Guba, A., Makai, M., & Pál, L. (2003). Statistical aspects of best estimate method—I. Reliability Engineering & System Safety, 80(3), 217-232. doi:10.1016/s0951-8320(03)00022-x
Leray, O., Ferroukhi, H., Hursin, M., Vasiliev, A., & Rochman, D. (2017). Methodology for core analyses with nuclear data uncertainty quantification and application to Swiss PWR operated cycles. Annals of Nuclear Energy, 110, 547-559. doi:10.1016/j.anucene.2017.07.006
C. Mesado, R. Miró, G. Verdú, Application case for phase iii of UAM-LWR benchmark: uncertainty propagation of thermal-hydraulic macroscopic parameters, Nucl. Eng. Technol.:10.1016/j.net.2020.01.010.
[+]
Guba, A., Makai, M., & Pál, L. (2003). Statistical aspects of best estimate method—I. Reliability Engineering & System Safety, 80(3), 217-232. doi:10.1016/s0951-8320(03)00022-x
Leray, O., Ferroukhi, H., Hursin, M., Vasiliev, A., & Rochman, D. (2017). Methodology for core analyses with nuclear data uncertainty quantification and application to Swiss PWR operated cycles. Annals of Nuclear Energy, 110, 547-559. doi:10.1016/j.anucene.2017.07.006
C. Mesado, R. Miró, G. Verdú, Application case for phase iii of UAM-LWR benchmark: uncertainty propagation of thermal-hydraulic macroscopic parameters, Nucl. Eng. Technol.:10.1016/j.net.2020.01.010.
Mesado, C., Soler, A., Barrachina, T., Miró, R., García-Díaz, J. C., Macián-Juan, R., & Verdú, G. (2012). Uncertainty and Sensitivity of Neutron Kinetic Parameters in the Dynamic Response of a PWR Rod Ejection Accident Coupled Simulation. Science and Technology of Nuclear Installations, 2012, 1-10. doi:10.1155/2012/625878
Perez, M., Reventos, F., Batet, L., Guba, A., Tóth, I., Mieusset, T., … Del Nevo, A. (2011). Uncertainty and sensitivity analysis of a LBLOCA in a PWR Nuclear Power Plant: Results of the Phase V of the BEMUSE programme. Nuclear Engineering and Design, 241(10), 4206-4222. doi:10.1016/j.nucengdes.2011.08.019
Rochman, D., Leray, O., Hursin, M., Ferroukhi, H., Vasiliev, A., Aures, A., … Fiorito, L. (2017). Nuclear Data Uncertainties for Typical LWR Fuel Assemblies and a Simple Reactor Core. Nuclear Data Sheets, 139, 1-76. doi:10.1016/j.nds.2017.01.001
Rochman, D. A., Bauge, E., Vasiliev, A., Ferroukhi, H., & Perret, G. (2018). Nuclear data correlation between different isotopes via integral information. EPJ Nuclear Sciences & Technologies, 4, 7. doi:10.1051/epjn/2018006
Strydom, G. (2013). Uncertainty and Sensitivity Analyses of a Pebble Bed HTGR Loss of Cooling Event. Science and Technology of Nuclear Installations, 2013, 1-16. doi:10.1155/2013/426356
Wilks, S. S. (1941). Determination of Sample Sizes for Setting Tolerance Limits. The Annals of Mathematical Statistics, 12(1), 91-96. doi:10.1214/aoms/1177731788
Wilks, S. S. (1942). Statistical Prediction with Special Reference to the Problem of Tolerance Limits. The Annals of Mathematical Statistics, 13(4), 400-409. doi:10.1214/aoms/1177731537
Yankov, A., Collins, B., Klein, M., Jessee, M. A., Zwermann, W., Velkov, K., … Downar, T. (2012). A Two-Step Approach to Uncertainty Quantification of Core Simulators. Science and Technology of Nuclear Installations, 2012, 1-9. doi:10.1155/2012/767096
[-]