- -

Unravelling the crystal structure of Nd5.8WO12-delta and Nd5.7W0.75Mo0.25O12-delta mixed ionic electronic conductors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unravelling the crystal structure of Nd5.8WO12-delta and Nd5.7W0.75Mo0.25O12-delta mixed ionic electronic conductors

Mostrar el registro completo del ítem

Scherb, T.; Fantin, A.; Checchia, S.; Stephan- Scherb, C.; Escolástico Rozalén, S.; Franz, A.; Seeger, J.... (2020). Unravelling the crystal structure of Nd5.8WO12-delta and Nd5.7W0.75Mo0.25O12-delta mixed ionic electronic conductors. Journal of Applied Crystallography. 53(6):1471-1483. https://doi.org/10.1107/S1600576720012698

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165762

Ficheros en el ítem

Metadatos del ítem

Título: Unravelling the crystal structure of Nd5.8WO12-delta and Nd5.7W0.75Mo0.25O12-delta mixed ionic electronic conductors
Autor: Scherb, Tobias Fantin, A. Checchia, S. Stephan- Scherb, C. Escolástico Rozalén, Sonia Franz, Alexandra Seeger, Janka Meulenberg, Wilhelm A. d Acapito, Francesco Serra Alfaro, José Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Mixed ionic electronic conducting ceramics Nd6-yWO12-d (d is the oxygen deficiency) provide excellent stability in harsh environments containing strongly reactive gases such as CO2, CO, H2, H2O or H2S. Due to this ...[+]
Palabras clave: Powder diffraction , Mixed conductors , X-ray absorption spectroscopy (XAS) , Nd6-yWO12-delta
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of Applied Crystallography. (issn: 0021-8898 )
DOI: 10.1107/S1600576720012698
Editorial:
International Union of Crystallography
Versión del editor: https://doi.org/10.1107/S1600576720012698
Agradecimientos:
The Paul Scherrer Institute (PSI), the European Synchrotron Radiation Facility (ESRF) and the Helmholtz-Zentrum Berlin (HZB) are acknowledged for the allocation of beamtime, and the responsible beamline scientists are ...[+]
Tipo: Artículo

References

D’ Acapito, F., Lepore, G. O., Puri, A., Laloni, A., La Manna, F., Dettona, E., … Martin, A. (2019). The LISA beamline at ESRF. Journal of Synchrotron Radiation, 26(2), 551-558. doi:10.1107/s160057751801843x

Asakura, H., Shishido, T., Fuchi, S., Teramura, K., & Tanaka, T. (2014). Local Structure of Pr, Nd, and Sm Complex Oxides and Their X-ray Absorption Near Edge Structure Spectra. The Journal of Physical Chemistry C, 118(36), 20881-20888. doi:10.1021/jp504507c

Bruker (2008). Diffracplus Evaluation Package EVA 14. Release 15 July 2008. Bruker AXS GmbH, Karlsruhe, Germany. [+]
D’ Acapito, F., Lepore, G. O., Puri, A., Laloni, A., La Manna, F., Dettona, E., … Martin, A. (2019). The LISA beamline at ESRF. Journal of Synchrotron Radiation, 26(2), 551-558. doi:10.1107/s160057751801843x

Asakura, H., Shishido, T., Fuchi, S., Teramura, K., & Tanaka, T. (2014). Local Structure of Pr, Nd, and Sm Complex Oxides and Their X-ray Absorption Near Edge Structure Spectra. The Journal of Physical Chemistry C, 118(36), 20881-20888. doi:10.1021/jp504507c

Bruker (2008). Diffracplus Evaluation Package EVA 14. Release 15 July 2008. Bruker AXS GmbH, Karlsruhe, Germany.

Coelho, A. A. (2018). TOPASandTOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. Journal of Applied Crystallography, 51(1), 210-218. doi:10.1107/s1600576718000183

Choi, S., Davenport, T. C., & Haile, S. M. (2019). Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency. Energy & Environmental Science, 12(1), 206-215. doi:10.1039/c8ee02865f

Choi, S., Kucharczyk, C. J., Liang, Y., Zhang, X., Takeuchi, I., Ji, H.-I., & Haile, S. M. (2018). Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nature Energy, 3(3), 202-210. doi:10.1038/s41560-017-0085-9

Cromer, D. T., & Liberman, D. A. (1981). Anomalous dispersion calculations near to and on the long-wavelength side of an absorption edge. Acta Crystallographica Section A, 37(2), 267-268. doi:10.1107/s0567739481000600

Deibert, W., Ivanova, M. E., Baumann, S., Guillon, O., & Meulenberg, W. A. (2017). Ion-conducting ceramic membrane reactors for high-temperature applications. Journal of Membrane Science, 543, 79-97. doi:10.1016/j.memsci.2017.08.016

Erdal, S., Kalland, L.-E., Hancke, R., Polfus, J., Haugsrud, R., Norby, T., & Magrasó, A. (2012). Defect structure and its nomenclature for mixed conducting lanthanum tungstates La28–xW4+xO54+3x/2. International Journal of Hydrogen Energy, 37(9), 8051-8055. doi:10.1016/j.ijhydene.2011.11.093

Escolástico, S., Schroeder, M., & Serra, J. M. (2014). Optimization of the mixed protonic–electronic conducting materials based on (Nd5/6Ln1/6)5.5WO11.25−δ. Journal of Materials Chemistry A, 2(18), 6616. doi:10.1039/c3ta14324d

Escolastico, S., Seeger, J., Roitsch, S., Ivanova, M., Meulenberg, W. A., & Serra, J. M. (2013). Enhanced H2Separation through Mixed Proton-Electron Conducting Membranes Based on La5.5W0.8M0.2O11.25−δ. ChemSusChem, 6(8), 1523-1532. doi:10.1002/cssc.201300091

Escolástico, S., & Serra, J. M. (2015). Nd 5.5 W 1−x U x O 11.25−δ system: Electrochemical characterization and hydrogen permeation study. Journal of Membrane Science, 489, 112-118. doi:10.1016/j.memsci.2015.04.017

Escolástico, S., Solís, C., Haugsrud, R., Magrasó, A., & Serra, J. M. (2017). On the ionic character of H 2 separation through mixed conducting Nd 5.5 W 0.5 Mo 0.5 O 11.25−δ membrane. International Journal of Hydrogen Energy, 42(16), 11392-11399. doi:10.1016/j.ijhydene.2017.02.087

Escolástico, S., Solís, C., & Serra, J. M. (2011). Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12. International Journal of Hydrogen Energy, 36(18), 11946-11954. doi:10.1016/j.ijhydene.2011.06.026

Escolástico, S., Somacescu, S., & Serra, J. M. (2013). Solid State Transport and Hydrogen Permeation in the System Nd5.5W1–xRexO11.25−δ. Chemistry of Materials, 26(2), 982-992. doi:10.1021/cm402821w

Escolástico, S., Somacescu, S., & Serra, J. M. (2015). Tailoring mixed ionic–electronic conduction in H2 permeable membranes based on the system Nd5.5W1−xMoxO11.25−δ. Journal of Materials Chemistry A, 3(2), 719-731. doi:10.1039/c4ta03699a

Escolástico, S., Stournari, V., Malzbender, J., Haas-Santo, K., Dittmeyer, R., & Serra, J. M. (2018). Chemical stability in H2S and creep characterization of the mixed protonic conductor Nd5.5WO11.25-δ. International Journal of Hydrogen Energy, 43(17), 8342-8354. doi:10.1016/j.ijhydene.2018.03.060

Escolástico, S., Vert, V. B., & Serra, J. M. (2009). Preparation and Characterization of Nanocrystalline Mixed Proton−Electronic Conducting Materials Based on the System Ln6WO12. Chemistry of Materials, 21(14), 3079-3089. doi:10.1021/cm900067k

Evans, J. S. O. (2010). Advanced Input Files & Parametric Quantitative Analysis Using Topas. Materials Science Forum, 651, 1-9. doi:10.4028/www.scientific.net/msf.651.1

Fantin, A., Scherb, T., Seeger, J., Schumacher, G., Gerhards, U., Ivanova, M. E., … Banhart, J. (2016). Crystal structure of Re-substituted lanthanum tungstate La5.4W1−y Re y O12–δ (0 ≤ y ≤ 0.2) studied by neutron diffraction. Journal of Applied Crystallography, 49(5), 1544-1560. doi:10.1107/s1600576716011523

Fantin, A., Scherb, T., Seeger, J., Schumacher, G., Gerhards, U., Ivanova, M. E., … Banhart, J. (2017). Relation between composition and vacant oxygen sites in the mixed ionic-electronic conductors La5.4W1−MO12− (M= Mo, Re; 0 ≤y≤ 0.2) and their mother compound La6−WO12− (0.4 ≤x≤ 0.8). Solid State Ionics, 306, 104-111. doi:10.1016/j.ssi.2017.04.005

Fantin, A., Scherb, T., Seeger, J., Schumacher, G., Gerhards, U., Ivanova, M. E., … Banhart, J. (2019). Crystal structure of Mo-substituted lanthanum tungstate La5.4W1−y Mo y O12−δ (0 ≤ y ≤ 0.2) studied by X-ray and neutron diffraction. Journal of Applied Crystallography, 52(5), 1043-1053. doi:10.1107/s1600576719009385

Fitch, A. N. (2004). The high resolution powder diffraction beam line at ESRF. Journal of Research of the National Institute of Standards and Technology, 109(1), 133. doi:10.6028/jres.109.010

Franz, A., & Hoser, A. (2017). E9: The Fine Resolution Powder Diffractometer (FIREPOD) at BER II. Journal of large-scale research facilities JLSRF, 3. doi:10.17815/jlsrf-3-127

Gozzo, F., Cervellino, A., Leoni, M., Scardi, P., Bergamaschi, A., & Schmitt, B. (2010). Instrumental profile of MYTHEN detector in Debye-Scherrer geometry. Zeitschrift für Kristallographie, 225(12), 616-624. doi:10.1524/zkri.2010.1345

HAUGSRUD, R. (2007). Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics, 178(7-10), 555-560. doi:10.1016/j.ssi.2007.01.004

Henderson, G. S., de Groot, F. M. F., & Moulton, B. J. A. (2014). X-ray Absorption Near-Edge Structure (XANES) Spectroscopy. Reviews in Mineralogy and Geochemistry, 78(1), 75-138. doi:10.2138/rmg.2014.78.3

Jordal, K., Bredesen, R., Kvamsdal, H. M., & Bolland, O. (2004). Integration of H2-separating membrane technology in gas turbine processes for CO2 capture. Energy, 29(9-10), 1269-1278. doi:10.1016/j.energy.2004.03.086

Kalland, L.-E., Magrasó, A., Mancini, A., Tealdi, C., & Malavasi, L. (2013). Local Structure of Proton-Conducting Lanthanum Tungstate La28–xW4+xO54+δ: a Combined Density Functional Theory and Pair Distribution Function Study. Chemistry of Materials, 25(11), 2378-2384. doi:10.1021/cm401466r

Katahira, K., Kohchi, Y., Shimura, T., & Iwahara, H. (2000). Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics, 138(1-2), 91-98. doi:10.1016/s0167-2738(00)00777-3

Kyriakou, V., Garagounis, I., Vourros, A., Vasileiou, E., & Stoukides, M. (2020). An Electrochemical Haber-Bosch Process. Joule, 4(1), 142-158. doi:10.1016/j.joule.2019.10.006

Le Bail, A., Duroy, H., & Fourquet, J. L. (1988). Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23(3), 447-452. doi:10.1016/0025-5408(88)90019-0

Lee, P. A., Citrin, P. H., Eisenberger, P., & Kincaid, B. M. (1981). Extended x-ray absorption fine structure—its strengths and limitations as a structural tool. Reviews of Modern Physics, 53(4), 769-806. doi:10.1103/revmodphys.53.769

Li, Z., Kjølseth, C., & Haugsrud, R. (2015). Hydrogen permeation, water splitting and hydration kinetics in Nd5.4Mo0.3W0.7O12−δ. Journal of Membrane Science, 476, 105-111. doi:10.1016/j.memsci.2014.11.013

López-Vergara, A., Porras-Vázquez, J. M., Vøllestad, E., Canales-Vazquez, J., Losilla, E. R., & Marrero-López, D. (2018). Metal-Doping of La5.4MoO11.1 Proton Conductors: Impact on the Structure and Electrical Properties. Inorganic Chemistry, 57(20), 12811-12819. doi:10.1021/acs.inorgchem.8b02010

Magrasó, A., & Frontera, C. (2016). Comparison of the local and the average crystal structure of proton conducting lanthanum tungstate and the influence of molybdenum substitution. Dalton Transactions, 45(9), 3791-3797. doi:10.1039/c5dt04659a

Magrasó, A., Frontera, C., Marrero-López, D., & Núñez, P. (2009). New crystal structure and characterization of lanthanum tungstate «La6WO12» prepared by freeze-drying synthesis. Dalton Transactions, (46), 10273. doi:10.1039/b916981b

Magrasó, A., & Haugsrud, R. (2014). Effects of the La/W ratio and doping on the structure, defect structure, stability and functional properties of proton-conducting lanthanum tungstate La28−xW4+xO54+δ. A review. J. Mater. Chem. A, 2(32), 12630-12641. doi:10.1039/c4ta00546e

Magrasó, A., Polfus, J. M., Frontera, C., Canales-Vázquez, J., Kalland, L.-E., Hervoches, C. H., … Haugsrud, R. (2012). Complete structural model for lanthanum tungstate: a chemically stable high temperature proton conductor by means of intrinsic defects. J. Mater. Chem., 22(5), 1762-1764. doi:10.1039/c2jm14981h

Malerød-Fjeld, H., Clark, D., Yuste-Tirados, I., Zanón, R., Catalán-Martinez, D., Beeaff, D., … Kjølseth, C. (2017). Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nature Energy, 2(12), 923-931. doi:10.1038/s41560-017-0029-4

Marnellos, G., & Stoukides, M. (1998). Ammonia Synthesis at Atmospheric Pressure. Science, 282(5386), 98-100. doi:10.1126/science.282.5386.98

McCarthy, G. J., Fischer, R. D., Johnson, G. G. Jr & Gooden, C. E. (1972). Solid State Chemistry, National Bureau of Standards Special Publication No. 364, edited by R. S. Roth & S. J. Schneider Jr, pp. 397-411. Washington, DC: Institute for Materials Research.

