- -

Direct synthesis of the organic and Ge free Al containing BOG zeolite (ITQ-47) and its application for transformation of biomass derived molecules

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Direct synthesis of the organic and Ge free Al containing BOG zeolite (ITQ-47) and its application for transformation of biomass derived molecules

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Huang, Qintong es_ES
dc.contributor.author Chen, Ningyue es_ES
dc.contributor.author Liu, Lichen es_ES
dc.contributor.author Arias-Carrascal, Karen Sulay es_ES
dc.contributor.author Iborra Chornet, Sara es_ES
dc.contributor.author Yi, Xianfeng es_ES
dc.contributor.author Ma, Chao es_ES
dc.contributor.author Lianf, Weichi es_ES
dc.contributor.author Zheng, Anmin es_ES
dc.contributor.author Zhang, Chuanqi es_ES
dc.contributor.author Hu, Jibo es_ES
dc.contributor.author Cai, Zilin es_ES
dc.contributor.author Liu, Yi es_ES
dc.contributor.author Jiang, Jiuxing es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2021-04-29T03:32:05Z
dc.date.available 2021-04-29T03:32:05Z
dc.date.issued 2020-11-28 es_ES
dc.identifier.issn 2041-6520 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165766
dc.description.abstract [EN] Aluminosilicate boggsite (Si/Al-BOG) has been hydrothermally synthesized without adding org. structure-directing agents (OSDAs) in the synthesis gel using the borosilicogermanium ITQ-47 (Si/B-ITQ-47) zeolite as seeds. The introduction of the costly and environmentally less benign phosphazene org. structure-directing agent is not required to grow the zeolite. Physicochem. characterization expts. show that Si/Al-BOG has good crystallinity, high surface area, tetrahedral Al3+ species, and acid sites. In order to test the catalytic performance of the zeolite, the synthesis of L,L-lactide from L-lactic acid was performed. Si/Al-BOG exhibits 88.2% conversion of L-lactic acid and 83.8% L,L-lactide selectivity, which are better than those of other zeolites studied up to now. es_ES
dc.description.sponsorship This work was supported by the National Natural Science Foundation of China 21971259 and 91645112, The Natural Science Foundation of Hubei Province of China (2014CFA043), and the Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW-SLH026). The European Union is also acknowledged by ERC-AdG-2014-671093 SynCatMatch, and the Spanish Government through "Severo Ochoa" (SEV-2016-0683, MINECO). Q. H. acknowledges the International Program Fund for doctoral students, Sun Yat-sen University, for scholarships in Spain. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Science es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Direct synthesis of the organic and Ge free Al containing BOG zeolite (ITQ-47) and its application for transformation of biomass derived molecules es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d0sc04044d es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//21971259/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//91645112/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Natural Science Foundation of Hubei Province//2014CFA043/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAS//QYZDB-SSW-SLH026/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Huang, Q.; Chen, N.; Liu, L.; Arias-Carrascal, KS.; Iborra Chornet, S.; Yi, X.; Ma, C.... (2020). Direct synthesis of the organic and Ge free Al containing BOG zeolite (ITQ-47) and its application for transformation of biomass derived molecules. Chemical Science. 11(44):12103-12108. https://doi.org/10.1039/d0sc04044d es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/d0sc04044d es_ES
dc.description.upvformatpinicio 12103 es_ES
dc.description.upvformatpfin 12108 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 44 es_ES
dc.relation.pasarela S\433150 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Sun Yat-sen University es_ES
dc.contributor.funder Chinese Academy of Sciences es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Natural Science Foundation of Hubei Province es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i es_ES
dc.description.references C. Baerlocher and L. B.McCusker , Database of Zeolite Structures , http://www.iza-structure.org/databases/ , accessed June 8, 2018 es_ES
dc.description.references Lobo, R. F., Pan, M., Chan, I., Medrud, R. C., Zones, S. I., Crozier, P. A., & Davis, M. E. (1994). Physicochemical Characterization of Zeolites SSZ-26 and SSZ-33. The Journal of Physical Chemistry, 98(46), 12040-12052. doi:10.1021/j100097a033 es_ES
dc.description.references Lobo, R. F., Pan, M., Chan, I., Li, H.-X., Medrud, R. C., Zones, S. I., … Davis, M. E. (1993). SSZ-26 and SSZ-33: Two Molecular Sieves with Intersecting 10- and 12-Ring Pores. Science, 262(5139), 1543-1546. doi:10.1126/science.262.5139.1543 es_ES
dc.description.references Marler, B., Grünewald-Lüke, A., & Gies, H. (1995). Decasils, a new order-disorder family of microporous silicas. Zeolites, 15(5), 388-399. doi:10.1016/0144-2449(94)00065-z es_ES
dc.description.references Burton, A., Darton, R. J., Davis, M. E., Hwang, S.-J., Morris, R. E., Ogino, I., & Zones, S. I. (2006). Structure-Directing Agent Location and Non-Centrosymmetric Structure of Fluoride-Containing Zeolite SSZ-55. The Journal of Physical Chemistry B, 110(11), 5273-5278. doi:10.1021/jp054950o es_ES
dc.description.references Lobo, R. F., & Davis, M. E. (1995). CIT-1: A New Molecular Sieve with Intersecting Pores Bounded by 10- and 12-Rings. Journal of the American Chemical Society, 117(13), 3766-3779. doi:10.1021/ja00118a013 es_ES
dc.description.references Paul, F., Meyer, W. E., Toupet, L., Jiao, H., Gladysz, J. A., & Lapinte, C. (2000). A «Conjugal» Consanguineous Family of Butadiynediyl-Derived Complexes:  Synthesis and Electronic Ground States of Neutral, Radical Cationic, and Dicationic Iron/Rhenium C4 Species. Journal of the American Chemical Society, 122(39), 9405-9414. doi:10.1021/ja0011055 es_ES
dc.description.references Vortmann, S., Marler, B., Gies, H., & Daniels, P. (1995). Synthesis and crystal structure of the new borosilicate zeolite RUB-13. Microporous Materials, 4(2-3), 111-121. doi:10.1016/0927-6513(94)00090-i es_ES
dc.description.references Wagner, P., Terasaki, O., Ritsch, S., Nery, J. G., Zones, S. I., Davis, M. E., & Hiraga, K. (1999). Electron Diffraction Structure Solution of a Nanocrystalline Zeolite at Atomic Resolution. The Journal of Physical Chemistry B, 103(39), 8245-8250. doi:10.1021/jp991389j es_ES
dc.description.references Burton, A., Elomari, S., Medrud, R. C., Chan, I. Y., Chen, C.-Y., Bull, L. M., & Vittoratos, E. S. (2003). The Synthesis, Characterization, and Structure Solution of SSZ-58:  A Novel Two-Dimensional 10-Ring Pore Zeolite with Previously Unseen Double 5-Ring Subunits. Journal of the American Chemical Society, 125(6), 1633-1642. doi:10.1021/ja021242x es_ES
dc.description.references Burton, A., Elomari, S., Chen, C.-Y., Medrud, R. C., Chan, I. Y., Bull, L. M., … Vittoratos, E. S. (2003). SSZ-53 and SSZ-59: Two Novel Extra-Large Pore Zeolites. Chemistry - A European Journal, 9(23), 5737-5748. doi:10.1002/chem.200305238 es_ES
dc.description.references Elomari, S., Burton, A., Medrud, R. C., & Grosse-Kunstleve, R. (2009). The synthesis, characterization, and structure solution of SSZ-56: An extreme example of isomer specificity in the structure direction of zeolites. Microporous and Mesoporous Materials, 118(1-3), 325-333. doi:10.1016/j.micromeso.2008.09.011 es_ES
dc.description.references Elomari, S., Burton, A. W., Ong, K., Pradhan, A. R., & Chan, I. Y. (2007). Synthesis and Structure Solution of Zeolite SSZ-65. Chemistry of Materials, 19(23), 5485-5492. doi:10.1021/cm070459t es_ES
dc.description.references Burton, A., & Elomari, S. (2004). SSZ-60: a new large-pore zeolite related to ZSM-23. Chemical Communications, (22), 2618. doi:10.1039/b410010g es_ES
dc.description.references Xie, D., McCusker, L. B., & Baerlocher, C. (2011). Structure of the Borosilicate Zeolite Catalyst SSZ-82 Solved Using 2D-XPD Charge Flipping. Journal of the American Chemical Society, 133(50), 20604-20610. doi:10.1021/ja209220a es_ES
dc.description.references Strohmaier, K. G., & Vaughan, D. E. W. (2003). Structure of the First Silicate Molecular Sieve with 18-Ring Pore Openings, ECR-34. Journal of the American Chemical Society, 125(51), 16035-16039. doi:10.1021/ja0371653 es_ES
dc.description.references Freyhardt, C. C., Lobo, R. F., Khodabandeh, S., Lewis,, J. E., Tsapatsis, M., Yoshikawa, M., … Davis, M. E. (1996). VPI-8:  A High-Silica Molecular Sieve with a Novel «Pinwheel» Building Unit and Its Implications for the Synthesis of Extra-Large Pore Molecular Sieves. Journal of the American Chemical Society, 118(31), 7299-7310. doi:10.1021/ja954337q es_ES
dc.description.references McKeen, J. C., & Davis, M. E. (2009). Conductivity of Mono- and Divalent Cations in the Microporous Zincosilicate VPI-9. The Journal of Physical Chemistry C, 113(22), 9870-9877. doi:10.1021/jp902235z es_ES
dc.description.references Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016 es_ES
dc.description.references Jiang, J., Jorda, J. L., Diaz-Cabanas, M. J., Yu, J., & Corma, A. (2010). The Synthesis of an Extra-Large-Pore Zeolite with Double Three-Ring Building Units and a Low Framework Density. Angewandte Chemie International Edition, 49(29), 4986-4988. doi:10.1002/anie.201001506 es_ES
dc.description.references Jiang, J., Jorda, J. L., Yu, J., Baumes, L. A., Mugnaioli, E., Diaz-Cabanas, M. J., … Corma, A. (2011). Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science, 333(6046), 1131-1134. doi:10.1126/science.1208652 es_ES
dc.description.references Jiang, J., Yun, Y., Zou, X., Jorda, J. L., & Corma, A. (2015). ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels. Chemical Science, 6(1), 480-485. doi:10.1039/c4sc02577f es_ES
dc.description.references Zhang, C., Kapaca, E., Li, J., Liu, Y., Yi, X., Zheng, A., … Yu, J. (2018). An Extra‐Large‐Pore Zeolite with 24×8×8‐Ring Channels Using a Structure‐Directing Agent Derived from Traditional Chinese Medicine. Angewandte Chemie International Edition, 57(22), 6486-6490. doi:10.1002/anie.201801386 es_ES
dc.description.references Li, J., Corma, A., & Yu, J. (2015). Synthesis of new zeolite structures. Chemical Society Reviews, 44(20), 7112-7127. doi:10.1039/c5cs00023h es_ES
dc.description.references Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r es_ES
dc.description.references C. Y. Chen and S. I.Zones , in Zeolite and Catalysis: Synthesis, Reaction and Application , ed. A. C. Jiri Cejka and S. Zones , Wiley-VCH Verlag GmbH & Co. KGaA , Weinheim , 2010 , ch. 6, vol. 1 , pp. 155–164 es_ES
dc.description.references Valtchev, V., Majano, G., Mintova, S., & Pérez-Ramírez, J. (2013). Tailored crystalline microporous materials by post-synthesis modification. Chem. Soc. Rev., 42(1), 263-290. doi:10.1039/c2cs35196j es_ES
dc.description.references Zones, S. I., Benin, A., Hwang, S.-J., Xie, D., Elomari, S., & Hsieh, M.-F. (2014). Studies of Aluminum Reinsertion into Borosilicate Zeolites with Intersecting Channels of 10- and 12-Ring Channel Systems. Journal of the American Chemical Society, 136(4), 1462-1471. doi:10.1021/ja4100194 es_ES
dc.description.references Gao, F., Jaber, M., Bozhilov, K., Vicente, A., Fernandez, C., & Valtchev, V. (2009). Framework Stabilization of Ge-Rich Zeolites via Postsynthesis Alumination. Journal of the American Chemical Society, 131(45), 16580-16586. doi:10.1021/ja904458y es_ES
dc.description.references Meng, X., & Xiao, F.-S. (2013). Green Routes for Synthesis of Zeolites. Chemical Reviews, 114(2), 1521-1543. doi:10.1021/cr4001513 es_ES
dc.description.references Iyoki, K., Itabashi, K., & Okubo, T. (2014). Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents. Microporous and Mesoporous Materials, 189, 22-30. doi:10.1016/j.micromeso.2013.08.008 es_ES
dc.description.references Xie, B., Song, J., Ren, L., Ji, Y., Li, J., & Xiao, F.-S. (2008). Organotemplate-Free and Fast Route for Synthesizing Beta Zeolite. Chemistry of Materials, 20(14), 4533-4535. doi:10.1021/cm801167e es_ES
dc.description.references Zhang, H., Xie, B., Meng, X., Müller, U., Yilmaz, B., Feyen, M., … Xiao, F.-S. (2013). Rational synthesis of Beta zeolite with improved quality by decreasing crystallization temperature in organotemplate-free route. Microporous and Mesoporous Materials, 180, 123-129. doi:10.1016/j.micromeso.2013.06.031 es_ES
dc.description.references Liao, Y., Pan, S., Bian, C., Meng, X., & Xiao, F.-S. (2015). Improved catalytic activity in methanol electro-oxidation over the nickel form of aluminum-rich beta-SDS zeolite modified electrode. Journal of Materials Chemistry A, 3(11), 5811-5814. doi:10.1039/c4ta06699e es_ES
dc.description.references Yokoi, T., Yoshioka, M., Imai, H., & Tatsumi, T. (2009). Diversification of RTH-Type Zeolite and Its Catalytic Application. Angewandte Chemie International Edition, 48(52), 9884-9887. doi:10.1002/anie.200905214 es_ES
dc.description.references Song, J., Dai, L., Ji, Y., & Xiao, F.-S. (2006). Organic Template Free Synthesis of Aluminosilicate Zeolite ECR-1. Chemistry of Materials, 18(12), 2775-2777. doi:10.1021/cm052593o es_ES
dc.description.references Zhang, H., Yang, C., Zhu, L., Meng, X., Yilmaz, B., Müller, U., … Xiao, F.-S. (2012). Organotemplate-free and seed-directed synthesis of levyne zeolite. Microporous and Mesoporous Materials, 155, 1-7. doi:10.1016/j.micromeso.2011.12.051 es_ES
dc.description.references Xie, B., Zhang, H., Yang, C., Liu, S., Ren, L., Zhang, L., … Xiao, F.-S. (2011). Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates. Chemical Communications, 47(13), 3945. doi:10.1039/c0cc05414c es_ES
dc.description.references Zhang, H., Guo, Q., Ren, L., Yang, C., Zhu, L., Meng, X., … Xiao, F.-S. (2011). Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units. Journal of Materials Chemistry, 21(26), 9494. doi:10.1039/c1jm11786f es_ES
dc.description.references Wang, Y., Wang, X., Wu, Q., Meng, X., Jin, Y., Zhou, X., & Xiao, F.-S. (2014). Seed-directed and organotemplate-free synthesis of TON zeolite. Catalysis Today, 226, 103-108. doi:10.1016/j.cattod.2013.08.002 es_ES
dc.description.references Wu, Q., Wang, X., Meng, X., Yang, C., Liu, Y., Jin, Y., … Xiao, F.-S. (2014). Organotemplate-free, seed-directed, and rapid synthesis of Al-rich zeolite MTT with improved catalytic performance in isomerization of m-xylene. Microporous and Mesoporous Materials, 186, 106-112. doi:10.1016/j.micromeso.2013.11.043 es_ES
dc.description.references Zhang, L., Yang, C., Meng, X., Xie, B., Wang, L., Ren, L., … Xiao, F.-S. (2010). Organotemplate-Free Syntheses of ZSM-34 Zeolite and Its Heteroatom-Substituted Analogues with Good Catalytic Performance. Chemistry of Materials, 22(10), 3099-3107. doi:10.1021/cm100030x es_ES
dc.description.references Yang, C., Ren, L., Zhang, H., Zhu, L., Wang, L., Meng, X., & Xiao, F.-S. (2012). Organotemplate-free and seed-directed synthesis of ZSM-34 zeolite with good performance in methanol-to-olefins. Journal of Materials Chemistry, 22(24), 12238. doi:10.1039/c2jm31479g es_ES
dc.description.references Iyoki, K., Kamimura, Y., Itabashi, K., Shimojima, A., & Okubo, T. (2010). Synthesis of MTW-type Zeolites in the Absence of Organic Structure-directing Agent. Chemistry Letters, 39(7), 730-731. doi:10.1246/cl.2010.730 es_ES
dc.description.references Kamimura, Y., Iyoki, K., Elangovan, S. P., Itabashi, K., Shimojima, A., & Okubo, T. (2012). OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds. Microporous and Mesoporous Materials, 163, 282-290. doi:10.1016/j.micromeso.2012.07.014 es_ES
dc.description.references Moteki, T., & Okubo, T. (2013). From Charge Density Mismatch to a Simplified, More Efficient Seed-Assisted Synthesis of UZM-4. Chemistry of Materials, 25(13), 2603-2609. doi:10.1021/cm400727r es_ES
dc.description.references Ogawa, A., Iyoki, K., Kamimura, Y., Elangovan, S. P., Itabashi, K., & Okubo, T. (2014). Seed-directed, rapid synthesis of MAZ-type zeolites without using organic structure-directing agent. Microporous and Mesoporous Materials, 186, 21-28. doi:10.1016/j.micromeso.2013.11.026 es_ES
dc.description.references Kubota, Y., Itabashi, K., Inagaki, S., Nishita, Y., Komatsu, R., Tsuboi, Y., … Okubo, T. (2014). Effective Fabrication of Catalysts from Large-Pore, Multidimensional Zeolites Synthesized without Using Organic Structure-Directing Agents. Chemistry of Materials, 26(2), 1250-1259. doi:10.1021/cm403797j es_ES
dc.description.references Kamimura, Y., Itabashi, K., Kon, Y., Endo, A., & Okubo, T. (2017). Seed-Assisted Synthesis of MWW-Type Zeolite with Organic Structure-Directing Agent-Free Na-Aluminosilicate Gel System. Chemistry - An Asian Journal, 12(5), 530-542. doi:10.1002/asia.201601569 es_ES
dc.description.references Iyoki, K., Takase, M., Itabashi, K., Muraoka, K., Chaikittisilp, W., & Okubo, T. (2015). Organic structure-directing agent-free synthesis of NES-type zeolites using EU-1 seed crystals. Microporous and Mesoporous Materials, 215, 191-198. doi:10.1016/j.micromeso.2015.05.042 es_ES
dc.description.references ZHOU, H., WU, Y., ZHANG, W., & WANG, J. (2014). Organotemplate-free Hydrothermal Synthesis of SUZ-4 Zeolite: Influence of Synthesis Conditions. Chinese Journal of Chemical Engineering, 22(1), 120-126. doi:10.1016/s1004-9541(14)60019-7 es_ES
dc.description.references Sogukkanli, S., Iyoki, K., Elangovan, S. P., Itabashi, K., & Okubo, T. (2017). Seed-directed Synthesis of CON-type Zeolite Using Tetraethylammonium Hydroxide as a Simple Organic Structure-directing Agent. Chemistry Letters, 46(9), 1419-1421. doi:10.1246/cl.170602 es_ES
dc.description.references Luo, Y., Wang, Z., Sun, J., Wang, Y., Jin, S., Zhang, B., … Yang, W. (2017). A Facile and Green Method for the Synthesis of SFE Borosilicate Zeolite and Its Heteroatom-Substituted Analogues with Promising Catalytic Performances. Chemistry - A European Journal, 24(2), 306-311. doi:10.1002/chem.201704668 es_ES
dc.description.references Iyoki, K., Itabashi, K., Chaikittisilp, W., Elangovan, S. P., Wakihara, T., Kohara, S., & Okubo, T. (2014). Broadening the Applicable Scope of Seed-Directed, Organic Structure-Directing Agent-Free Synthesis of Zeolite to Zincosilicate Components: A Case of VET-Type Zincosilicate Zeolites. Chemistry of Materials, 26(5), 1957-1966. doi:10.1021/cm500229f es_ES
dc.description.references Ng, E.-P., Chateigner, D., Bein, T., Valtchev, V., & Mintova, S. (2012). Capturing Ultrasmall EMT Zeolite from Template-Free Systems. Science, 335(6064), 70-73. doi:10.1126/science.1214798 es_ES
dc.description.references Kamimura, Y., Itabashi, K., & Okubo, T. (2012). Seed-assisted, OSDA-free synthesis of MTW-type zeolite and «Green MTW» from sodium aluminosilicate gel systems. Microporous and Mesoporous Materials, 147(1), 149-156. doi:10.1016/j.micromeso.2011.05.038 es_ES
dc.description.references Simancas, R., Dari, D., Velamazán, N., Navarro, M. T., Cantín, A., Jordá, J. L., … Rey, F. (2010). Modular Organic Structure-Directing Agents for the Synthesis of Zeolites. Science, 330(6008), 1219-1222. doi:10.1126/science.1196240 es_ES
dc.description.references Ghorbanpour, A., Gumidyala, A., Grabow, L. C., Crossley, S. P., & Rimer, J. D. (2015). Epitaxial Growth of ZSM-5@Silicalite-1: A Core–Shell Zeolite Designed with Passivated Surface Acidity. ACS Nano, 9(4), 4006-4016. doi:10.1021/acsnano.5b01308 es_ES
dc.description.references Bouizi, Y., Rouleau, L., & Valtchev, V. P. (2006). Bi-phase MOR/MFI-type zeolite core–shell composite. Microporous and Mesoporous Materials, 91(1-3), 70-77. doi:10.1016/j.micromeso.2005.11.016 es_ES
dc.description.references PEREZPARIENTE, J. (1990). 29Si and 27Al MAS NMR study of zeolite $beta; with different Si/Al Ratios. Journal of Catalysis, 124(1), 217-223. doi:10.1016/0021-9517(90)90116-2 es_ES
dc.description.references Lentz, P., Nagy, J. ., Delevoye, L., Dumazy, Y., Fernandez, C., Amoureux, J.-P., … Nastro, A. (1999). 2D multiple quantum 27Al NMR and 29Si NMR characterization of levyne. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 158(1-2), 13-20. doi:10.1016/s0927-7757(99)00125-9 es_ES
dc.description.references Boronat, M., & Corma, A. (2019). What Is Measured When Measuring Acidity in Zeolites with Probe Molecules? ACS Catalysis, 9(2), 1539-1548. doi:10.1021/acscatal.8b04317 es_ES
dc.description.references Maity, A., Chaudhari, S., Titman, J. J., & Polshettiwar, V. (2020). Catalytic nanosponges of acidic aluminosilicates for plastic degradation and CO2 to fuel conversion. Nature Communications, 11(1). doi:10.1038/s41467-020-17711-6 es_ES
dc.description.references Dusselier, M., Van Wouwe, P., Dewaele, A., Jacobs, P. A., & Sels, B. F. (2015). Shape-selective zeolite catalysis for bioplastics production. Science, 349(6243), 78-80. doi:10.1126/science.aaa7169 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem