- -

Methodology for neutronic uncertainty propagation and application to a UAM-LWR benchmark

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Methodology for neutronic uncertainty propagation and application to a UAM-LWR benchmark

Show simple item record

Files in this item

dc.contributor.author Mesado, C. es_ES
dc.contributor.author Miró Herrero, Rafael es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2021-04-28T03:32:28Z
dc.date.available 2021-04-28T03:32:28Z
dc.date.issued 2020 es_ES
dc.identifier.issn 0149-1970 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165730
dc.description.abstract [EN] This work covers an important point of the benchmark released by the expert group on Uncertainty Analysis in Modeling of Light Water Reactors (UAM-LWR). This ambitious benchmark aims to determine the uncertainty in LWR systems and processes in all stages of calculation, with emphasis on multi-physics (coupled) and multi-scale simulations. Specifically, in this work, a simplified BWR core is used to propagate the uncertainty of nuclear data. Due to a high computational cost in the analysis all fuel assemblies are modeled as fresh. The propagation is subdivided into two levels i) assembly level ¿with SCALE6.2.1 and SAMPLER module¿, and ii) core level, ¿with PARCSv3.2 and DAKOTA 6.3¿. The first level takes into account the uncertainties contained in the master library ENDF/B-VII.1 and as a result a problem-dependent neutronic library in NEMTAB format is obtained using TXT2NTAB code. This is a friendly Matlab code developed within this work. Finally, the uncertainty contained in the neutronic library is further propagated through PARCS. A different approach is presented in this work to propagate the uncertainty between codes. Following this approach only two neutronic libraries are generated, one with the average responses and the other with their standard deviations. Then, the standard deviation and a matrix of perturbation factors are used to perturb the main neutronic parameters. A parallel work is done to propagate the thermal-hydraulic parameters in a PWR core. es_ES
dc.description.sponsorship The authors of this work thank IBERINCO (Iberdrola Ingenieria y Construcci.on, S. A.) for the shared data which made possible the validation of the lattice physics model. Moreover, this work was possible thanks to the UAM-LWR benchmark release, thanks to its organizers who requested the development of TXT2NTAB Matlab program. Finally, the authors sincerely thank to the Ministerio de Economia, Industria y Competitividad, Spain and the "Plan Nacional de IthornDthorni" for funding the projects NUC-MULTPHYS ENE2012-34585 and ENE2017-89029-P. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Progress in Nuclear Energy es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject U&S analysis es_ES
dc.subject Uncertainty propagation es_ES
dc.subject 3D core model es_ES
dc.subject SCALE6.2 es_ES
dc.subject SAMPLER es_ES
dc.subject PARCS es_ES
dc.subject TXT2NTAB es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title Methodology for neutronic uncertainty propagation and application to a UAM-LWR benchmark es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.pnucene.2020.103389 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2012-34585/ES/Desarrollo de una plataforma multifísica de altas prestaciones para simulaciones Termohidráulico-Neutrónicas en ingeniería nuclear/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-68353-P/ES/DESARROLLO DE UN CODIGO DE TRANSPORTE NEUTRONICO MODAL 3D POR EL METODO DE LOS VOLUMENES FINITOS Y ORDENADAS DISCRETAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2017-89029-P/ES/VERIFICACION, VALIDACION CUANTIFICACION DE INCERTIDUMBRES Y MEJORA DE LA PLATAFORMA NEUTRONICA%2FTERMOHIDRAULICA PANTHER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096437-B-I00/ES/APLICACION INTEGRADA DE FISICA DE REACTORES PARA SIMULACIONES A GRAN ESCALA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Mesado, C.; Miró Herrero, R.; Verdú Martín, GJ. (2020). Methodology for neutronic uncertainty propagation and application to a UAM-LWR benchmark. Progress in Nuclear Energy. 126:1-12. https://doi.org/10.1016/j.pnucene.2020.103389 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.pnucene.2020.103389 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 126 es_ES
dc.relation.pasarela S\431539 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Guba, A., Makai, M., & Pál, L. (2003). Statistical aspects of best estimate method—I. Reliability Engineering & System Safety, 80(3), 217-232. doi:10.1016/s0951-8320(03)00022-x es_ES
dc.description.references Leray, O., Ferroukhi, H., Hursin, M., Vasiliev, A., & Rochman, D. (2017). Methodology for core analyses with nuclear data uncertainty quantification and application to Swiss PWR operated cycles. Annals of Nuclear Energy, 110, 547-559. doi:10.1016/j.anucene.2017.07.006 es_ES
dc.description.references C. Mesado, R. Miró, G. Verdú, Application case for phase iii of UAM-LWR benchmark: uncertainty propagation of thermal-hydraulic macroscopic parameters, Nucl. Eng. Technol.:10.1016/j.net.2020.01.010. es_ES
dc.description.references Mesado, C., Soler, A., Barrachina, T., Miró, R., García-Díaz, J. C., Macián-Juan, R., & Verdú, G. (2012). Uncertainty and Sensitivity of Neutron Kinetic Parameters in the Dynamic Response of a PWR Rod Ejection Accident Coupled Simulation. Science and Technology of Nuclear Installations, 2012, 1-10. doi:10.1155/2012/625878 es_ES
dc.description.references Perez, M., Reventos, F., Batet, L., Guba, A., Tóth, I., Mieusset, T., … Del Nevo, A. (2011). Uncertainty and sensitivity analysis of a LBLOCA in a PWR Nuclear Power Plant: Results of the Phase V of the BEMUSE programme. Nuclear Engineering and Design, 241(10), 4206-4222. doi:10.1016/j.nucengdes.2011.08.019 es_ES
dc.description.references Rochman, D., Leray, O., Hursin, M., Ferroukhi, H., Vasiliev, A., Aures, A., … Fiorito, L. (2017). Nuclear Data Uncertainties for Typical LWR Fuel Assemblies and a Simple Reactor Core. Nuclear Data Sheets, 139, 1-76. doi:10.1016/j.nds.2017.01.001 es_ES
dc.description.references Rochman, D. A., Bauge, E., Vasiliev, A., Ferroukhi, H., & Perret, G. (2018). Nuclear data correlation between different isotopes via integral information. EPJ Nuclear Sciences & Technologies, 4, 7. doi:10.1051/epjn/2018006 es_ES
dc.description.references Strydom, G. (2013). Uncertainty and Sensitivity Analyses of a Pebble Bed HTGR Loss of Cooling Event. Science and Technology of Nuclear Installations, 2013, 1-16. doi:10.1155/2013/426356 es_ES
dc.description.references Wilks, S. S. (1941). Determination of Sample Sizes for Setting Tolerance Limits. The Annals of Mathematical Statistics, 12(1), 91-96. doi:10.1214/aoms/1177731788 es_ES
dc.description.references Wilks, S. S. (1942). Statistical Prediction with Special Reference to the Problem of Tolerance Limits. The Annals of Mathematical Statistics, 13(4), 400-409. doi:10.1214/aoms/1177731537 es_ES
dc.description.references Yankov, A., Collins, B., Klein, M., Jessee, M. A., Zwermann, W., Velkov, K., … Downar, T. (2012). A Two-Step Approach to Uncertainty Quantification of Core Simulators. Science and Technology of Nuclear Installations, 2012, 1-9. doi:10.1155/2012/767096 es_ES


This item appears in the following Collection(s)

Show simple item record