Morejudo, S. H., Zanón, R., Escolástico, S., Yuste-Tirados, I., Malerød-Fjeld, H., Vestre, P. K., … Kjølseth, C. (2016). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 353(6299), 563-566. doi:10.1126/science.aag0274

Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719

Ricote, S., Bonanos, N., Marco de Lucas, M. C., & Caboche, G. (2009). Structural and conductivity study of the proton conductor BaCe(0.9−x)ZrxY0.1O(3−δ) at intermediate temperatures. Journal of Power Sources, 193(1), 189-193. doi:10.1016/j.jpowsour.2008.11.080

Ricote, S., Bonanos, N., Wang, H. J., & Haugsrud, R. (2011). Conductivity, transport number measurements and hydration thermodynamics of BaCe0.2Zr0.7Y(0.1−ξ)NiξO(3−δ). Solid State Ionics, 185(1), 11-17. doi:10.1016/j.ssi.2010.12.012

Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65-71. doi:10.1107/s0021889869006558

Ruf, M., Solís, C., Escolástico, S., Dittmeyer, R., & Serra, J. M. (2014). Transport properties and oxidation and hydration kinetics of the proton conductor Mo doped Nd5.5WO11.25−δ. J. Mater. Chem. A, 2(43), 18539-18546. doi:10.1039/c4ta03248a

Schelling, P. K., Phillpot, S. R., & Wolf, D. (2004). Mechanism of the Cubic-to-Tetragonal Phase Transition in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation. Journal of the American Ceramic Society, 84(7), 1609-1619. doi:10.1111/j.1151-2916.2001.tb00885.x

Scherb, T. (2011). PhD thesis, Technische Universität Berlin, Germany.

Scherb, T., Kimber, S. A. J., Stephan, C., Henry, P. F., Schumacher, G., Escolástico, S., … Banhart, J. (2016). Nanoscale order in the frustrated mixed conductor La5.6WO12−δ. Journal of Applied Crystallography, 49(3), 997-1008. doi:10.1107/s1600576716006415

Seeger, J., Ivanova, M. E., Meulenberg, W. A., Sebold, D., Stöver, D., Scherb, T., … Serra, J. M. (2013). Synthesis and Characterization of Nonsubstituted and Substituted Proton-Conducting La6–xWO12–y. Inorganic Chemistry, 52(18), 10375-10386. doi:10.1021/ic401104m

Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767. doi:10.1107/s0567739476001551

Teo, B.-K., & Lee, P. A. (1979). Ab initio calculations of amplitude and phase functions for extended x-ray absorption fine structure spectroscopy. Journal of the American Chemical Society, 101(11), 2815-2832. doi:10.1021/ja00505a003

Toby, B. H. (2006). R factors in Rietveld analysis: How good is good enough? Powder Diffraction, 21(1), 67-70. doi:10.1154/1.2179804

Toby, B. H., & Von Dreele, R. B. (2013). GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 46(2), 544-549. doi:10.1107/s0021889813003531

Vøllestad, E., Strandbakke, R., Tarach, M., Catalán-Martínez, D., Fontaine, M.-L., Beeaff, D., … Norby, T. (2019). Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nature Materials, 18(7), 752-759. doi:10.1038/s41563-019-0388-2

Vøllestad, E., Vigen, C. K., Magrasó, A., & Haugsrud, R. (2014). Hydrogen permeation characteristics of La27Mo1.5W3.5O55.5. Journal of Membrane Science, 461, 81-88. doi:10.1016/j.memsci.2014.03.011

Willmott, P. R., Meister, D., Leake, S. J., Lange, M., Bergamaschi, A., Böge, M., … Wullschleger, R. (2013). The Materials Science beamline upgrade at the Swiss Light Source. Journal of Synchrotron Radiation, 20(5), 667-682. doi:10.1107/s0909049513018475

Yamazoe, S., Hitomi, Y., Shishido, T., & Tanaka, T. (2008). XAFS Study of Tungsten L1- and L3-Edges:  Structural Analysis of WO3 Species Loaded on TiO2 as a Catalyst for Photo-oxidation of NH3. The Journal of Physical Chemistry C, 112(17), 6869-6879. doi:10.1021/jp711250f

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem