- -

Computed tomography medical image reconstruction on affordable equipment by using Out-Of-Core techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computed tomography medical image reconstruction on affordable equipment by using Out-Of-Core techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author CHILLARÓN-PÉREZ, MÓNICA es_ES
dc.contributor.author Quintana Ortí, Gregorio es_ES
dc.contributor.author Vidal-Gimeno, Vicente-Emilio es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2021-04-29T03:31:58Z
dc.date.available 2021-04-29T03:31:58Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 0169-2607 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165764
dc.description.abstract [EN] Background and objective: As Computed Tomography scans are an essential medical test, many techniques have been proposed to reconstruct high-quality images using a smaller amount of radiation. One approach is to employ algebraic factorization methods to reconstruct the images, using fewer views than the traditional analytical methods. However, their main drawback is the high computational cost and hence the time needed to obtain the images, which is critical in the daily clinical practice. For this reason, faster methods for solving this problem are required. Methods: In this paper, we propose a new reconstruction method based on the QR factorization that is very efficient on affordable equipment (standard multicore processors and standard Solid-State Drives) by using Out-Of-Core techniques. Results: Combining both affordable hardware and the new software proposed in our work, the images can be reconstructed very quickly and with high quality. We analyze the reconstructions using real Computed Tomography images selected from a dataset, comparing the QR method to the LSQR and FBP. We measure the quality of the images using the metrics Peak Signal-To-Noise Ratio and Structural Similarity Index, obtaining very high values. We also compare the efficiency of using spinning disks versus Solid-State Drives, showing how the latter performs the Input/Output operations in a significantly lower amount of time. Conclusions: The results indicate that our proposed me thod and software are valid to efficiently solve large-scale systems and can be applied to the Computed Tomography reconstruction problem to obtain high-quality images. es_ES
dc.description.sponsorship This research has been supported by "Universitat Politecnica de Valencia", "Generalitat Valenciana" under PROMETEO/2018/035 and ACIF/2017/075, co-financed by FEDER and FSE funds, and the "Spanish Ministry of Science, Innovation and Universities" under Grant RTI2018-098156-B-C54 co-financed by FEDER funds. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Methods and Programs in Biomedicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject CT es_ES
dc.subject QR Factorization es_ES
dc.subject Medical image es_ES
dc.subject Reconstruction es_ES
dc.subject Out-Of-Core affordable equipment es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title Computed tomography medical image reconstruction on affordable equipment by using Out-Of-Core techniques es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cmpb.2020.105488 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098156-B-C54/ES/TECNICAS PARA LA ACELERACION Y MEJORA DE APLICACIONES MULTIMEDIA Y HPC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F075/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F035/ES/BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Chillarón-Pérez, M.; Quintana Ortí, G.; Vidal-Gimeno, V.; Verdú Martín, GJ. (2020). Computed tomography medical image reconstruction on affordable equipment by using Out-Of-Core techniques. Computer Methods and Programs in Biomedicine. 193:1-11. https://doi.org/10.1016/j.cmpb.2020.105488 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cmpb.2020.105488 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 193 es_ES
dc.identifier.pmid 32289624 es_ES
dc.relation.pasarela S\412021 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Berrington de González, A. (2009). Projected Cancer Risks From Computed Tomographic Scans Performed in the United States in 2007. Archives of Internal Medicine, 169(22), 2071. doi:10.1001/archinternmed.2009.440 es_ES
dc.description.references HALL, E. J., & BRENNER, D. J. (2008). Cancer risks from diagnostic radiology. The British Journal of Radiology, 81(965), 362-378. doi:10.1259/bjr/01948454 es_ES
dc.description.references Tang, X., Hsieh, J., Nilsen, R. A., Dutta, S., Samsonov, D., & Hagiwara, A. (2006). A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT—helical scanning. Physics in Medicine and Biology, 51(4), 855-874. doi:10.1088/0031-9155/51/4/007 es_ES
dc.description.references Zhuang, T., Leng, S., Nett, B. E., & Chen, G.-H. (2004). Fan-beam and cone-beam image reconstruction via filtering the backprojection image of differentiated projection data. Physics in Medicine and Biology, 49(24), 5489-5503. doi:10.1088/0031-9155/49/24/007 es_ES
dc.description.references Mori, S., Endo, M., Komatsu, S., Kandatsu, S., Yashiro, T., & Baba, M. (2006). A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT. Physics in Medicine and Biology, 51(16), 3953-3965. doi:10.1088/0031-9155/51/16/005 es_ES
dc.description.references Willemink, M. J., de Jong, P. A., Leiner, T., de Heer, L. M., Nievelstein, R. A. J., Budde, R. P. J., & Schilham, A. M. R. (2013). Iterative reconstruction techniques for computed tomography Part 1: Technical principles. European Radiology, 23(6), 1623-1631. doi:10.1007/s00330-012-2765-y es_ES
dc.description.references Willemink, M. J., Leiner, T., de Jong, P. A., de Heer, L. M., Nievelstein, R. A. J., Schilham, A. M. R., & Budde, R. P. J. (2013). Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality. European Radiology, 23(6), 1632-1642. doi:10.1007/s00330-012-2764-z es_ES
dc.description.references Wu, W., Liu, F., Zhang, Y., Wang, Q., & Yu, H. (2019). Non-Local Low-Rank Cube-Based Tensor Factorization for Spectral CT Reconstruction. IEEE Transactions on Medical Imaging, 38(4), 1079-1093. doi:10.1109/tmi.2018.2878226 es_ES
dc.description.references Wu, W., Zhang, Y., Wang, Q., Liu, F., Chen, P., & Yu, H. (2018). Low-dose spectral CT reconstruction using image gradient ℓ0–norm and tensor dictionary. Applied Mathematical Modelling, 63, 538-557. doi:10.1016/j.apm.2018.07.006 es_ES
dc.description.references Andersen, A. H. (1989). Algebraic reconstruction in CT from limited views. IEEE Transactions on Medical Imaging, 8(1), 50-55. doi:10.1109/42.20361 es_ES
dc.description.references Andersen, A. H., & Kak, A. C. (1984). Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm. Ultrasonic Imaging, 6(1), 81-94. doi:10.1177/016173468400600107 es_ES
dc.description.references Yu, W., & Zeng, L. (2014). A Novel Weighted Total Difference Based Image Reconstruction Algorithm for Few-View Computed Tomography. PLoS ONE, 9(10), e109345. doi:10.1371/journal.pone.0109345 es_ES
dc.description.references Flores, L., Vidal, V., & Verdú, G. (2015). Iterative Reconstruction from Few-view Projections. Procedia Computer Science, 51, 703-712. doi:10.1016/j.procs.2015.05.188 es_ES
dc.description.references Flores, L. A., Vidal, V., Mayo, P., Rodenas, F., & Verdú, G. (2014). Parallel CT image reconstruction based on GPUs. Radiation Physics and Chemistry, 95, 247-250. doi:10.1016/j.radphyschem.2013.03.011 es_ES
dc.description.references Chillarón, M., Vidal, V., Segrelles, D., Blanquer, I., & Verdú, G. (2017). Combining Grid Computing and Docker Containers for the Study and Parametrization of CT Image Reconstruction Methods. Procedia Computer Science, 108, 1195-1204. doi:10.1016/j.procs.2017.05.065 es_ES
dc.description.references Sollmann, N., Mei, K., Schwaiger, B. J., Gersing, A. S., Kopp, F. K., Bippus, R., … Baum, T. (2018). Effects of virtual tube current reduction and sparse sampling on MDCT-based femoral BMD measurements. Osteoporosis International, 29(12), 2685-2692. doi:10.1007/s00198-018-4675-6 es_ES
dc.description.references Yan Liu, Zhengrong Liang, Jianhua Ma, Hongbing Lu, Ke Wang, Hao Zhang, & Moore, W. (2014). Total Variation-Stokes Strategy for Sparse-View X-ray CT Image Reconstruction. IEEE Transactions on Medical Imaging, 33(3), 749-763. doi:10.1109/tmi.2013.2295738 es_ES
