- -

Computed tomography medical image reconstruction on affordable equipment by using Out-Of-Core techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computed tomography medical image reconstruction on affordable equipment by using Out-Of-Core techniques

Mostrar el registro completo del ítem

Chillarón-Pérez, M.; Quintana Ortí, G.; Vidal-Gimeno, V.; Verdú Martín, GJ. (2020). Computed tomography medical image reconstruction on affordable equipment by using Out-Of-Core techniques. Computer Methods and Programs in Biomedicine. 193:1-11. https://doi.org/10.1016/j.cmpb.2020.105488

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165764

Ficheros en el ítem

Metadatos del ítem

Título: Computed tomography medical image reconstruction on affordable equipment by using Out-Of-Core techniques
Autor: CHILLARÓN-PÉREZ, MÓNICA Quintana Ortí, Gregorio Vidal-Gimeno, Vicente-Emilio Verdú Martín, Gumersindo Jesús
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Background and objective: As Computed Tomography scans are an essential medical test, many techniques have been proposed to reconstruct high-quality images using a smaller amount of radiation. One approach is to employ ...[+]
Palabras clave: CT , QR Factorization , Medical image , Reconstruction , Out-Of-Core affordable equipment
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Computer Methods and Programs in Biomedicine. (issn: 0169-2607 )
DOI: 10.1016/j.cmpb.2020.105488
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.cmpb.2020.105488
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098156-B-C54/ES/TECNICAS PARA LA ACELERACION Y MEJORA DE APLICACIONES MULTIMEDIA Y HPC/
info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F075/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F035/ES/BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/
Agradecimientos:
This research has been supported by "Universitat Politecnica de Valencia", "Generalitat Valenciana" under PROMETEO/2018/035 and ACIF/2017/075, co-financed by FEDER and FSE funds, and the "Spanish Ministry of Science, ...[+]
Tipo: Artículo

References

Berrington de González, A. (2009). Projected Cancer Risks From Computed Tomographic Scans Performed in the United States in 2007. Archives of Internal Medicine, 169(22), 2071. doi:10.1001/archinternmed.2009.440

HALL, E. J., & BRENNER, D. J. (2008). Cancer risks from diagnostic radiology. The British Journal of Radiology, 81(965), 362-378. doi:10.1259/bjr/01948454

Tang, X., Hsieh, J., Nilsen, R. A., Dutta, S., Samsonov, D., & Hagiwara, A. (2006). A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT—helical scanning. Physics in Medicine and Biology, 51(4), 855-874. doi:10.1088/0031-9155/51/4/007 [+]
Berrington de González, A. (2009). Projected Cancer Risks From Computed Tomographic Scans Performed in the United States in 2007. Archives of Internal Medicine, 169(22), 2071. doi:10.1001/archinternmed.2009.440

HALL, E. J., & BRENNER, D. J. (2008). Cancer risks from diagnostic radiology. The British Journal of Radiology, 81(965), 362-378. doi:10.1259/bjr/01948454

Tang, X., Hsieh, J., Nilsen, R. A., Dutta, S., Samsonov, D., & Hagiwara, A. (2006). A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT—helical scanning. Physics in Medicine and Biology, 51(4), 855-874. doi:10.1088/0031-9155/51/4/007

Zhuang, T., Leng, S., Nett, B. E., & Chen, G.-H. (2004). Fan-beam and cone-beam image reconstruction via filtering the backprojection image of differentiated projection data. Physics in Medicine and Biology, 49(24), 5489-5503. doi:10.1088/0031-9155/49/24/007

Mori, S., Endo, M., Komatsu, S., Kandatsu, S., Yashiro, T., & Baba, M. (2006). A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT. Physics in Medicine and Biology, 51(16), 3953-3965. doi:10.1088/0031-9155/51/16/005

Willemink, M. J., de Jong, P. A., Leiner, T., de Heer, L. M., Nievelstein, R. A. J., Budde, R. P. J., & Schilham, A. M. R. (2013). Iterative reconstruction techniques for computed tomography Part 1: Technical principles. European Radiology, 23(6), 1623-1631. doi:10.1007/s00330-012-2765-y

Willemink, M. J., Leiner, T., de Jong, P. A., de Heer, L. M., Nievelstein, R. A. J., Schilham, A. M. R., & Budde, R. P. J. (2013). Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality. European Radiology, 23(6), 1632-1642. doi:10.1007/s00330-012-2764-z

Wu, W., Liu, F., Zhang, Y., Wang, Q., & Yu, H. (2019). Non-Local Low-Rank Cube-Based Tensor Factorization for Spectral CT Reconstruction. IEEE Transactions on Medical Imaging, 38(4), 1079-1093. doi:10.1109/tmi.2018.2878226

Wu, W., Zhang, Y., Wang, Q., Liu, F., Chen, P., & Yu, H. (2018). Low-dose spectral CT reconstruction using image gradient ℓ0–norm and tensor dictionary. Applied Mathematical Modelling, 63, 538-557. doi:10.1016/j.apm.2018.07.006

Andersen, A. H. (1989). Algebraic reconstruction in CT from limited views. IEEE Transactions on Medical Imaging, 8(1), 50-55. doi:10.1109/42.20361

Andersen, A. H., & Kak, A. C. (1984). Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm. Ultrasonic Imaging, 6(1), 81-94. doi:10.1177/016173468400600107

Yu, W., & Zeng, L. (2014). A Novel Weighted Total Difference Based Image Reconstruction Algorithm for Few-View Computed Tomography. PLoS ONE, 9(10), e109345. doi:10.1371/journal.pone.0109345

Flores, L., Vidal, V., & Verdú, G. (2015). Iterative Reconstruction from Few-view Projections. Procedia Computer Science, 51, 703-712. doi:10.1016/j.procs.2015.05.188

Flores, L. A., Vidal, V., Mayo, P., Rodenas, F., & Verdú, G. (2014). Parallel CT image reconstruction based on GPUs. Radiation Physics and Chemistry, 95, 247-250. doi:10.1016/j.radphyschem.2013.03.011

Chillarón, M., Vidal, V., Segrelles, D., Blanquer, I., & Verdú, G. (2017). Combining Grid Computing and Docker Containers for the Study and Parametrization of CT Image Reconstruction Methods. Procedia Computer Science, 108, 1195-1204. doi:10.1016/j.procs.2017.05.065

Sollmann, N., Mei, K., Schwaiger, B. J., Gersing, A. S., Kopp, F. K., Bippus, R., … Baum, T. (2018). Effects of virtual tube current reduction and sparse sampling on MDCT-based femoral BMD measurements. Osteoporosis International, 29(12), 2685-2692. doi:10.1007/s00198-018-4675-6

Yan Liu, Zhengrong Liang, Jianhua Ma, Hongbing Lu, Ke Wang, Hao Zhang, & Moore, W. (2014). Total Variation-Stokes Strategy for Sparse-View X-ray CT Image Reconstruction. IEEE Transactions on Medical Imaging, 33(3), 749-763. doi:10.1109/tmi.2013.2295738

Tang, J., Nett, B. E., & Chen, G.-H. (2009). Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms. Physics in Medicine and Biology, 54(19), 5781-5804. doi:10.1088/0031-9155/54/19/008

Vandeghinste, B., Vandenberghe, S., Vanhove, C., Staelens, S., & Van Holen, R. (2013). Low-Dose Micro-CT Imaging for Vascular Segmentation and Analysis Using Sparse-View Acquisitions. PLoS ONE, 8(7), e68449. doi:10.1371/journal.pone.0068449

Qi, H., Chen, Z., & Zhou, L. (2015). CT Image Reconstruction from Sparse Projections Using Adaptive TpV Regularization. Computational and Mathematical Methods in Medicine, 2015, 1-8. doi:10.1155/2015/354869

Wu, W., Chen, P., Vardhanabhuti, V. V., Wu, W., & Yu, H. (2019). Improved Material Decomposition With a Two-Step Regularization for Spectral CT. IEEE Access, 7, 158770-158781. doi:10.1109/access.2019.2950427

Rodriguez-Alvarez, M. J., Sanchez, F., Soriano, A., Moliner, L., Sanchez, S., & Benlloch, J. (2018). QR-Factorization Algorithm for Computed Tomography (CT): Comparison With FDK and Conjugate Gradient (CG) Algorithms. IEEE Transactions on Radiation and Plasma Medical Sciences, 2(5), 459-469. doi:10.1109/trpms.2018.2843803

Chillarón, M., Vidal, V., & Verdú, G. (2020). CT image reconstruction with SuiteSparseQR factorization package. Radiation Physics and Chemistry, 167, 108289. doi:10.1016/j.radphyschem.2019.04.039

Joseph, P. M. (1982). An Improved Algorithm for Reprojecting Rays through Pixel Images. IEEE Transactions on Medical Imaging, 1(3), 192-196. doi:10.1109/tmi.1982.4307572

S. Toledo, F. Gustavson, The design and implementation of solar, a portable library for scalable out-of-core linear algebra computations, in: Proceedings of the Annual Workshop on I/O in Parallel and Distributed Systems, IOPADS,

D’Azevedo, E., & Dongarra, J. (2000). The design and implementation of the parallel out-of-core ScaLAPACK LU, QR, and Cholesky factorization routines. Concurrency: Practice and Experience, 12(15), 1481-1493. doi:10.1002/1096-9128(20001225)12:15<1481::aid-cpe540>3.0.co;2-v

Gunter, B. C., & Van De Geijn, R. A. (2005). Parallel out-of-core computation and updating of the QR factorization. ACM Transactions on Mathematical Software, 31(1), 60-78. doi:10.1145/1055531.1055534

Quintana-Ortí, G., Igual, F. D., Marqués, M., Quintana-Ortí, E. S., & van de Geijn, R. A. (2012). A Runtime System for Programming Out-of-Core Matrix Algorithms-by-Tiles on Multithreaded Architectures. ACM Transactions on Mathematical Software, 38(4), 1-25. doi:10.1145/2331130.2331133

Marqués, M., Quintana-Ortí, G., Quintana-Ortí, E. S., & van de Geijn, R. (2010). Using desktop computers to solve large-scale dense linear algebra problems. The Journal of Supercomputing, 58(2), 145-150. doi:10.1007/s11227-010-0394-2

G. Lauritsch, H. Bruder, FORBILD head phantom, http://www.imp.uni-erlangen.de/phantoms/head/head.html.

Yan, K., Wang, X., Lu, L., & Summers, R. M. (2018). DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. Journal of Medical Imaging, 5(03), 1. doi:10.1117/1.jmi.5.3.036501

Miqueles, E., Koshev, N., & Helou, E. S. (2018). A Backprojection Slice Theorem for Tomographic Reconstruction. IEEE Transactions on Image Processing, 27(2), 894-906. doi:10.1109/tip.2017.2766785

N. Koshev, E.S. Helou, E.X. Miqueles, Fast backprojection techniques for high resolution tomographyarXiv preprint: 1608.03589.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem