Metal–Organic Frameworks Prepared by a Facile «Green» Aqueous Synthesis. ACS Sustainable Chemistry & Engineering, 7(8), 7708-7715. doi:10.1021/acssuschemeng.8b06472
Vismara, R., Tuci, G., Tombesi, A., Domasevitch, K. V., Di Nicola, C., Giambastiani, G., … Galli, S. (2019). Tuning Carbon Dioxide Adsorption Affinity of Zinc(II) MOFs by Mixing Bis(pyrazolate) Ligands with N-Containing Tags. ACS Applied Materials & Interfaces, 11(30), 26956-26969. doi:10.1021/acsami.9b08015
Vismara, R., Tuci, G., Mosca, N., Domasevitch, K. V., Di Nicola, C., Pettinari, C., … Rossin, A. (2019). Amino-decorated bis(pyrazolate) metal–organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates. Inorganic Chemistry Frontiers, 6(2), 533-545. doi:10.1039/c8qi00997j
Mosca, N., Vismara, R., Fernandes, J. A., Tuci, G., Di Nicola, C., Domasevitch, K. V., … Galli, S. (2018). Nitro-Functionalized Bis(pyrazolate) Metal-Organic Frameworks as Carbon Dioxide Capture Materials under Ambient Conditions. Chemistry - A European Journal, 24(50), 13170-13180. doi:10.1002/chem.201802240
Pettinari, C., Tăbăcaru, A., & Galli, S. (2016). Coordination polymers and metal–organic frameworks based on poly(pyrazole)-containing ligands. Coordination Chemistry Reviews, 307, 1-31. doi:10.1016/j.ccr.2015.08.005
Pettinari, C., Tăbăcaru, A., Boldog, I., Domasevitch, K. V., Galli, S., & Masciocchi, N. (2012). Novel Coordination Frameworks Incorporating the 4,4′-Bipyrazolyl Ditopic Ligand. Inorganic Chemistry, 51(9), 5235-5245. doi:10.1021/ic3001416
Colombo, V., Montoro, C., Maspero, A., Palmisano, G., Masciocchi, N., Galli, S., … Navarro, J. A. R. (2012). Tuning the Adsorption Properties of Isoreticular Pyrazolate-Based Metal–Organic Frameworks through Ligand Modification. Journal of the American Chemical Society, 134(30), 12830-12843. doi:10.1021/ja305267m
Tăbăcaru, A., Pettinari, C., Masciocchi, N., Galli, S., Marchetti, F., & Angjellari, M. (2011). Pro-porous Coordination Polymers of the 1,4-Bis((3,5-dimethyl-1H-pyrazol-4-yl)-methyl)benzene Ligand with Late Transition Metals. Inorganic Chemistry, 50(22), 11506-11513. doi:10.1021/ic2013705
Colombo, V., Galli, S., Choi, H. J., Han, G. D., Maspero, A., Palmisano, G., … Long, J. R. (2011). High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chemical Science, 2(7), 1311. doi:10.1039/c1sc00136a
Masciocchi, N., Galli, S., Colombo, V., Maspero, A., Palmisano, G., Seyyedi, B., … Bordiga, S. (2010). Cubic Octanuclear Ni(II) Clusters in Highly Porous Polypyrazolyl-Based Materials. Journal of the American Chemical Society, 132(23), 7902-7904. doi:10.1021/ja102862j
Galli, S., Masciocchi, N., Colombo, V., Maspero, A., Palmisano, G., López-Garzón, F. J., … Navarro, J. A. R. (2010). Adsorption of Harmful Organic Vapors by Flexible Hydrophobic Bis-pyrazolate Based MOFs. Chemistry of Materials, 22(5), 1664-1672. doi:10.1021/cm902899t
Boldog, I., Sieler, J., Chernega, A. N., & Domasevitch, K. V. (2002). 4,4′-Bipyrazolyl: new bitopic connector for construction of coordination networks. Inorganica Chimica Acta, 338, 69-77. doi:10.1016/s0020-1693(02)00902-7
Domasevitch, K. V., Gospodinov, I., Krautscheid, H., Klapötke, T. M., & Stierstorfer, J. (2019). Facile and selective polynitrations at the 4-pyrazolyl dual backbone: straightforward access to a series of high-density energetic materials. New Journal of Chemistry, 43(3), 1305-1312. doi:10.1039/c8nj05266b
TOPAS-Academic 6; Bruker, by Coelho Software: Brisbane, Australia, 2016.
Coelho, A. A. (2003). Indexing of powder diffraction patterns by iterative use of singular value decomposition. Journal of Applied Crystallography, 36(1), 86-95. doi:10.1107/s0021889802019878
Cheetham, A. K., Bennett, T. D., Coudert, F.-X., & Goodwin, A. L. (2016). Defects and disorder in metal organic frameworks. Dalton Transactions, 45(10), 4113-4126. doi:10.1039/c5dt04392a
Cliffe, M. J., Wan, W., Zou, X., Chater, P. A., Kleppe, A. K., Tucker, M. G., … Goodwin, A. L. (2014). Correlated defect nanoregions in a metal–organic framework. Nature Communications, 5(1). doi:10.1038/ncomms5176
Spirkl, S., Grzywa, M., & Volkmer, D. (2018). Synthesis and characterization of a flexible metal organic framework generated from MnIII and the 4,4′-bipyrazolate-ligand. Dalton Transactions, 47(26), 8779-8786. doi:10.1039/c8dt01185k
Nazarenko, O. M., Rusanov, E. B., Chernega, A. N., & Domasevitch, K. V. (2013). Cobalt(II) and cadmium(II) square grids supported with 4,4′-bipyrazole and accommodating 3-carboxyadamantane-1-carboxylate. Acta Crystallographica Section C Crystal Structure Communications, 69(3), 232-236. doi:10.1107/s0108270113003405
Tăbăcaru, A., Pettinari, C., Marchetti, F., di Nicola, C., Domasevitch, K. V., Galli, S., … Cocchioni, M. (2012). Antibacterial Action of 4,4′-Bipyrazolyl-Based Silver(I) Coordination Polymers Embedded in PE Disks. Inorganic Chemistry, 51(18), 9775-9788. doi:10.1021/ic3011635
Sun, Q.-F., Wong, K. M.-C., Liu, L.-X., Huang, H.-P., Yu, S.-Y., Yam, V. W.-W., … Yu, K.-C. (2008). Self-Assembly, Structures, and Photophysical Properties of 4,4′-Bipyrazolate-Linked Metallo-Macrocycles with Dimetal Clips. Inorganic Chemistry, 47(6), 2142-2154. doi:10.1021/ic701344p
Lozan, V., Solntsev, P. Y., Leibeling, G., Domasevitch, K. V., & Kersting, B. (2007). Tetranuclear Nickel Complexes Composed of Pairs of Dinuclear LNi2 Fragments Linked by 4,4′-Bipyrazolyl, 1,4-Bis(4′-pyrazolyl)benzene, and 4,4′-Bipyridazine: Synthesis, Structures, and Magnetic Properties. European Journal of Inorganic Chemistry, 2007(20), 3217-3226. doi:10.1002/ejic.200700317
Bond distances and angles for the rigid body describing the ligand: C–C and C-N of the pyrazole ring 1.36 Å; exocyclic C–C 1.40 Å; C–H of the pyrazole ring 0.95 Å; C–NNH2 1.40 Å; N–H 0.95 Å; pyrazole ring internal and external bond angles 108 and 126°, respectively; angles at the nitrogen atom of the amino group 120°.
Coelho, A. A. (2000). Whole-profile structure solution from powder diffraction data using simulated annealing. Journal of Applied Crystallography, 33(3), 899-908. doi:10.1107/s002188980000248x
Cheary, R. W., & Coelho, A. (1992). A fundamental parameters approach to X-ray line-profile fitting. Journal of Applied Crystallography, 25(2), 109-121. doi:10.1107/s0021889891010804
Stephens, P. W. (1999). Phenomenological model of anisotropic peak broadening in powder diffraction. Journal of Applied Crystallography, 32(2), 281-289. doi:10.1107/s0021889898006001
Rouquerol, J., Llewellyn, P., & Rouquerol, F. (2007). Is the bet equation applicable to microporous adsorbents? Characterization of Porous Solids VII - Proceedings of the 7th International Symposium on the Characterization of Porous Solids (COPS-VII), Aix-en-Provence, France, 26-28 May 2005, 49-56. doi:10.1016/s0167-2991(07)80008-5
Saeidi, N., & Parvini, M. (2015). Accuracy of Dubinin-Astakov and Dubinin-Raduchkevic Adsorption Isotherm Models in Evaluating Micropore Volume of Bontonite. Periodica Polytechnica Chemical Engineering. doi:10.3311/ppch.8374
Zhu, X., Tian, C., Veith, G. M., Abney, C. W., Dehaudt, J., & Dai, S. (2016). In Situ Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO2 Capture Performance. Journal of the American Chemical Society, 138(36), 11497-11500. doi:10.1021/jacs.6b07644
Zhu, X., Mahurin, S. M., An, S.-H., Do-Thanh, C.-L., Tian, C., Li, Y., … Dai, S. (2014). Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups. Chemical Communications, 50(59), 7933. doi:10.1039/c4cc01588f
Spek, A. L. (2009). Structure validation in chemical crystallography. Acta Crystallographica Section D Biological Crystallography, 65(2), 148-155. doi:10.1107/s090744490804362x
Blatov, V. A., Shevchenko, A. P., & Proserpio, D. M. (2014). Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Crystal Growth & Design, 14(7), 3576-3586. doi:10.1021/cg500498k
Tonigold, M., Lu, Y., Mavrandonakis, A., Puls, A., Staudt, R., Möllmer, J., … Volkmer, D. (2011). Pyrazolate-Based Cobalt(II)-Containing Metal-Organic Frameworks in Heterogeneous Catalytic Oxidation Reactions: Elucidating the Role of Entatic States for Biomimetic Oxidation Processes. Chemistry - A European Journal, 17(31), 8671-8695. doi:10.1002/chem.201003173
Ma, S., & Zhou, H.-C. (2006). A Metal−Organic Framework with Entatic Metal Centers Exhibiting High Gas Adsorption Affinity. Journal of the American Chemical Society, 128(36), 11734-11735. doi:10.1021/ja063538z
Wang, Z.-J., Lv, J.-J., Yi, R.-N., Xiao, M., Feng, J.-J., Liang, Z.-W., … Xu, X. (2018). Nondirecting Group sp
3
C−H Activation for Synthesis of Bibenzyls via
Homo-coupling as Catalyzed by Reduced Graphene Oxide Supported PtPd@Pt Porous Nanospheres. Advanced Synthesis & Catalysis, 360(5), 932-941. doi:10.1002/adsc.201701389
CASEMIER, J. (1973). The oxidation of cumene and the decomposition of cumene hydroperoxide on silver, copper, and platinum. Journal of Catalysis, 29(3), 367-373. doi:10.1016/0021-9517(73)90242-x
Liao, S., Chi, Y., Yu, H., Wang, H., & Peng, F. (2014). Tuning the Selectivity in the Aerobic Oxidation of Cumene Catalyzed by Nitrogen-Doped Carbon Nanotubes. ChemCatChem, 6(2), 555-560. doi:10.1002/cctc.201300909
Silvestre-Albero, J. (2001). Characterization of microporous solids by immersion calorimetry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187-188(1-3), 151-165. doi:10.1016/s0927-7757(01)00620-3
Everett, D. H. (1972). Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure and Applied Chemistry, 31(4), 577-638. doi:10.1351/pac197231040577
Liu, C., Wang, T., Ji, J., Wang, C., Wang, H., Jin, P., … Jiang, J. (2019). The effect of pore size and layer number of metal–porphyrin coordination nanosheets on sensing DNA. Journal of Materials Chemistry C, 7(33), 10240-10246. doi:10.1039/c9tc02778e
Gong, T., Yang, X., Fang, J.-J., Sui, Q., Xi, F.-G., & Gao, E.-Q. (2017). Distinct Chromic and Magnetic Properties of Metal–Organic Frameworks with a Redox Ligand. ACS Applied Materials & Interfaces, 9(6), 5503-5512. doi:10.1021/acsami.6b15540
Yamada, Y., Kim, J., Matsuo, S., & Sato, S. (2014). Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon, 70, 59-74. doi:10.1016/j.carbon.2013.12.061
Singhbabu, Y. N., Kumari, P., Parida, S., & Sahu, R. K. (2014). Conversion of pyrazoline to pyrazole in hydrazine treated N-substituted reduced graphene oxide films obtained by ion bombardment and their electrical properties. Carbon, 74, 32-43. doi:10.1016/j.carbon.2014.02.079
Dementjev, A. ., de Graaf, A., van de Sanden, M. C. ., Maslakov, K. ., Naumkin, A. ., & Serov, A. . (2000). X-Ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon–nitrogen films. Diamond and Related Materials, 9(11), 1904-1907. doi:10.1016/s0925-9635(00)00345-9
[-]