- -

Unravelling the crystal structure of Nd5.8WO12-delta and Nd5.7W0.75Mo0.25O12-delta mixed ionic electronic conductors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unravelling the crystal structure of Nd5.8WO12-delta and Nd5.7W0.75Mo0.25O12-delta mixed ionic electronic conductors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Scherb, Tobias es_ES
dc.contributor.author Fantin, A. es_ES
dc.contributor.author Checchia, S. es_ES
dc.contributor.author Stephan- Scherb, C. es_ES
dc.contributor.author Escolástico Rozalén, Sonia es_ES
dc.contributor.author Franz, Alexandra es_ES
dc.contributor.author Seeger, Janka es_ES
dc.contributor.author Meulenberg, Wilhelm A. es_ES
dc.contributor.author d Acapito, Francesco es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2021-04-29T03:31:53Z
dc.date.available 2021-04-29T03:31:53Z
dc.date.issued 2020-12-01 es_ES
dc.identifier.issn 0021-8898 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165762
dc.description.abstract [EN] Mixed ionic electronic conducting ceramics Nd6-yWO12-d (d is the oxygen deficiency) provide excellent stability in harsh environments containing strongly reactive gases such as CO2, CO, H2, H2O or H2S. Due to this chemical stability, they are promising and cost-efficient candidate materials for gas separation,catalytic membrane reactors and protonic ceramic fuel cell technologies. As in La6-yWO12-d, the ionic/electronic transport mechanism in Nd6-yWO12-d is expected to be largely controlled by the crystal structure, the conclusive determination of which is still lacking. This work presents a crystallographic study of Nd5.8WO12-d and molybdenum-substituted Nd5.7W0.75Mo0.25O12-d prepared by the citrate complexation route. High-resolution synchrotron and neutron powder diffraction data were used in combined Rietveld refinements to unravel the crystal structure of Nd5.8WO12-d and Nd5.7W0.75Mo0.25O12-d. Both investigated samples crystallize in a defect fluorite crystal structure with space group Fm3m and doubled unit-cell parameter due to cation ordering. Mo replaces W at both Wyckoff sites 4a and 48h and is evenly distributed, in contrast with La6-yWO12-d. X-ray absorption spectroscopy as a function of partial pressure pO2 in the near-edge regions excludes oxidation state changes of Nd (Nd3+) and W(W6+) in reducing conditions: the enhanced hydrogen permeation, i.e. ambipolar conduction, observed in Mo-substituted Nd6-yWO12-d is therefore explained by the higher Mo reducibility and the creation of additional disordered ¿ oxygen vacancies. es_ES
dc.description.sponsorship The Paul Scherrer Institute (PSI), the European Synchrotron Radiation Facility (ESRF) and the Helmholtz-Zentrum Berlin (HZB) are acknowledged for the allocation of beamtime, and the responsible beamline scientists are thanked for their support during the experiments. Christiane Forster and Claudia Leistner are thanked for EPMA sample preparation and for support in performing heat treatments, TG and XRD measurements. Open access funding enabled and organized by Projekt DEAL. es_ES
dc.language Inglés es_ES
dc.publisher International Union of Crystallography es_ES
dc.relation.ispartof Journal of Applied Crystallography es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Powder diffraction es_ES
dc.subject Mixed conductors es_ES
dc.subject X-ray absorption spectroscopy (XAS) es_ES
dc.subject Nd6-yWO12-delta es_ES
dc.title Unravelling the crystal structure of Nd5.8WO12-delta and Nd5.7W0.75Mo0.25O12-delta mixed ionic electronic conductors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1107/S1600576720012698 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Scherb, T.; Fantin, A.; Checchia, S.; Stephan- Scherb, C.; Escolástico Rozalén, S.; Franz, A.; Seeger, J.... (2020). Unravelling the crystal structure of Nd5.8WO12-delta and Nd5.7W0.75Mo0.25O12-delta mixed ionic electronic conductors. Journal of Applied Crystallography. 53(6):1471-1483. https://doi.org/10.1107/S1600576720012698 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1107/S1600576720012698 es_ES
dc.description.upvformatpinicio 1471 es_ES
dc.description.upvformatpfin 1483 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 33304224 es_ES
dc.identifier.pmcid PMC7710492 es_ES
dc.relation.pasarela S\430618 es_ES
dc.contributor.funder Projekt DEAL es_ES
dc.description.references D’ Acapito, F., Lepore, G. O., Puri, A., Laloni, A., La Manna, F., Dettona, E., … Martin, A. (2019). The LISA beamline at ESRF. Journal of Synchrotron Radiation, 26(2), 551-558. doi:10.1107/s160057751801843x es_ES
dc.description.references Asakura, H., Shishido, T., Fuchi, S., Teramura, K., & Tanaka, T. (2014). Local Structure of Pr, Nd, and Sm Complex Oxides and Their X-ray Absorption Near Edge Structure Spectra. The Journal of Physical Chemistry C, 118(36), 20881-20888. doi:10.1021/jp504507c es_ES
dc.description.references Bruker (2008). Diffracplus Evaluation Package EVA 14. Release 15 July 2008. Bruker AXS GmbH, Karlsruhe, Germany. es_ES
dc.description.references Coelho, A. A. (2018). TOPASandTOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. Journal of Applied Crystallography, 51(1), 210-218. doi:10.1107/s1600576718000183 es_ES
dc.description.references Choi, S., Davenport, T. C., & Haile, S. M. (2019). Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency. Energy & Environmental Science, 12(1), 206-215. doi:10.1039/c8ee02865f es_ES
dc.description.references Choi, S., Kucharczyk, C. J., Liang, Y., Zhang, X., Takeuchi, I., Ji, H.-I., & Haile, S. M. (2018). Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nature Energy, 3(3), 202-210. doi:10.1038/s41560-017-0085-9 es_ES
dc.description.references Cromer, D. T., & Liberman, D. A. (1981). Anomalous dispersion calculations near to and on the long-wavelength side of an absorption edge. Acta Crystallographica Section A, 37(2), 267-268. doi:10.1107/s0567739481000600 es_ES
dc.description.references Deibert, W., Ivanova, M. E., Baumann, S., Guillon, O., & Meulenberg, W. A. (2017). Ion-conducting ceramic membrane reactors for high-temperature applications. Journal of Membrane Science, 543, 79-97. doi:10.1016/j.memsci.2017.08.016 es_ES
dc.description.references Erdal, S., Kalland, L.-E., Hancke, R., Polfus, J., Haugsrud, R., Norby, T., & Magrasó, A. (2012). Defect structure and its nomenclature for mixed conducting lanthanum tungstates La28–xW4+xO54+3x/2. International Journal of Hydrogen Energy, 37(9), 8051-8055. doi:10.1016/j.ijhydene.2011.11.093 es_ES
dc.description.references Escolástico, S., Schroeder, M., & Serra, J. M. (2014). Optimization of the mixed protonic–electronic conducting materials based on (Nd5/6Ln1/6)5.5WO11.25−δ. Journal of Materials Chemistry A, 2(18), 6616. doi:10.1039/c3ta14324d es_ES
dc.description.references Escolastico, S., Seeger, J., Roitsch, S., Ivanova, M., Meulenberg, W. A., & Serra, J. M. (2013). Enhanced H2Separation through Mixed Proton-Electron Conducting Membranes Based on La5.5W0.8M0.2O11.25−δ. ChemSusChem, 6(8), 1523-1532. doi:10.1002/cssc.201300091 es_ES
dc.description.references Escolástico, S., & Serra, J. M. (2015). Nd 5.5 W 1−x U x O 11.25−δ system: Electrochemical characterization and hydrogen permeation study. Journal of Membrane Science, 489, 112-118. doi:10.1016/j.memsci.2015.04.017 es_ES
dc.description.references Escolástico, S., Solís, C., Haugsrud, R., Magrasó, A., & Serra, J. M. (2017). On the ionic character of H 2 separation through mixed conducting Nd 5.5 W 0.5 Mo 0.5 O 11.25−δ membrane. International Journal of Hydrogen Energy, 42(16), 11392-11399. doi:10.1016/j.ijhydene.2017.02.087 es_ES
dc.description.references Escolástico, S., Solís, C., & Serra, J. M. (2011). Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12. International Journal of Hydrogen Energy, 36(18), 11946-11954. doi:10.1016/j.ijhydene.2011.06.026 es_ES
dc.description.references Escolástico, S., Somacescu, S., & Serra, J. M. (2013). Solid State Transport and Hydrogen Permeation in the System Nd5.5W1–xRexO11.25−δ. Chemistry of Materials, 26(2), 982-992. doi:10.1021/cm402821w es_ES
dc.description.references Escolástico, S., Somacescu, S., & Serra, J. M. (2015). Tailoring mixed ionic–electronic conduction in H2 permeable membranes based on the system Nd5.5W1−xMoxO11.25−δ. Journal of Materials Chemistry A, 3(2), 719-731. doi:10.1039/c4ta03699a es_ES
dc.description.references Escolástico, S., Stournari, V., Malzbender, J., Haas-Santo, K., Dittmeyer, R., & Serra, J. M. (2018). Chemical stability in H2S and creep characterization of the mixed protonic conductor Nd5.5WO11.25-δ. International Journal of Hydrogen Energy, 43(17), 8342-8354. doi:10.1016/j.ijhydene.2018.03.060 es_ES
dc.description.references Escolástico, S., Vert, V. B., & Serra, J. M. (2009). Preparation and Characterization of Nanocrystalline Mixed Proton−Electronic Conducting Materials Based on the System Ln6WO12. Chemistry of Materials, 21(14), 3079-3089. doi:10.1021/cm900067k es_ES
dc.description.references Evans, J. S. O. (2010). Advanced Input Files & Parametric Quantitative Analysis Using Topas. Materials Science Forum, 651, 1-9. doi:10.4028/www.scientific.net/msf.651.1 es_ES
dc.description.references Fantin, A., Scherb, T., Seeger, J., Schumacher, G., Gerhards, U., Ivanova, M. E., … Banhart, J. (2016). Crystal structure of Re-substituted lanthanum tungstate La5.4W1−y Re y O12–δ (0 ≤ y ≤ 0.2) studied by neutron diffraction. Journal of Applied Crystallography, 49(5), 1544-1560. doi:10.1107/s1600576716011523 es_ES
dc.description.references Fantin, A., Scherb, T., Seeger, J., Schumacher, G., Gerhards, U., Ivanova, M. E., … Banhart, J. (2017). Relation between composition and vacant oxygen sites in the mixed ionic-electronic conductors La5.4W1−MO12− (M= Mo, Re; 0 ≤y≤ 0.2) and their mother compound La6−WO12− (0.4 ≤x≤ 0.8). Solid State Ionics, 306, 104-111. doi:10.1016/j.ssi.2017.04.005 es_ES
dc.description.references Fantin, A., Scherb, T., Seeger, J., Schumacher, G., Gerhards, U., Ivanova, M. E., … Banhart, J. (2019). Crystal structure of Mo-substituted lanthanum tungstate La5.4W1−y Mo y O12−δ (0 ≤ y ≤ 0.2) studied by X-ray and neutron diffraction. Journal of Applied Crystallography, 52(5), 1043-1053. doi:10.1107/s1600576719009385 es_ES
dc.description.references Fitch, A. N. (2004). The high resolution powder diffraction beam line at ESRF. Journal of Research of the National Institute of Standards and Technology, 109(1), 133. doi:10.6028/jres.109.010 es_ES
dc.description.references Franz, A., & Hoser, A. (2017). E9: The Fine Resolution Powder Diffractometer (FIREPOD) at BER II. Journal of large-scale research facilities JLSRF, 3. doi:10.17815/jlsrf-3-127 es_ES
dc.description.references Gozzo, F., Cervellino, A., Leoni, M., Scardi, P., Bergamaschi, A., & Schmitt, B. (2010). Instrumental profile of MYTHEN detector in Debye-Scherrer geometry. Zeitschrift für Kristallographie, 225(12), 616-624. doi:10.1524/zkri.2010.1345 es_ES
dc.description.references HAUGSRUD, R. (2007). Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics, 178(7-10), 555-560. doi:10.1016/j.ssi.2007.01.004 es_ES
dc.description.references Henderson, G. S., de Groot, F. M. F., & Moulton, B. J. A. (2014). X-ray Absorption Near-Edge Structure (XANES) Spectroscopy. Reviews in Mineralogy and Geochemistry, 78(1), 75-138. doi:10.2138/rmg.2014.78.3 es_ES
dc.description.references Jordal, K., Bredesen, R., Kvamsdal, H. M., & Bolland, O. (2004). Integration of H2-separating membrane technology in gas turbine processes for CO2 capture. Energy, 29(9-10), 1269-1278. doi:10.1016/j.energy.2004.03.086 es_ES
dc.description.references Kalland, L.-E., Magrasó, A., Mancini, A., Tealdi, C., & Malavasi, L. (2013). Local Structure of Proton-Conducting Lanthanum Tungstate La28–xW4+xO54+δ: a Combined Density Functional Theory and Pair Distribution Function Study. Chemistry of Materials, 25(11), 2378-2384. doi:10.1021/cm401466r es_ES
dc.description.references Katahira, K., Kohchi, Y., Shimura, T., & Iwahara, H. (2000). Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics, 138(1-2), 91-98. doi:10.1016/s0167-2738(00)00777-3 es_ES
dc.description.references Kyriakou, V., Garagounis, I., Vourros, A., Vasileiou, E., & Stoukides, M. (2020). An Electrochemical Haber-Bosch Process. Joule, 4(1), 142-158. doi:10.1016/j.joule.2019.10.006 es_ES
dc.description.references Le Bail, A., Duroy, H., & Fourquet, J. L. (1988). Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23(3), 447-452. doi:10.1016/0025-5408(88)90019-0 es_ES
dc.description.references Lee, P. A., Citrin, P. H., Eisenberger, P., & Kincaid, B. M. (1981). Extended x-ray absorption fine structure—its strengths and limitations as a structural tool. Reviews of Modern Physics, 53(4), 769-806. doi:10.1103/revmodphys.53.769 es_ES
dc.description.references Li, Z., Kjølseth, C., & Haugsrud, R. (2015). Hydrogen permeation, water splitting and hydration kinetics in Nd5.4Mo0.3W0.7O12−δ. Journal of Membrane Science, 476, 105-111. doi:10.1016/j.memsci.2014.11.013 es_ES
dc.description.references López-Vergara, A., Porras-Vázquez, J. M., Vøllestad, E., Canales-Vazquez, J., Losilla, E. R., & Marrero-López, D. (2018). Metal-Doping of La5.4MoO11.1 Proton Conductors: Impact on the Structure and Electrical Properties. Inorganic Chemistry, 57(20), 12811-12819. doi:10.1021/acs.inorgchem.8b02010 es_ES
dc.description.references Magrasó, A., & Frontera, C. (2016). Comparison of the local and the average crystal structure of proton conducting lanthanum tungstate and the influence of molybdenum substitution. Dalton Transactions, 45(9), 3791-3797. doi:10.1039/c5dt04659a es_ES
dc.description.references Magrasó, A., Frontera, C., Marrero-López, D., & Núñez, P. (2009). New crystal structure and characterization of lanthanum tungstate «La6WO12» prepared by freeze-drying synthesis. Dalton Transactions, (46), 10273. doi:10.1039/b916981b es_ES
dc.description.references Magrasó, A., & Haugsrud, R. (2014). Effects of the La/W ratio and doping on the structure, defect structure, stability and functional properties of proton-conducting lanthanum tungstate La28−xW4+xO54+δ. A review. J. Mater. Chem. A, 2(32), 12630-12641. doi:10.1039/c4ta00546e es_ES
dc.description.references Magrasó, A., Polfus, J. M., Frontera, C., Canales-Vázquez, J., Kalland, L.-E., Hervoches, C. H., … Haugsrud, R. (2012). Complete structural model for lanthanum tungstate: a chemically stable high temperature proton conductor by means of intrinsic defects. J. Mater. Chem., 22(5), 1762-1764. doi:10.1039/c2jm14981h es_ES
dc.description.references Malerød-Fjeld, H., Clark, D., Yuste-Tirados, I., Zanón, R., Catalán-Martinez, D., Beeaff, D., … Kjølseth, C. (2017). Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nature Energy, 2(12), 923-931. doi:10.1038/s41560-017-0029-4 es_ES
dc.description.references Marnellos, G., & Stoukides, M. (1998). Ammonia Synthesis at Atmospheric Pressure. Science, 282(5386), 98-100. doi:10.1126/science.282.5386.98 es_ES
dc.description.references McCarthy, G. J., Fischer, R. D., Johnson, G. G. Jr & Gooden, C. E. (1972). Solid State Chemistry, National Bureau of Standards Special Publication No. 364, edited by R. S. Roth & S. J. Schneider Jr, pp. 397-411. Washington, DC: Institute for Materials Research. es_ES
dc.description.references Morejudo, S. H., Zanón, R., Escolástico, S., Yuste-Tirados, I., Malerød-Fjeld, H., Vestre, P. K., … Kjølseth, C. (2016). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 353(6299), 563-566. doi:10.1126/science.aag0274 es_ES
dc.description.references Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719 es_ES
dc.description.references Ricote, S., Bonanos, N., Marco de Lucas, M. C., & Caboche, G. (2009). Structural and conductivity study of the proton conductor BaCe(0.9−x)ZrxY0.1O(3−δ) at intermediate temperatures. Journal of Power Sources, 193(1), 189-193. doi:10.1016/j.jpowsour.2008.11.080 es_ES
dc.description.references Ricote, S., Bonanos, N., Wang, H. J., & Haugsrud, R. (2011). Conductivity, transport number measurements and hydration thermodynamics of BaCe0.2Zr0.7Y(0.1−ξ)NiξO(3−δ). Solid State Ionics, 185(1), 11-17. doi:10.1016/j.ssi.2010.12.012 es_ES
dc.description.references Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65-71. doi:10.1107/s0021889869006558 es_ES
dc.description.references Ruf, M., Solís, C., Escolástico, S., Dittmeyer, R., & Serra, J. M. (2014). Transport properties and oxidation and hydration kinetics of the proton conductor Mo doped Nd5.5WO11.25−δ. J. Mater. Chem. A, 2(43), 18539-18546. doi:10.1039/c4ta03248a es_ES
dc.description.references Schelling, P. K., Phillpot, S. R., & Wolf, D. (2004). Mechanism of the Cubic-to-Tetragonal Phase Transition in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation. Journal of the American Ceramic Society, 84(7), 1609-1619. doi:10.1111/j.1151-2916.2001.tb00885.x es_ES
dc.description.references Scherb, T. (2011). PhD thesis, Technische Universität Berlin, Germany. es_ES
dc.description.references Scherb, T., Kimber, S. A. J., Stephan, C., Henry, P. F., Schumacher, G., Escolástico, S., … Banhart, J. (2016). Nanoscale order in the frustrated mixed conductor La5.6WO12−δ. Journal of Applied Crystallography, 49(3), 997-1008. doi:10.1107/s1600576716006415 es_ES
dc.description.references Seeger, J., Ivanova, M. E., Meulenberg, W. A., Sebold, D., Stöver, D., Scherb, T., … Serra, J. M. (2013). Synthesis and Characterization of Nonsubstituted and Substituted Proton-Conducting La6–xWO12–y. Inorganic Chemistry, 52(18), 10375-10386. doi:10.1021/ic401104m es_ES
dc.description.references Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767. doi:10.1107/s0567739476001551 es_ES
dc.description.references Teo, B.-K., & Lee, P. A. (1979). Ab initio calculations of amplitude and phase functions for extended x-ray absorption fine structure spectroscopy. Journal of the American Chemical Society, 101(11), 2815-2832. doi:10.1021/ja00505a003 es_ES
dc.description.references Toby, B. H. (2006). R factors in Rietveld analysis: How good is good enough? Powder Diffraction, 21(1), 67-70. doi:10.1154/1.2179804 es_ES
dc.description.references Toby, B. H., & Von Dreele, R. B. (2013). GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 46(2), 544-549. doi:10.1107/s0021889813003531 es_ES
dc.description.references Vøllestad, E., Strandbakke, R., Tarach, M., Catalán-Martínez, D., Fontaine, M.-L., Beeaff, D., … Norby, T. (2019). Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nature Materials, 18(7), 752-759. doi:10.1038/s41563-019-0388-2 es_ES
dc.description.references Vøllestad, E., Vigen, C. K., Magrasó, A., & Haugsrud, R. (2014). Hydrogen permeation characteristics of La27Mo1.5W3.5O55.5. Journal of Membrane Science, 461, 81-88. doi:10.1016/j.memsci.2014.03.011 es_ES
dc.description.references Willmott, P. R., Meister, D., Leake, S. J., Lange, M., Bergamaschi, A., Böge, M., … Wullschleger, R. (2013). The Materials Science beamline upgrade at the Swiss Light Source. Journal of Synchrotron Radiation, 20(5), 667-682. doi:10.1107/s0909049513018475 es_ES
dc.description.references Yamazoe, S., Hitomi, Y., Shishido, T., & Tanaka, T. (2008). XAFS Study of Tungsten L1- and L3-Edges:  Structural Analysis of WO3 Species Loaded on TiO2 as a Catalyst for Photo-oxidation of NH3. The Journal of Physical Chemistry C, 112(17), 6869-6879. doi:10.1021/jp711250f es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem