- -

A new waterborne chitosan-based polyurethane hydrogel as a vehicle to transplant bone marrow mesenchymal cells improved wound healing of ulcers in a diabetic rat model

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A new waterborne chitosan-based polyurethane hydrogel as a vehicle to transplant bone marrow mesenchymal cells improved wound healing of ulcers in a diabetic rat model

Show full item record

Viezzer, C.; Mazzuca, R.; Machado, DC.; Forte, MMDC.; Gómez Ribelles, JL. (2020). A new waterborne chitosan-based polyurethane hydrogel as a vehicle to transplant bone marrow mesenchymal cells improved wound healing of ulcers in a diabetic rat model. Carbohydrate Polymers. 231:1-10. https://doi.org/10.1016/j.carbpol.2019.115734

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165763

Files in this item

Item Metadata

Title: A new waterborne chitosan-based polyurethane hydrogel as a vehicle to transplant bone marrow mesenchymal cells improved wound healing of ulcers in a diabetic rat model
Author: Viezzer, Christian Mazzuca, Rafael Machado, Denise Cantarelli Forte, María Magdalena de Camargo Gómez Ribelles, José Luís
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Abstract:
[EN] Foot ulcers, a common complication of diabetes, can cause physical incapacity and are derived from several factors, including poor wound healing. New therapeutic strategies are needed to minimize this complication for ...[+]
Subjects: Chitosan , Waterborne polyurethane , Wound healing , Stem cell therapy
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Carbohydrate Polymers. (issn: 0144-8617 )
DOI: 10.1016/j.carbpol.2019.115734
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.carbpol.2019.115734
Project ID:
info:eu-repo/grantAgreement/CAPES//BEX 1408%2F11-9/
info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/
Thanks:
This work was funded by: Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -doctoral fellowships to Viezzer, C (CAPES/PDSE-BEX: 1408/11-9) and the Spanish Ministry of Economy and Competitiveness (MINECO) through ...[+]
Type: Artículo

References

Ahmed, R., Tariq, M., Ali, I., Asghar, R., Noorunnisa Khanam, P., Augustine, R., & Hasan, A. (2018). Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. International Journal of Biological Macromolecules, 120, 385-393. doi:10.1016/j.ijbiomac.2018.08.057

Andrade, F., Goycoolea, F., Chiappetta, D. A., das Neves, J., Sosnik, A., & Sarmento, B. (2011). Chitosan-Grafted Copolymers and Chitosan-Ligand Conjugates as Matrices for Pulmonary Drug Delivery. International Journal of Carbohydrate Chemistry, 2011, 1-14. doi:10.1155/2011/865704

Baltzis, D., Eleftheriadou, I., & Veves, A. (2014). Pathogenesis and Treatment of Impaired Wound Healing in Diabetes Mellitus: New Insights. Advances in Therapy, 31(8), 817-836. doi:10.1007/s12325-014-0140-x [+]
Ahmed, R., Tariq, M., Ali, I., Asghar, R., Noorunnisa Khanam, P., Augustine, R., & Hasan, A. (2018). Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. International Journal of Biological Macromolecules, 120, 385-393. doi:10.1016/j.ijbiomac.2018.08.057

Andrade, F., Goycoolea, F., Chiappetta, D. A., das Neves, J., Sosnik, A., & Sarmento, B. (2011). Chitosan-Grafted Copolymers and Chitosan-Ligand Conjugates as Matrices for Pulmonary Drug Delivery. International Journal of Carbohydrate Chemistry, 2011, 1-14. doi:10.1155/2011/865704

Baltzis, D., Eleftheriadou, I., & Veves, A. (2014). Pathogenesis and Treatment of Impaired Wound Healing in Diabetes Mellitus: New Insights. Advances in Therapy, 31(8), 817-836. doi:10.1007/s12325-014-0140-x

Barikani, M., Honarkar, H., & Barikani, M. (2010). Synthesis and characterization of chitosan-based polyurethane elastomer dispersions. Monatshefte für Chemie - Chemical Monthly, 141(6), 653-659. doi:10.1007/s00706-010-0309-1

Boulton, A. J. M. (2013). The Pathway to Foot Ulceration in Diabetes. Medical Clinics of North America, 97(5), 775-790. doi:10.1016/j.mcna.2013.03.007

Casettari, L., Vllasaliu, D., Castagnino, E., Stolnik, S., Howdle, S., & Illum, L. (2012). PEGylated chitosan derivatives: Synthesis, characterizations and pharmaceutical applications. Progress in Polymer Science, 37(5), 659-685. doi:10.1016/j.progpolymsci.2011.10.001

Chen, L., Tredget, E. E., Wu, P. Y. G., & Wu, Y. (2008). Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing. PLoS ONE, 3(4), e1886. doi:10.1371/journal.pone.0001886

Chen, S.-H., Tsao, C.-T., Chang, C.-H., Wu, Y.-M., Liu, Z.-W., Lin, C.-P., … Hsieh, K.-H. (2012). Synthesis and characterization of thermal-responsive chitin-based polyurethane copolymer as a smart material. Carbohydrate Polymers, 88(4), 1483-1487. doi:10.1016/j.carbpol.2012.01.055

Ching Ting Tsao, Chih Hao Chang, Yu Dar Li, Ming Fung Wu, Chun Pin Lin, Jin Lin Han, … Kuo Huang Hsieh. (2011). Development of chitosan/ dicarboxylic acid hydrogels as wound dressing materials. Journal of Bioactive and Compatible Polymers, 26(5), 519-536. doi:10.1177/0883911511422627

De Britto, D., & Campana-Filho, S. P. (2007). Kinetics of the thermal degradation of chitosan. Thermochimica Acta, 465(1-2), 73-82. doi:10.1016/j.tca.2007.09.008

De Moura, M. R., Aouada, F. A., & Mattoso, L. H. C. (2008). Preparation of chitosan nanoparticles using methacrylic acid. Journal of Colloid and Interface Science, 321(2), 477-483. doi:10.1016/j.jcis.2008.02.006

Dinh, T., Tecilazich, F., Kafanas, A., Doupis, J., Gnardellis, C., Leal, E., … Veves, A. (2012). Mechanisms Involved in the Development and Healing of Diabetic Foot Ulceration. Diabetes, 61(11), 2937-2947. doi:10.2337/db12-0227

Eming, S. A., Martin, P., & Tomic-Canic, M. (2014). Wound repair and regeneration: Mechanisms, signaling, and translation. Science Translational Medicine, 6(265). doi:10.1126/scitranslmed.3009337

Escobar Ivirico, J. L., Salmerón-Sánchez, M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2009). Poly(l-lactide) networks with tailored water sorption. Colloid and Polymer Science, 287(6), 671-681. doi:10.1007/s00396-009-2026-z

Flory, P. J., & Rehner, J. (1943). Statistical Mechanics of Cross‐Linked Polymer Networks II. Swelling. The Journal of Chemical Physics, 11(11), 521-526. doi:10.1063/1.1723792

Gámiz-González, M. A., Vidaurre, A., & Gómez Ribelles, J. L. (2017). Biodegradable chitosan-poly(Ɛ-caprolactone) dialdehyde copolymer networks for soft tissue engineering. Polymer Degradation and Stability, 138, 47-54. doi:10.1016/j.polymdegradstab.2017.02.005

García-Pacios, V., Costa, V., Colera, M., & Martín-Martínez, J. M. (2011). Waterborne polyurethane dispersions obtained with polycarbonate of hexanediol intended for use as coatings. Progress in Organic Coatings, 71(2), 136-146. doi:10.1016/j.porgcoat.2011.01.006

García Cruz, D. M., Gomez Ribelles, J. L., & Salmerón Sánchez, M. (2008). Blending polysaccharides with biodegradable polymers. I. Properties of chitosan/polycaprolactone blends. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 85B(2), 303-313. doi:10.1002/jbm.b.30947

Heux, L., Brugnerotto, J., Desbrières, J., Versali, M.-F., & Rinaudo, M. (2000). Solid State NMR for Determination of Degree of Acetylation of Chitin and Chitosan. Biomacromolecules, 1(4), 746-751. doi:10.1021/bm000070y

Hilfiker, A., Kasper, C., Hass, R., & Haverich, A. (2011). Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation? Langenbeck’s Archives of Surgery, 396(4), 489-497. doi:10.1007/s00423-011-0762-2

Mohd Hilmi, A. B., Halim, A. S., Hassan, A., Lim, C. K., Noorsal, K., & Zainol, I. (2013). In vitro characterization of a chitosan skin regenerating template as a scaffold for cells cultivation. SpringerPlus, 2(1). doi:10.1186/2193-1801-2-79

Hu, Y., Liu, Y., Qi, X., Liu, P., Fan, Z., & Li, S. (2011). Novel bioresorbable hydrogels prepared from chitosan-graft-polylactide copolymers. Polymer International, 61(1), 74-81. doi:10.1002/pi.3150

Jiang, T., Nukavarapu, S. P., Deng, M., Jabbarzadeh, E., Kofron, M. D., Doty, S. B., … Laurencin, C. T. (2010). Chitosan–poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: In vitro degradation and in vivo bone regeneration studies. Acta Biomaterialia, 6(9), 3457-3470. doi:10.1016/j.actbio.2010.03.023

Jiang, X., Li, J., Ding, M., Tan, H., Ling, Q., Zhong, Y., & Fu, Q. (2007). Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment. European Polymer Journal, 43(5), 1838-1846. doi:10.1016/j.eurpolymj.2007.02.029

Jovanovic, D., Engels, G. E., Plantinga, J. A., Bruinsma, M., van Oeveren, W., Schouten, A. J., … Harmsen, M. C. (2010). Novel polyurethanes with interconnected porous structure induce in vivo tissue remodeling and accompanied vascularization. Journal of Biomedical Materials Research Part A, 95A(1), 198-208. doi:10.1002/jbm.a.32817

Koehler, J., Brandl, F. P., & Goepferich, A. M. (2018). Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal, 100, 1-11. doi:10.1016/j.eurpolymj.2017.12.046

Kuo, Y.-R., Wang, C.-T., Cheng, J.-T., Wang, F.-S., Chiang, Y.-C., & Wang, C.-J. (2011). Bone Marrow–Derived Mesenchymal Stem Cells Enhanced Diabetic Wound Healing through Recruitment of Tissue Regeneration in a Rat Model of Streptozotocin-Induced Diabetes. Plastic and Reconstructive Surgery, 128(4), 872-880. doi:10.1097/prs.0b013e3182174329

Leventis, N., Sotiriou-Leventis, C., Chandrasekaran, N., Mulik, S., Larimore, Z. J., Lu, H., … Mang, J. T. (2010). Multifunctional Polyurea Aerogels from Isocyanates and Water. A Structure−Property Case Study. Chemistry of Materials, 22(24), 6692-6710. doi:10.1021/cm102891d

Marchant, R. E., Zhao, Q., Anderson, J. M., & Hiltner, A. (1987). Degradation of a poly(ether urethane urea) elastomer: infra-red and XPS studies. Polymer, 28(12), 2032-2039. doi:10.1016/0032-3861(87)90037-1

Marcos-Fernández, A., Abraham, G. A., Valentín, J. L., & Román, J. S. (2006). Synthesis and characterization of biodegradable non-toxic poly(ester-urethane-urea)s based on poly(ε-caprolactone) and amino acid derivatives. Polymer, 47(3), 785-798. doi:10.1016/j.polymer.2005.12.007

Masson-Meyers, D. S., Bumah, V. V., & Enwemeka, C. S. (2016). A comparison of four methods for determining viability in human dermal fibroblasts irradiated with blue light. Journal of Pharmacological and Toxicological Methods, 79, 15-22. doi:10.1016/j.vascn.2016.01.001

Merchant, Z., Taylor, K. M. G., Stapleton, P., Razak, S. A., Kunda, N., Alfagih, I., … Somavarapu, S. (2014). Engineering hydrophobically modified chitosan for enhancing the dispersion of respirable microparticles of levofloxacin. European Journal of Pharmaceutics and Biopharmaceutics, 88(3), 816-829. doi:10.1016/j.ejpb.2014.09.005

Moise, M., Şunel, V., Holban, M., Popa, M., Desbrieres, J., Peptu, C., & Lionte, C. (2012). Double crosslinked chitosan and gelatin submicronic capsules entrapping aminoacid derivatives with potential antitumoral activity. Journal of Materials Science, 47(23), 8223-8233. doi:10.1007/s10853-012-6719-1

Neto, C. G. T., Giacometti, J. A., Job, A. E., Ferreira, F. C., Fonseca, J. L. C., & Pereira, M. R. (2005). Thermal Analysis of Chitosan Based Networks. Carbohydrate Polymers, 62(2), 97-103. doi:10.1016/j.carbpol.2005.02.022

Ouyang, Q.-Q., Hu, Z., Lin, Z.-P., Quan, W.-Y., Deng, Y.-F., Li, S.-D., … Chen, Y. (2018). Chitosan hydrogel in combination with marine peptides from tilapia for burns healing. International Journal of Biological Macromolecules, 112, 1191-1198. doi:10.1016/j.ijbiomac.2018.01.217

Page, J. M., Prieto, E. M., Dumas, J. E., Zienkiewicz, K. J., Wenke, J. C., Brown-Baer, P., & Guelcher, S. A. (2012). Biocompatibility and chemical reaction kinetics of injectable, settable polyurethane/allograft bone biocomposites. Acta Biomaterialia, 8(12), 4405-4416. doi:10.1016/j.actbio.2012.07.037

Park, W. S., Ahn, S. Y., Sung, S. I., Ahn, J.-Y., & Chang, Y. S. (2017). Strategies to enhance paracrine potency of transplanted mesenchymal stem cells in intractable neonatal disorders. Pediatric Research, 83(1-2), 214-222. doi:10.1038/pr.2017.249

Pérez-Limiñana, M. A., Arán-Aís, F., Torró-Palau, A. M., César Orgilés-Barceló, A., & Miguel Martín-Martínez, J. (2005). Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups. International Journal of Adhesion and Adhesives, 25(6), 507-517. doi:10.1016/j.ijadhadh.2005.02.002

Pretsch, T., Jakob, I., & Müller, W. (2009). Hydrolytic degradation and functional stability of a segmented shape memory poly(ester urethane). Polymer Degradation and Stability, 94(1), 61-73. doi:10.1016/j.polymdegradstab.2008.10.012

Rowlands, A. S., Lim, S. A., Martin, D., & Cooper-White, J. J. (2007). Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Biomaterials, 28(12), 2109-2121. doi:10.1016/j.biomaterials.2006.12.032

Abdel-Rahman, R. M., Abdel-Mohsen, A. M., Hrdina, R., Burgert, L., Fohlerova, Z., Pavliňák, D., … Jancar, J. (2016). Wound dressing based on chitosan/hyaluronan/nonwoven fabrics: Preparation, characterization and medical applications. International Journal of Biological Macromolecules, 89, 725-736. doi:10.1016/j.ijbiomac.2016.04.087

Subramani, S., Park, Y.-J., Lee, Y.-S., & Kim, J.-H. (2003). New development of polyurethane dispersion derived from blocked aromatic diisocyanate. Progress in Organic Coatings, 48(1), 71-79. doi:10.1016/s0300-9440(03)00118-8

Tao, Z., Shi, A., & Zhao, J. (2015). Epidemiological Perspectives of Diabetes. Cell Biochemistry and Biophysics, 73(1), 181-185. doi:10.1007/s12013-015-0598-4

Ünlü, C., Pollet, E., & Avérous, L. (2018). Original Macromolecular Architectures Based on poly(ε-caprolactone) and poly(ε-thiocaprolactone) Grafted onto Chitosan Backbone. International Journal of Molecular Sciences, 19(12), 3799. doi:10.3390/ijms19123799

Velazquez-Morales, P., Le Nest, J.-F., & Gandini, A. (1998). Polymer electrolytes derived from chitosan/polyether networks. Electrochimica Acta, 43(10-11), 1275-1279. doi:10.1016/s0013-4686(97)10030-5

Wang, W., Ping, P., Chen, X., & Jing, X. (2006). Polylactide-based polyurethane and its shape-memory behavior. European Polymer Journal, 42(6), 1240-1249. doi:10.1016/j.eurpolymj.2005.11.029

Yamane, T., Nakagami, G., Yoshino, S., Shimura, M., Kitamura, A., Kobayashi-Hattori, K., … Sanada, H. (2015). Hydrocellular foam dressings promote wound healing associated with decrease in inflammation in rat periwound skin and granulation tissue, compared with hydrocolloid dressings. Bioscience, Biotechnology, and Biochemistry, 79(2), 185-189. doi:10.1080/09168451.2014.968088

Zawadzki, J., & Kaczmarek, H. (2010). Thermal treatment of chitosan in various conditions. Carbohydrate Polymers, 80(2), 394-400. doi:10.1016/j.carbpol.2009.11.037

Zhang, S., Cheng, L., & Hu, J. (2003). NMR studies of water-borne polyurethanes. Journal of Applied Polymer Science, 90(1), 257-260. doi:10.1002/app.12696

Zhang, S., Ren, Z., He, S., Zhu, Y., & Zhu, C. (2007). FTIR spectroscopic characterization of polyurethane-urea model hard segments (PUUMHS) based on three diamine chain extenders. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(1), 188-193. doi:10.1016/j.saa.2006.02.041

Zuber, M., Zia, K. M., Mahboob, S., Hassan, M., & Bhatti, I. A. (2010). Synthesis of chitin–bentonite clay based polyurethane bio-nanocomposites. International Journal of Biological Macromolecules, 47(2), 196-200. doi:10.1016/j.ijbiomac.2010.04.022

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record