- -

Ergonomic risk and cycle time minimization for the U-shaped worker assignment assembly line balancing problem: A multi-objective approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ergonomic risk and cycle time minimization for the U-shaped worker assignment assembly line balancing problem: A multi-objective approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zhang, Zikai es_ES
dc.contributor.author Tang, QiuHua es_ES
dc.contributor.author Ruiz García, Rubén es_ES
dc.contributor.author Zhang, Liping es_ES
dc.date.accessioned 2021-04-29T03:31:30Z
dc.date.available 2021-04-29T03:31:30Z
dc.date.issued 2020-06 es_ES
dc.identifier.issn 0305-0548 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165755
dc.description.abstract [EN] Workers still perform the bulk of operations in the manufacturing industry. The consideration of the assignment of workers and the reduction of ergonomic risks in U-shaped assembly lines is of paramount importance. However, the objectives of efficient task and worker assignment and a reduction in ergonomic risks are not usually correlated. Moreover, there is limited research in the existing literature into multi-objective approaches in U-shaped assembly lines. We formulate a U-shaped assembly worker assignment and balancing problem to simultaneously minimize cycle times and ergonomic risks. In addition, and due to its simplicity and successful results in flow shop scheduling problems, a Restarted Iterated Pareto Greedy algorithm is designed to optimize both objectives. In this algorithm, a problem-specific heuristic-based initialization is extended to improve the initial solution. Two precedence-based greedy and local search phases are developed to exploit the space around the current solution. Finally, a restart mechanism is proposed to help the algorithm escape from local optima. Comprehensive computational results, supported by detailed statistical analyses, suggest that the proposed multi-objective algorithm outperforms existing methods on a large number of benchmark instances. es_ES
dc.description.sponsorship The authors would like to thank the anonymous reviewers for their helpful comments and constructive suggestions. This work is supported by National Natural Science Foundation of China (No. 51875421, No. 51875420). Ruben Ruiz is partly supported by the Spanish Ministry of Science, Innovation, and Universities, under the project "OPTEP-Port Terminal Operations Optimization"(No.\ RTI2018-094940-B-I00) financed with FEDER funds. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers & Operations Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject U-shaped assembly line es_ES
dc.subject Worker assignment es_ES
dc.subject Ergonomic risks es_ES
dc.subject Multi-objectives es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Ergonomic risk and cycle time minimization for the U-shaped worker assignment assembly line balancing problem: A multi-objective approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cor.2020.104905 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//51875420/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//51875421/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094940-B-I00/ES/OPTIMIZACION DE OPERACIONES EN TERMINALES PORTUARIAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Zhang, Z.; Tang, Q.; Ruiz García, R.; Zhang, L. (2020). Ergonomic risk and cycle time minimization for the U-shaped worker assignment assembly line balancing problem: A multi-objective approach. Computers & Operations Research. 118:1-15. https://doi.org/10.1016/j.cor.2020.104905 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cor.2020.104905 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 118 es_ES
dc.relation.pasarela S\424878 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.description.references Akyol, S. D., & Baykasoğlu, A. (2016). A multiple-rule based constructive randomized search algorithm for solving assembly line worker assignment and balancing problem. Journal of Intelligent Manufacturing, 30(2), 557-573. doi:10.1007/s10845-016-1262-6 es_ES
dc.description.references Akyol, S. D., & Baykasoğlu, A. (2016). ErgoALWABP: a multiple-rule based constructive randomized search algorithm for solving assembly line worker assignment and balancing problem under ergonomic risk factors. Journal of Intelligent Manufacturing, 30(1), 291-302. doi:10.1007/s10845-016-1246-6 es_ES
dc.description.references Alavidoost, M. H., Babazadeh, H., & Sayyari, S. T. (2016). An interactive fuzzy programming approach for bi-objective straight and U-shaped assembly line balancing problem. Applied Soft Computing, 40, 221-235. doi:10.1016/j.asoc.2015.11.025 es_ES
dc.description.references Alavidoost, M. H., Tarimoradi, M., & Zarandi, M. H. F. (2015). Fuzzy adaptive genetic algorithm for multi-objective assembly line balancing problems. Applied Soft Computing, 34, 655-677. doi:10.1016/j.asoc.2015.06.001 es_ES
dc.description.references Araújo, F. F. B., Costa, A. M., & Miralles, C. (2012). Two extensions for the ALWABP: Parallel stations and collaborative approach. International Journal of Production Economics, 140(1), 483-495. doi:10.1016/j.ijpe.2012.06.032 es_ES
dc.description.references Aryanezhad, M. B., Kheirkhah, A. S., Deljoo, V., & Mirzapour Al-e-hashem, S. M. J. (2008). Designing safe job rotation schedules based upon workers’ skills. The International Journal of Advanced Manufacturing Technology, 41(1-2), 193-199. doi:10.1007/s00170-008-1446-0 es_ES
dc.description.references Avikal, S., Jain, R., Mishra, P. K., & Yadav, H. C. (2013). A heuristic approach for U-shaped assembly line balancing to improve labor productivity. Computers & Industrial Engineering, 64(4), 895-901. doi:10.1016/j.cie.2013.01.001 es_ES
dc.description.references Battini, D., Calzavara, M., Otto, A., & Sgarbossa, F. (2016). The Integrated Assembly Line Balancing and Parts Feeding Problem with Ergonomics Considerations. IFAC-PapersOnLine, 49(12), 191-196. doi:10.1016/j.ifacol.2016.07.594 es_ES
dc.description.references Battini, D., Faccio, M., Persona, A., & Sgarbossa, F. (2011). New methodological framework to improve productivity and ergonomics in assembly system design. International Journal of Industrial Ergonomics, 41(1), 30-42. doi:10.1016/j.ergon.2010.12.001 es_ES
dc.description.references Bautista, J., Batalla-García, C., & Alfaro-Pozo, R. (2016). Models for assembly line balancing by temporal, spatial and ergonomic risk attributes. European Journal of Operational Research, 251(3), 814-829. doi:10.1016/j.ejor.2015.12.042 es_ES
dc.description.references Baykasoglu, A. (2006). Multi-rule Multi-objective Simulated Annealing Algorithm for Straight and U Type Assembly Line Balancing Problems. Journal of Intelligent Manufacturing, 17(2), 217-232. doi:10.1007/s10845-005-6638-y es_ES
dc.description.references Baykasoğlu, A., Demirkol Akyol, S., & Demirkan, B. (2017). An Excel-based program to teach students quick ergonomic risk assessment techniques with an application to an assembly system. Computer Applications in Engineering Education, 25(3), 489-507. doi:10.1002/cae.21816 es_ES
dc.description.references Baykasoglu, A., Tasan, S. O., Tasan, A. S., & Akyol, S. D. (2017). Modeling and solving assembly line design problems by considering human factors with a real-life application. Human Factors and Ergonomics in Manufacturing & Service Industries, 27(2), 96-115. doi:10.1002/hfm.20695 es_ES
dc.description.references Blum, C., & Miralles, C. (2011). On solving the assembly line worker assignment and balancing problem via beam search. Computers & Operations Research, 38(1), 328-339. doi:10.1016/j.cor.2010.05.008 es_ES