dc.description.references Tang, J., Nett, B. E., & Chen, G.-H. (2009). Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms. Physics in Medicine and Biology, 54(19), 5781-5804. doi:10.1088/0031-9155/54/19/008 es_ES
dc.description.references Vandeghinste, B., Vandenberghe, S., Vanhove, C., Staelens, S., & Van Holen, R. (2013). Low-Dose Micro-CT Imaging for Vascular Segmentation and Analysis Using Sparse-View Acquisitions. PLoS ONE, 8(7), e68449. doi:10.1371/journal.pone.0068449 es_ES
dc.description.references Qi, H., Chen, Z., & Zhou, L. (2015). CT Image Reconstruction from Sparse Projections Using Adaptive TpV Regularization. Computational and Mathematical Methods in Medicine, 2015, 1-8. doi:10.1155/2015/354869 es_ES
dc.description.references Wu, W., Chen, P., Vardhanabhuti, V. V., Wu, W., & Yu, H. (2019). Improved Material Decomposition With a Two-Step Regularization for Spectral CT. IEEE Access, 7, 158770-158781. doi:10.1109/access.2019.2950427 es_ES
dc.description.references Rodriguez-Alvarez, M. J., Sanchez, F., Soriano, A., Moliner, L., Sanchez, S., & Benlloch, J. (2018). QR-Factorization Algorithm for Computed Tomography (CT): Comparison With FDK and Conjugate Gradient (CG) Algorithms. IEEE Transactions on Radiation and Plasma Medical Sciences, 2(5), 459-469. doi:10.1109/trpms.2018.2843803 es_ES
dc.description.references Chillarón, M., Vidal, V., & Verdú, G. (2020). CT image reconstruction with SuiteSparseQR factorization package. Radiation Physics and Chemistry, 167, 108289. doi:10.1016/j.radphyschem.2019.04.039 es_ES
dc.description.references Joseph, P. M. (1982). An Improved Algorithm for Reprojecting Rays through Pixel Images. IEEE Transactions on Medical Imaging, 1(3), 192-196. doi:10.1109/tmi.1982.4307572 es_ES
dc.description.references S. Toledo, F. Gustavson, The design and implementation of solar, a portable library for scalable out-of-core linear algebra computations, in: Proceedings of the Annual Workshop on I/O in Parallel and Distributed Systems, IOPADS, es_ES
dc.description.references D’Azevedo, E., & Dongarra, J. (2000). The design and implementation of the parallel out-of-core ScaLAPACK LU, QR, and Cholesky factorization routines. Concurrency: Practice and Experience, 12(15), 1481-1493. doi:10.1002/1096-9128(20001225)12:15<1481::aid-cpe540>3.0.co;2-v es_ES
dc.description.references Gunter, B. C., & Van De Geijn, R. A. (2005). Parallel out-of-core computation and updating of the QR factorization. ACM Transactions on Mathematical Software, 31(1), 60-78. doi:10.1145/1055531.1055534 es_ES
dc.description.references Quintana-Ortí, G., Igual, F. D., Marqués, M., Quintana-Ortí, E. S., & van de Geijn, R. A. (2012). A Runtime System for Programming Out-of-Core Matrix Algorithms-by-Tiles on Multithreaded Architectures. ACM Transactions on Mathematical Software, 38(4), 1-25. doi:10.1145/2331130.2331133 es_ES
dc.description.references Marqués, M., Quintana-Ortí, G., Quintana-Ortí, E. S., & van de Geijn, R. (2010). Using desktop computers to solve large-scale dense linear algebra problems. The Journal of Supercomputing, 58(2), 145-150. doi:10.1007/s11227-010-0394-2 es_ES
dc.description.references G. Lauritsch, H. Bruder, FORBILD head phantom, http://www.imp.uni-erlangen.de/phantoms/head/head.html. es_ES
dc.description.references Yan, K., Wang, X., Lu, L., & Summers, R. M. (2018). DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. Journal of Medical Imaging, 5(03), 1. doi:10.1117/1.jmi.5.3.036501 es_ES
dc.description.references Miqueles, E., Koshev, N., & Helou, E. S. (2018). A Backprojection Slice Theorem for Tomographic Reconstruction. IEEE Transactions on Image Processing, 27(2), 894-906. doi:10.1109/tip.2017.2766785 es_ES
dc.description.references N. Koshev, E.S. Helou, E.X. Miqueles, Fast backprojection techniques for high resolution tomographyarXiv preprint: 1608.03589. es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 10.- Reducir las desigualdades entre países y dentro de ellos es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES
dc.subject.ods 17.- Fortalecer los medios de ejecución y reavivar la alianza mundial para el desarrollo sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem