Agud, L., Calabuig, J. M., & Sánchez Pérez, E. A. (2011). The weak topology on q-convex Banach function spaces. Mathematische Nachrichten, 285(2-3), 136-149. doi:10.1002/mana.201000030
CARMELI, C., DE VITO, E., & TOIGO, A. (2006). VECTOR VALUED REPRODUCING KERNEL HILBERT SPACES OF INTEGRABLE FUNCTIONS AND MERCER THEOREM. Analysis and Applications, 04(04), 377-408. doi:10.1142/s0219530506000838
CARMELI, C., DE VITO, E., TOIGO, A., & UMANITÀ, V. (2010). VECTOR VALUED REPRODUCING KERNEL HILBERT SPACES AND UNIVERSALITY. Analysis and Applications, 08(01), 19-61. doi:10.1142/s0219530510001503
[+]
Agud, L., Calabuig, J. M., & Sánchez Pérez, E. A. (2011). The weak topology on q-convex Banach function spaces. Mathematische Nachrichten, 285(2-3), 136-149. doi:10.1002/mana.201000030
CARMELI, C., DE VITO, E., & TOIGO, A. (2006). VECTOR VALUED REPRODUCING KERNEL HILBERT SPACES OF INTEGRABLE FUNCTIONS AND MERCER THEOREM. Analysis and Applications, 04(04), 377-408. doi:10.1142/s0219530506000838
CARMELI, C., DE VITO, E., TOIGO, A., & UMANITÀ, V. (2010). VECTOR VALUED REPRODUCING KERNEL HILBERT SPACES AND UNIVERSALITY. Analysis and Applications, 08(01), 19-61. doi:10.1142/s0219530510001503
Cerdà, J., Hudzik, H., & Mastyło, M. (1996). Geometric properties of Köthe–Bochner spaces. Mathematical Proceedings of the Cambridge Philosophical Society, 120(3), 521-533. doi:10.1017/s0305004100075058
Chavan, S., Podder, S., & Trivedi, S. (2018). Commutants and reflexivity of multiplication tuples on vector-valued reproducing kernel Hilbert spaces. Journal of Mathematical Analysis and Applications, 466(2), 1337-1358. doi:10.1016/j.jmaa.2018.06.062
Christmann, A., Dumpert, F., & Xiang, D.-H. (2016). On extension theorems and their connection to universal consistency in machine learning. Analysis and Applications, 14(06), 795-808. doi:10.1142/s0219530516400029
Defant, A. (2001). Positivity, 5(2), 153-175. doi:10.1023/a:1011466509838
Defant, A., & Sánchez Pérez, E. A. (2004). Maurey–Rosenthal factorization of positive operators and convexity. Journal of Mathematical Analysis and Applications, 297(2), 771-790. doi:10.1016/j.jmaa.2004.04.047
De Vito, E., Umanità, V., & Villa, S. (2013). An extension of Mercer theorem to matrix-valued measurable kernels. Applied and Computational Harmonic Analysis, 34(3), 339-351. doi:10.1016/j.acha.2012.06.001
Eigel, M., & Sturm, K. (2017). Reproducing kernel Hilbert spaces and variable metric algorithms in PDE-constrained shape optimization. Optimization Methods and Software, 33(2), 268-296. doi:10.1080/10556788.2017.1314471
Fasshauer, G. E., Hickernell, F. J., & Ye, Q. (2015). Solving support vector machines in reproducing kernel Banach spaces with positive definite functions. Applied and Computational Harmonic Analysis, 38(1), 115-139. doi:10.1016/j.acha.2014.03.007
Galdames Bravo, O. (2014). Generalized Kӧthe $p$-dual spaces. Bulletin of the Belgian Mathematical Society - Simon Stevin, 21(2). doi:10.36045/bbms/1400592625
Lin, P.-K. (2004). Köthe-Bochner Function Spaces. doi:10.1007/978-0-8176-8188-3
Lindenstrauss, J., & Tzafriri, L. (1979). Classical Banach Spaces II. doi:10.1007/978-3-662-35347-9
Meyer-Nieberg, P. (1991). Banach Lattices. Universitext. doi:10.1007/978-3-642-76724-1
Okada, S., Ricker, W. J., & Sánchez Pérez, E. A. (2008). Optimal Domain and Integral Extension of Operators. doi:10.1007/978-3-7643-8648-1
Zhang, H., & Zhang, J. (2013). Vector-valued reproducing kernel Banach spaces with applications to multi-task learning. Journal of Complexity, 29(2), 195-215. doi:10.1016/j.jco.2012.09.002
[-]