Mostrar el registro sencillo del ítem
dc.contributor.author | CHILLARÓN-PÉREZ, MÓNICA | es_ES |
dc.contributor.author | Quintana Ortí, Gregorio | es_ES |
dc.contributor.author | Vidal-Gimeno, Vicente-Emilio | es_ES |
dc.contributor.author | Verdú Martín, Gumersindo Jesús | es_ES |
dc.date.accessioned | 2021-04-29T03:31:58Z | |
dc.date.available | 2021-04-29T03:31:58Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.issn | 0169-2607 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165764 | |
dc.description.abstract | [EN] Background and objective: As Computed Tomography scans are an essential medical test, many techniques have been proposed to reconstruct high-quality images using a smaller amount of radiation. One approach is to employ algebraic factorization methods to reconstruct the images, using fewer views than the traditional analytical methods. However, their main drawback is the high computational cost and hence the time needed to obtain the images, which is critical in the daily clinical practice. For this reason, faster methods for solving this problem are required. Methods: In this paper, we propose a new reconstruction method based on the QR factorization that is very efficient on affordable equipment (standard multicore processors and standard Solid-State Drives) by using Out-Of-Core techniques. Results: Combining both affordable hardware and the new software proposed in our work, the images can be reconstructed very quickly and with high quality. We analyze the reconstructions using real Computed Tomography images selected from a dataset, comparing the QR method to the LSQR and FBP. We measure the quality of the images using the metrics Peak Signal-To-Noise Ratio and Structural Similarity Index, obtaining very high values. We also compare the efficiency of using spinning disks versus Solid-State Drives, showing how the latter performs the Input/Output operations in a significantly lower amount of time. Conclusions: The results indicate that our proposed me thod and software are valid to efficiently solve large-scale systems and can be applied to the Computed Tomography reconstruction problem to obtain high-quality images. | es_ES |
dc.description.sponsorship | This research has been supported by "Universitat Politecnica de Valencia", "Generalitat Valenciana" under PROMETEO/2018/035 and ACIF/2017/075, co-financed by FEDER and FSE funds, and the "Spanish Ministry of Science, Innovation and Universities" under Grant RTI2018-098156-B-C54 co-financed by FEDER funds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computer Methods and Programs in Biomedicine | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | CT | es_ES |
dc.subject | QR Factorization | es_ES |
dc.subject | Medical image | es_ES |
dc.subject | Reconstruction | es_ES |
dc.subject | Out-Of-Core affordable equipment | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.title | Computed tomography medical image reconstruction on affordable equipment by using Out-Of-Core techniques | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cmpb.2020.105488 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098156-B-C54/ES/TECNICAS PARA LA ACELERACION Y MEJORA DE APLICACIONES MULTIMEDIA Y HPC/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F075/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F035/ES/BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Chillarón-Pérez, M.; Quintana Ortí, G.; Vidal-Gimeno, V.; Verdú Martín, GJ. (2020). Computed tomography medical image reconstruction on affordable equipment by using Out-Of-Core techniques. Computer Methods and Programs in Biomedicine. 193:1-11. https://doi.org/10.1016/j.cmpb.2020.105488 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cmpb.2020.105488 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 193 | es_ES |
dc.identifier.pmid | 32289624 | es_ES |
dc.relation.pasarela | S\412021 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Berrington de González, A. (2009). Projected Cancer Risks From Computed Tomographic Scans Performed in the United States in 2007. Archives of Internal Medicine, 169(22), 2071. doi:10.1001/archinternmed.2009.440 | es_ES |
dc.description.references | HALL, E. J., & BRENNER, D. J. (2008). Cancer risks from diagnostic radiology. The British Journal of Radiology, 81(965), 362-378. doi:10.1259/bjr/01948454 | es_ES |
dc.description.references | Tang, X., Hsieh, J., Nilsen, R. A., Dutta, S., Samsonov, D., & Hagiwara, A. (2006). A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT—helical scanning. Physics in Medicine and Biology, 51(4), 855-874. doi:10.1088/0031-9155/51/4/007 | es_ES |
dc.description.references | Zhuang, T., Leng, S., Nett, B. E., & Chen, G.-H. (2004). Fan-beam and cone-beam image reconstruction via filtering the backprojection image of differentiated projection data. Physics in Medicine and Biology, 49(24), 5489-5503. doi:10.1088/0031-9155/49/24/007 | es_ES |
dc.description.references | Mori, S., Endo, M., Komatsu, S., Kandatsu, S., Yashiro, T., & Baba, M. (2006). A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT. Physics in Medicine and Biology, 51(16), 3953-3965. doi:10.1088/0031-9155/51/16/005 | es_ES |
dc.description.references | Willemink, M. J., de Jong, P. A., Leiner, T., de Heer, L. M., Nievelstein, R. A. J., Budde, R. P. J., & Schilham, A. M. R. (2013). Iterative reconstruction techniques for computed tomography Part 1: Technical principles. European Radiology, 23(6), 1623-1631. doi:10.1007/s00330-012-2765-y | es_ES |
dc.description.references | Willemink, M. J., Leiner, T., de Jong, P. A., de Heer, L. M., Nievelstein, R. A. J., Schilham, A. M. R., & Budde, R. P. J. (2013). Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality. European Radiology, 23(6), 1632-1642. doi:10.1007/s00330-012-2764-z | es_ES |
dc.description.references | Wu, W., Liu, F., Zhang, Y., Wang, Q., & Yu, H. (2019). Non-Local Low-Rank Cube-Based Tensor Factorization for Spectral CT Reconstruction. IEEE Transactions on Medical Imaging, 38(4), 1079-1093. doi:10.1109/tmi.2018.2878226 | es_ES |
dc.description.references | Wu, W., Zhang, Y., Wang, Q., Liu, F., Chen, P., & Yu, H. (2018). Low-dose spectral CT reconstruction using image gradient ℓ0–norm and tensor dictionary. Applied Mathematical Modelling, 63, 538-557. doi:10.1016/j.apm.2018.07.006 | es_ES |
dc.description.references | Andersen, A. H. (1989). Algebraic reconstruction in CT from limited views. IEEE Transactions on Medical Imaging, 8(1), 50-55. doi:10.1109/42.20361 | es_ES |
dc.description.references | Andersen, A. H., & Kak, A. C. (1984). Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm. Ultrasonic Imaging, 6(1), 81-94. doi:10.1177/016173468400600107 | es_ES |
dc.description.references | Yu, W., & Zeng, L. (2014). A Novel Weighted Total Difference Based Image Reconstruction Algorithm for Few-View Computed Tomography. PLoS ONE, 9(10), e109345. doi:10.1371/journal.pone.0109345 | es_ES |
dc.description.references | Flores, L., Vidal, V., & Verdú, G. (2015). Iterative Reconstruction from Few-view Projections. Procedia Computer Science, 51, 703-712. doi:10.1016/j.procs.2015.05.188 | es_ES |
dc.description.references | Flores, L. A., Vidal, V., Mayo, P., Rodenas, F., & Verdú, G. (2014). Parallel CT image reconstruction based on GPUs. Radiation Physics and Chemistry, 95, 247-250. doi:10.1016/j.radphyschem.2013.03.011 | es_ES |
dc.description.references | Chillarón, M., Vidal, V., Segrelles, D., Blanquer, I., & Verdú, G. (2017). Combining Grid Computing and Docker Containers for the Study and Parametrization of CT Image Reconstruction Methods. Procedia Computer Science, 108, 1195-1204. doi:10.1016/j.procs.2017.05.065 | es_ES |
dc.description.references | Sollmann, N., Mei, K., Schwaiger, B. J., Gersing, A. S., Kopp, F. K., Bippus, R., … Baum, T. (2018). Effects of virtual tube current reduction and sparse sampling on MDCT-based femoral BMD measurements. Osteoporosis International, 29(12), 2685-2692. doi:10.1007/s00198-018-4675-6 | es_ES |
dc.description.references | Yan Liu, Zhengrong Liang, Jianhua Ma, Hongbing Lu, Ke Wang, Hao Zhang, & Moore, W. (2014). Total Variation-Stokes Strategy for Sparse-View X-ray CT Image Reconstruction. IEEE Transactions on Medical Imaging, 33(3), 749-763. doi:10.1109/tmi.2013.2295738 | es_ES |
dc.description.references | Tang, J., Nett, B. E., & Chen, G.-H. (2009). Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms. Physics in Medicine and Biology, 54(19), 5781-5804. doi:10.1088/0031-9155/54/19/008 | es_ES |
dc.description.references | Vandeghinste, B., Vandenberghe, S., Vanhove, C., Staelens, S., & Van Holen, R. (2013). Low-Dose Micro-CT Imaging for Vascular Segmentation and Analysis Using Sparse-View Acquisitions. PLoS ONE, 8(7), e68449. doi:10.1371/journal.pone.0068449 | es_ES |
dc.description.references | Qi, H., Chen, Z., & Zhou, L. (2015). CT Image Reconstruction from Sparse Projections Using Adaptive TpV Regularization. Computational and Mathematical Methods in Medicine, 2015, 1-8. doi:10.1155/2015/354869 | es_ES |
dc.description.references | Wu, W., Chen, P., Vardhanabhuti, V. V., Wu, W., & Yu, H. (2019). Improved Material Decomposition With a Two-Step Regularization for Spectral CT. IEEE Access, 7, 158770-158781. doi:10.1109/access.2019.2950427 | es_ES |
dc.description.references | Rodriguez-Alvarez, M. J., Sanchez, F., Soriano, A., Moliner, L., Sanchez, S., & Benlloch, J. (2018). QR-Factorization Algorithm for Computed Tomography (CT): Comparison With FDK and Conjugate Gradient (CG) Algorithms. IEEE Transactions on Radiation and Plasma Medical Sciences, 2(5), 459-469. doi:10.1109/trpms.2018.2843803 | es_ES |
dc.description.references | Chillarón, M., Vidal, V., & Verdú, G. (2020). CT image reconstruction with SuiteSparseQR factorization package. Radiation Physics and Chemistry, 167, 108289. doi:10.1016/j.radphyschem.2019.04.039 | es_ES |
dc.description.references | Joseph, P. M. (1982). An Improved Algorithm for Reprojecting Rays through Pixel Images. IEEE Transactions on Medical Imaging, 1(3), 192-196. doi:10.1109/tmi.1982.4307572 | es_ES |
dc.description.references | S. Toledo, F. Gustavson, The design and implementation of solar, a portable library for scalable out-of-core linear algebra computations, in: Proceedings of the Annual Workshop on I/O in Parallel and Distributed Systems, IOPADS, | es_ES |
dc.description.references | D’Azevedo, E., & Dongarra, J. (2000). The design and implementation of the parallel out-of-core ScaLAPACK LU, QR, and Cholesky factorization routines. Concurrency: Practice and Experience, 12(15), 1481-1493. doi:10.1002/1096-9128(20001225)12:15<1481::aid-cpe540>3.0.co;2-v | es_ES |
dc.description.references | Gunter, B. C., & Van De Geijn, R. A. (2005). Parallel out-of-core computation and updating of the QR factorization. ACM Transactions on Mathematical Software, 31(1), 60-78. doi:10.1145/1055531.1055534 | es_ES |
dc.description.references | Quintana-Ortí, G., Igual, F. D., Marqués, M., Quintana-Ortí, E. S., & van de Geijn, R. A. (2012). A Runtime System for Programming Out-of-Core Matrix Algorithms-by-Tiles on Multithreaded Architectures. ACM Transactions on Mathematical Software, 38(4), 1-25. doi:10.1145/2331130.2331133 | es_ES |
dc.description.references | Marqués, M., Quintana-Ortí, G., Quintana-Ortí, E. S., & van de Geijn, R. (2010). Using desktop computers to solve large-scale dense linear algebra problems. The Journal of Supercomputing, 58(2), 145-150. doi:10.1007/s11227-010-0394-2 | es_ES |
dc.description.references | G. Lauritsch, H. Bruder, FORBILD head phantom, http://www.imp.uni-erlangen.de/phantoms/head/head.html. | es_ES |
dc.description.references | Yan, K., Wang, X., Lu, L., & Summers, R. M. (2018). DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. Journal of Medical Imaging, 5(03), 1. doi:10.1117/1.jmi.5.3.036501 | es_ES |
dc.description.references | Miqueles, E., Koshev, N., & Helou, E. S. (2018). A Backprojection Slice Theorem for Tomographic Reconstruction. IEEE Transactions on Image Processing, 27(2), 894-906. doi:10.1109/tip.2017.2766785 | es_ES |
dc.description.references | N. Koshev, E.S. Helou, E.X. Miqueles, Fast backprojection techniques for high resolution tomographyarXiv preprint: 1608.03589. | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 10.- Reducir las desigualdades entre países y dentro de ellos | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |
dc.subject.ods | 17.- Fortalecer los medios de ejecución y reavivar la alianza mundial para el desarrollo sostenible | es_ES |