dc.description.references Borba, L., & Ritt, M. (2014). A heuristic and a branch-and-bound algorithm for the Assembly Line Worker Assignment and Balancing Problem. Computers & Operations Research, 45, 87-96. doi:10.1016/j.cor.2013.12.002 es_ES
dc.description.references Bortolini, M., Faccio, M., Gamberi, M., & Pilati, F. (2017). Multi-objective assembly line balancing considering component picking and ergonomic risk. Computers & Industrial Engineering, 112, 348-367. doi:10.1016/j.cie.2017.08.029 es_ES
dc.description.references Botti, L., Mora, C., & Regattieri, A. (2017). Integrating ergonomics and lean manufacturing principles in a hybrid assembly line. Computers & Industrial Engineering, 111, 481-491. doi:10.1016/j.cie.2017.05.011 es_ES
dc.description.references Bukchin, Y., & Raviv, T. (2018). Constraint programming for solving various assembly line balancing problems. Omega, 78, 57-68. doi:10.1016/j.omega.2017.06.008 es_ES
dc.description.references Costa, A. M., & Miralles, C. (2009). Job rotation in assembly lines employing disabled workers. International Journal of Production Economics, 120(2), 625-632. doi:10.1016/j.ijpe.2009.04.013 es_ES
dc.description.references Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017 es_ES
dc.description.references Ding, J.-Y., Song, S., Gupta, J. N. D., Zhang, R., Chiong, R., & Wu, C. (2015). An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem. Applied Soft Computing, 30, 604-613. doi:10.1016/j.asoc.2015.02.006 es_ES
dc.description.references Fattahi, A., Elaoud, S., Sadeqi Azer, E., & Turkay, M. (2013). A novel integer programming formulation with logic cuts for the U-shaped assembly line balancing problem. International Journal of Production Research, 52(5), 1318-1333. doi:10.1080/00207543.2013.832489 es_ES
dc.description.references Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O., 2001. Inferential performance assessment of stochastic optimisers and the attainment function. 1993, 213–225. es_ES
dc.description.references Guo, Z. X., Wong, W. K., Leung, S. Y. S., Fan, J. T., & Chan, S. F. (2008). A Genetic-Algorithm-Based Optimization Model for Solving the Flexible Assembly Line Balancing Problem With Work Sharing and Workstation Revisiting. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(2), 218-228. doi:10.1109/tsmcc.2007.913912 es_ES
dc.description.references Hatami, S., Ruiz, R., & Andrés-Romano, C. (2015). Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times. International Journal of Production Economics, 169, 76-88. doi:10.1016/j.ijpe.2015.07.027 es_ES
dc.description.references Hazır, Ö., & Dolgui, A. (2015). A decomposition based solution algorithm for U-type assembly line balancing with interval data. Computers & Operations Research, 59, 126-131. doi:10.1016/j.cor.2015.01.010 es_ES
dc.description.references Hignett, S., & McAtamney, L. (2000). Rapid Entire Body Assessment (REBA). Applied Ergonomics, 31(2), 201-205. doi:10.1016/s0003-6870(99)00039-3 es_ES
dc.description.references HOFFMANN, T. R. (1990). Assembly line balancing: a set of challenging problems. International Journal of Production Research, 28(10), 1807-1815. doi:10.1080/00207549008942835 es_ES
dc.description.references Karhu, O., Kansi, P., & Kuorinka, I. (1977). Correcting working postures in industry: A practical method for analysis. Applied Ergonomics, 8(4), 199-201. doi:10.1016/0003-6870(77)90164-8 es_ES
dc.description.references Knowles, J.D., Thiele, L., Zitzler, E., 2006. A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK-Report 214. es_ES
dc.description.references López-Ibáñez, M., Paquete, L., & Stützle, T. (2006). Hybrid Population-Based Algorithms for the Bi-Objective Quadratic Assignment Problem. Journal of Mathematical Modelling and Algorithms, 5(1), 111-137. doi:10.1007/s10852-005-9034-x es_ES
dc.description.references Li, M., Tang, Q., Zheng, Q., Xia, X., & Floudas, C. A. (2017). Rules-based heuristic approach for the U-shaped assembly line balancing problem. Applied Mathematical Modelling, 48, 423-439. doi:10.1016/j.apm.2016.12.031 es_ES
dc.description.references Li, Z., Tang, Q., & Zhang, L. (2017). Two-sided assembly line balancing problem of type I: Improvements, a simple algorithm and a comprehensive study. Computers & Operations Research, 79, 78-93. doi:10.1016/j.cor.2016.10.006 es_ES
dc.description.references Liles, D. H., Deivanayagam, S., Ayoub, M. M., & Mahajan, P. (1984). A Job Severity Index for the Evaluation and Control of Lifting Injury. Human Factors: The Journal of the Human Factors and Ergonomics Society, 26(6), 683-693. doi:10.1177/001872088402600608 es_ES
dc.description.references McAtamney, L., & Nigel Corlett, E. (1993). RULA: a survey method for the investigation of work-related upper limb disorders. Applied Ergonomics, 24(2), 91-99. doi:10.1016/0003-6870(93)90080-s es_ES
dc.description.references Miltenburg, G. J., & Wijngaard, J. (1994). The U-line Line Balancing Problem. Management Science, 40(10), 1378-1388. doi:10.1287/mnsc.40.10.1378 es_ES
dc.description.references Minella, G., Ruiz, R., & Ciavotta, M. (2011). Restarted Iterated Pareto Greedy algorithm for multi-objective flowshop scheduling problems. Computers & Operations Research, 38(11), 1521-1533. doi:10.1016/j.cor.2011.01.010 es_ES
dc.description.references Miralles, C., García-Sabater, J. P., Andrés, C., & Cardós, M. (2008). Branch and bound procedures for solving the Assembly Line Worker Assignment and Balancing Problem: Application to Sheltered Work centres for Disabled. Discrete Applied Mathematics, 156(3), 352-367. doi:10.1016/j.dam.2005.12.012 es_ES
dc.description.references Moreira, M. C. O., Miralles, C., & Costa, A. M. (2015). Model and heuristics for the Assembly Line Worker Integration and Balancing Problem. Computers & Operations Research, 54, 64-73. doi:10.1016/j.cor.2014.08.021 es_ES
dc.description.references Mutlu, Ö., Polat, O., & Supciller, A. A. (2013). An iterative genetic algorithm for the assembly line worker assignment and balancing problem of type-II. Computers & Operations Research, 40(1), 418-426. doi:10.1016/j.cor.2012.07.010 es_ES
dc.description.references Nourmohammadi, A., Zandieh, M., & Tavakkoli-Moghaddam, R. (2013). An imperialist competitive algorithm for multi-objective U-type assembly line design. Journal of Computational Science, 4(5), 393-400. doi:10.1016/j.jocs.2012.09.001 es_ES
dc.description.references OCCHIPINTI, E. (1998). OCRA: a concise index for the assessment of exposure to repetitive movements of the upper limbs. Ergonomics, 41(9), 1290-1311. doi:10.1080/001401398186315 es_ES
dc.description.references Oksuz, M. K., Buyukozkan, K., & Satoglu, S. I. (2017). U-shaped assembly line worker assignment and balancing problem: A mathematical model and two meta-heuristics. Computers & Industrial Engineering, 112, 246-263. doi:10.1016/j.cie.2017.08.030 es_ES
dc.description.references Otto, A., & Battaïa, O. (2017). Reducing physical ergonomic risks at assembly lines by line balancing and job rotation: A survey. Computers & Industrial Engineering, 111, 467-480. doi:10.1016/j.cie.2017.04.011 es_ES
dc.description.references Otto, A., & Scholl, A. (2011). Incorporating ergonomic risks into assembly line balancing. European Journal of Operational Research, 212(2), 277-286. doi:10.1016/j.ejor.2011.01.056 es_ES
dc.description.references Pan, Q.-K., & Ruiz, R. (2014). An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem. Omega, 44, 41-50. doi:10.1016/j.omega.2013.10.002 es_ES
dc.description.references Pereira, J. (2018). The robust (minmax regret) assembly line worker assignment and balancing problem. Computers & Operations Research, 93, 27-40. doi:10.1016/j.cor.2018.01.009 es_ES
dc.description.references Polat, O., Kalayci, C. B., Mutlu, Ö., & Gupta, S. M. (2015). A two-phase variable neighbourhood search algorithm for assembly line worker assignment and balancing problem type-II: an industrial case study. International Journal of Production Research, 54(3), 722-741. doi:10.1080/00207543.2015.1055344 es_ES
dc.description.references Rabbani, M., Kazemi, S. M., & Manavizadeh, N. (2012). Mixed model U-line balancing type-1 problem: A new approach. Journal of Manufacturing Systems, 31(2), 131-138. doi:10.1016/j.jmsy.2012.02.002 es_ES
dc.description.references Ramezanian, R., & Ezzatpanah, A. (2015). Modeling and solving multi-objective mixed-model assembly line balancing and worker assignment problem. Computers & Industrial Engineering, 87, 74-80. doi:10.1016/j.cie.2015.04.017 es_ES
dc.description.references Ritt, M., Costa, A. M., & Miralles, C. (2015). The assembly line worker assignment and balancing problem with stochastic worker availability. International Journal of Production Research, 54(3), 907-922. doi:10.1080/00207543.2015.1108534 es_ES
dc.description.references Şahin, M., & Kellegöz, T. (2017). An efficient grouping genetic algorithm for U-shaped assembly line balancing problems with maximizing production rate. Memetic Computing, 9(3), 213-229. doi:10.1007/s12293-017-0239-0 es_ES
dc.description.references Schaub, K., Caragnano, G., Britzke, B., & Bruder, R. (2013). The European Assembly Worksheet. Theoretical Issues in Ergonomics Science, 14(6), 616-639. doi:10.1080/1463922x.2012.678283 es_ES
dc.description.references Shin, W., & Park, M. (2017). Ergonomic interventions for prevention of work-related musculoskeletal disorders in a small manufacturing assembly line. International Journal of Occupational Safety and Ergonomics, 25(1), 110-122. doi:10.1080/10803548.2017.1373487 es_ES
dc.description.references Sungur, B., & Yavuz, Y. (2015). Assembly line balancing with hierarchical worker assignment. Journal of Manufacturing Systems, 37, 290-298. doi:10.1016/j.jmsy.2014.08.004 es_ES
dc.description.references Talbot, F. B., Patterson, J. H., & Gehrlein, W. V. (1986). A Comparative Evaluation of Heuristic Line Balancing Techniques. Management Science, 32(4), 430-454. doi:10.1287/mnsc.32.4.430 es_ES
dc.description.references Tan, K. C., Yang, Y. J., & Goh, C. K. (2006). A distributed Cooperative coevolutionary algorithm for multiobjective optimization. IEEE Transactions on Evolutionary Computation, 10(5), 527-549. doi:10.1109/tevc.2005.860762 es_ES
dc.description.references Tasgetiren, M. F., Kizilay, D., Pan, Q.-K., & Suganthan, P. N. (2017). Iterated greedy algorithms for the blocking flowshop scheduling problem with makespan criterion. Computers & Operations Research, 77, 111-126. doi:10.1016/j.cor.2016.07.002 es_ES
dc.description.references Tiacci, L., & Mimmi, M. (2018). Integrating ergonomic risks evaluation through OCRA index and balancing/sequencing decisions for mixed model stochastic asynchronous assembly lines. Omega, 78, 112-138. doi:10.1016/j.omega.2017.08.011 es_ES
dc.description.references Vilà, M., & Pereira, J. (2014). A branch-and-bound algorithm for assembly line worker assignment and balancing problems. Computers & Operations Research, 44, 105-114. doi:10.1016/j.cor.2013.10.016 es_ES
dc.description.references WATERS, T. R., PUTZ-ANDERSON, V., GARG, A., & FINE, L. J. (1993). Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics, 36(7), 749-776. doi:10.1080/00140139308967940 es_ES
dc.description.references Yorke, J., 2017. Henry Ford – Master of flow. es_ES
dc.description.references Zacharia, P. T., & Nearchou, A. C. (2016). A population-based algorithm for the bi-objective assembly line worker assignment and balancing problem. Engineering Applications of Artificial Intelligence, 49, 1-9. doi:10.1016/j.engappai.2015.11.007 es_ES
dc.description.references Zaman, T., Paul, S. K., & Azeem, A. (2012). Sustainable operator assignment in an assembly line using genetic algorithm. International Journal of Production Research, 50(18), 5077-5084. doi:10.1080/00207543.2011.636764 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem