- -

Direct synthesis of the organic and Ge free Al containing BOG zeolite (ITQ-47) and its application for transformation of biomass derived molecules

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Direct synthesis of the organic and Ge free Al containing BOG zeolite (ITQ-47) and its application for transformation of biomass derived molecules

Mostrar el registro completo del ítem

Huang, Q.; Chen, N.; Liu, L.; Arias-Carrascal, KS.; Iborra Chornet, S.; Yi, X.; Ma, C.... (2020). Direct synthesis of the organic and Ge free Al containing BOG zeolite (ITQ-47) and its application for transformation of biomass derived molecules. Chemical Science. 11(44):12103-12108. https://doi.org/10.1039/d0sc04044d

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165766

Ficheros en el ítem

Metadatos del ítem

Título: Direct synthesis of the organic and Ge free Al containing BOG zeolite (ITQ-47) and its application for transformation of biomass derived molecules
Autor: Huang, Qintong Chen, Ningyue Liu, Lichen Arias-Carrascal, Karen Sulay Iborra Chornet, Sara Yi, Xianfeng Ma, Chao Lianf, Weichi Zheng, Anmin Zhang, Chuanqi Hu, Jibo Cai, Zilin Liu, Yi Jiang, Jiuxing Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Aluminosilicate boggsite (Si/Al-BOG) has been hydrothermally synthesized without adding org. structure-directing agents (OSDAs) in the synthesis gel using the borosilicogermanium ITQ-47 (Si/B-ITQ-47) zeolite as seeds. ...[+]
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
Chemical Science. (issn: 2041-6520 )
DOI: 10.1039/d0sc04044d
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/d0sc04044d
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
...[+]
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/NSFC//21971259/
info:eu-repo/grantAgreement/NSFC//91645112/
info:eu-repo/grantAgreement/Natural Science Foundation of Hubei Province//2014CFA043/
info:eu-repo/grantAgreement/CAS//QYZDB-SSW-SLH026/
[-]
Agradecimientos:
This work was supported by the National Natural Science Foundation of China 21971259 and 91645112, The Natural Science Foundation of Hubei Province of China (2014CFA043), and the Key Research Program of Frontier Sciences, ...[+]
Tipo: Artículo

References

Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i

C. Baerlocher and L. B.McCusker , Database of Zeolite Structures , http://www.iza-structure.org/databases/ , accessed June 8, 2018

Lobo, R. F., Pan, M., Chan, I., Medrud, R. C., Zones, S. I., Crozier, P. A., & Davis, M. E. (1994). Physicochemical Characterization of Zeolites SSZ-26 and SSZ-33. The Journal of Physical Chemistry, 98(46), 12040-12052. doi:10.1021/j100097a033 [+]
Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i

C. Baerlocher and L. B.McCusker , Database of Zeolite Structures , http://www.iza-structure.org/databases/ , accessed June 8, 2018

Lobo, R. F., Pan, M., Chan, I., Medrud, R. C., Zones, S. I., Crozier, P. A., & Davis, M. E. (1994). Physicochemical Characterization of Zeolites SSZ-26 and SSZ-33. The Journal of Physical Chemistry, 98(46), 12040-12052. doi:10.1021/j100097a033

Lobo, R. F., Pan, M., Chan, I., Li, H.-X., Medrud, R. C., Zones, S. I., … Davis, M. E. (1993). SSZ-26 and SSZ-33: Two Molecular Sieves with Intersecting 10- and 12-Ring Pores. Science, 262(5139), 1543-1546. doi:10.1126/science.262.5139.1543

Marler, B., Grünewald-Lüke, A., & Gies, H. (1995). Decasils, a new order-disorder family of microporous silicas. Zeolites, 15(5), 388-399. doi:10.1016/0144-2449(94)00065-z

Burton, A., Darton, R. J., Davis, M. E., Hwang, S.-J., Morris, R. E., Ogino, I., & Zones, S. I. (2006). Structure-Directing Agent Location and Non-Centrosymmetric Structure of Fluoride-Containing Zeolite SSZ-55. The Journal of Physical Chemistry B, 110(11), 5273-5278. doi:10.1021/jp054950o

Lobo, R. F., & Davis, M. E. (1995). CIT-1: A New Molecular Sieve with Intersecting Pores Bounded by 10- and 12-Rings. Journal of the American Chemical Society, 117(13), 3766-3779. doi:10.1021/ja00118a013

Paul, F., Meyer, W. E., Toupet, L., Jiao, H., Gladysz, J. A., & Lapinte, C. (2000). A «Conjugal» Consanguineous Family of Butadiynediyl-Derived Complexes:  Synthesis and Electronic Ground States of Neutral, Radical Cationic, and Dicationic Iron/Rhenium C4 Species. Journal of the American Chemical Society, 122(39), 9405-9414. doi:10.1021/ja0011055

Vortmann, S., Marler, B., Gies, H., & Daniels, P. (1995). Synthesis and crystal structure of the new borosilicate zeolite RUB-13. Microporous Materials, 4(2-3), 111-121. doi:10.1016/0927-6513(94)00090-i

Wagner, P., Terasaki, O., Ritsch, S., Nery, J. G., Zones, S. I., Davis, M. E., & Hiraga, K. (1999). Electron Diffraction Structure Solution of a Nanocrystalline Zeolite at Atomic Resolution. The Journal of Physical Chemistry B, 103(39), 8245-8250. doi:10.1021/jp991389j

Burton, A., Elomari, S., Medrud, R. C., Chan, I. Y., Chen, C.-Y., Bull, L. M., & Vittoratos, E. S. (2003). The Synthesis, Characterization, and Structure Solution of SSZ-58:  A Novel Two-Dimensional 10-Ring Pore Zeolite with Previously Unseen Double 5-Ring Subunits. Journal of the American Chemical Society, 125(6), 1633-1642. doi:10.1021/ja021242x

Burton, A., Elomari, S., Chen, C.-Y., Medrud, R. C., Chan, I. Y., Bull, L. M., … Vittoratos, E. S. (2003). SSZ-53 and SSZ-59: Two Novel Extra-Large Pore Zeolites. Chemistry - A European Journal, 9(23), 5737-5748. doi:10.1002/chem.200305238

Elomari, S., Burton, A., Medrud, R. C., & Grosse-Kunstleve, R. (2009). The synthesis, characterization, and structure solution of SSZ-56: An extreme example of isomer specificity in the structure direction of zeolites. Microporous and Mesoporous Materials, 118(1-3), 325-333. doi:10.1016/j.micromeso.2008.09.011

Elomari, S., Burton, A. W., Ong, K., Pradhan, A. R., & Chan, I. Y. (2007). Synthesis and Structure Solution of Zeolite SSZ-65. Chemistry of Materials, 19(23), 5485-5492. doi:10.1021/cm070459t

Burton, A., & Elomari, S. (2004). SSZ-60: a new large-pore zeolite related to ZSM-23. Chemical Communications, (22), 2618. doi:10.1039/b410010g

Xie, D., McCusker, L. B., & Baerlocher, C. (2011). Structure of the Borosilicate Zeolite Catalyst SSZ-82 Solved Using 2D-XPD Charge Flipping. Journal of the American Chemical Society, 133(50), 20604-20610. doi:10.1021/ja209220a

Strohmaier, K. G., & Vaughan, D. E. W. (2003). Structure of the First Silicate Molecular Sieve with 18-Ring Pore Openings, ECR-34. Journal of the American Chemical Society, 125(51), 16035-16039. doi:10.1021/ja0371653

Freyhardt, C. C., Lobo, R. F., Khodabandeh, S., Lewis,, J. E., Tsapatsis, M., Yoshikawa, M., … Davis, M. E. (1996). VPI-8:  A High-Silica Molecular Sieve with a Novel «Pinwheel» Building Unit and Its Implications for the Synthesis of Extra-Large Pore Molecular Sieves. Journal of the American Chemical Society, 118(31), 7299-7310. doi:10.1021/ja954337q

McKeen, J. C., & Davis, M. E. (2009). Conductivity of Mono- and Divalent Cations in the Microporous Zincosilicate VPI-9. The Journal of Physical Chemistry C, 113(22), 9870-9877. doi:10.1021/jp902235z

Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016

Jiang, J., Jorda, J. L., Diaz-Cabanas, M. J., Yu, J., & Corma, A. (2010). The Synthesis of an Extra-Large-Pore Zeolite with Double Three-Ring Building Units and a Low Framework Density. Angewandte Chemie International Edition, 49(29), 4986-4988. doi:10.1002/anie.201001506

Jiang, J., Jorda, J. L., Yu, J., Baumes, L. A., Mugnaioli, E., Diaz-Cabanas, M. J., … Corma, A. (2011). Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science, 333(6046), 1131-1134. doi:10.1126/science.1208652

Jiang, J., Yun, Y., Zou, X., Jorda, J. L., & Corma, A. (2015). ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels. Chemical Science, 6(1), 480-485. doi:10.1039/c4sc02577f

Zhang, C., Kapaca, E., Li, J., Liu, Y., Yi, X., Zheng, A., … Yu, J. (2018). An Extra‐Large‐Pore Zeolite with 24×8×8‐Ring Channels Using a Structure‐Directing Agent Derived from Traditional Chinese Medicine. Angewandte Chemie International Edition, 57(22), 6486-6490. doi:10.1002/anie.201801386

Li, J., Corma, A., & Yu, J. (2015). Synthesis of new zeolite structures. Chemical Society Reviews, 44(20), 7112-7127. doi:10.1039/c5cs00023h

Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r

C. Y. Chen and S. I.Zones , in Zeolite and Catalysis: Synthesis, Reaction and Application , ed. A. C. Jiri Cejka and S. Zones , Wiley-VCH Verlag GmbH & Co. KGaA , Weinheim , 2010 , ch. 6, vol. 1 , pp. 155–164

Valtchev, V., Majano, G., Mintova, S., & Pérez-Ramírez, J. (2013). Tailored crystalline microporous materials by post-synthesis modification. Chem. Soc. Rev., 42(1), 263-290. doi:10.1039/c2cs35196j

Zones, S. I., Benin, A., Hwang, S.-J., Xie, D., Elomari, S., & Hsieh, M.-F. (2014). Studies of Aluminum Reinsertion into Borosilicate Zeolites with Intersecting Channels of 10- and 12-Ring Channel Systems. Journal of the American Chemical Society, 136(4), 1462-1471. doi:10.1021/ja4100194

Gao, F., Jaber, M., Bozhilov, K., Vicente, A., Fernandez, C., & Valtchev, V. (2009). Framework Stabilization of Ge-Rich Zeolites via Postsynthesis Alumination. Journal of the American Chemical Society, 131(45), 16580-16586. doi:10.1021/ja904458y

Meng, X., & Xiao, F.-S. (2013). Green Routes for Synthesis of Zeolites. Chemical Reviews, 114(2), 1521-1543. doi:10.1021/cr4001513

Iyoki, K., Itabashi, K., & Okubo, T. (2014). Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents. Microporous and Mesoporous Materials, 189, 22-30. doi:10.1016/j.micromeso.2013.08.008

Xie, B., Song, J., Ren, L., Ji, Y., Li, J., & Xiao, F.-S. (2008). Organotemplate-Free and Fast Route for Synthesizing Beta Zeolite. Chemistry of Materials, 20(14), 4533-4535. doi:10.1021/cm801167e

Zhang, H., Xie, B., Meng, X., Müller, U., Yilmaz, B., Feyen, M., … Xiao, F.-S. (2013). Rational synthesis of Beta zeolite with improved quality by decreasing crystallization temperature in organotemplate-free route. Microporous and Mesoporous Materials, 180, 123-129. doi:10.1016/j.micromeso.2013.06.031

Liao, Y., Pan, S., Bian, C., Meng, X., & Xiao, F.-S. (2015). Improved catalytic activity in methanol electro-oxidation over the nickel form of aluminum-rich beta-SDS zeolite modified electrode. Journal of Materials Chemistry A, 3(11), 5811-5814. doi:10.1039/c4ta06699e

Yokoi, T., Yoshioka, M., Imai, H., & Tatsumi, T. (2009). Diversification of RTH-Type Zeolite and Its Catalytic Application. Angewandte Chemie International Edition, 48(52), 9884-9887. doi:10.1002/anie.200905214

Song, J., Dai, L., Ji, Y., & Xiao, F.-S. (2006). Organic Template Free Synthesis of Aluminosilicate Zeolite ECR-1. Chemistry of Materials, 18(12), 2775-2777. doi:10.1021/cm052593o

Zhang, H., Yang, C., Zhu, L., Meng, X., Yilmaz, B., Müller, U., … Xiao, F.-S. (2012). Organotemplate-free and seed-directed synthesis of levyne zeolite. Microporous and Mesoporous Materials, 155, 1-7. doi:10.1016/j.micromeso.2011.12.051

Xie, B., Zhang, H., Yang, C., Liu, S., Ren, L., Zhang, L., … Xiao, F.-S. (2011). Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates. Chemical Communications, 47(13), 3945. doi:10.1039/c0cc05414c

Zhang, H., Guo, Q., Ren, L., Yang, C., Zhu, L., Meng, X., … Xiao, F.-S. (2011). Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units. Journal of Materials Chemistry, 21(26), 9494. doi:10.1039/c1jm11786f

Wang, Y., Wang, X., Wu, Q., Meng, X., Jin, Y., Zhou, X., & Xiao, F.-S. (2014). Seed-directed and organotemplate-free synthesis of TON zeolite. Catalysis Today, 226, 103-108. doi:10.1016/j.cattod.2013.08.002

Wu, Q., Wang, X., Meng, X., Yang, C., Liu, Y., Jin, Y., … Xiao, F.-S. (2014). Organotemplate-free, seed-directed, and rapid synthesis of Al-rich zeolite MTT with improved catalytic performance in isomerization of m-xylene. Microporous and Mesoporous Materials, 186, 106-112. doi:10.1016/j.micromeso.2013.11.043

Zhang, L., Yang, C., Meng, X., Xie, B., Wang, L., Ren, L., … Xiao, F.-S. (2010). Organotemplate-Free Syntheses of ZSM-34 Zeolite and Its Heteroatom-Substituted Analogues with Good Catalytic Performance. Chemistry of Materials, 22(10), 3099-3107. doi:10.1021/cm100030x

Yang, C., Ren, L., Zhang, H., Zhu, L., Wang, L., Meng, X., & Xiao, F.-S. (2012). Organotemplate-free and seed-directed synthesis of ZSM-34 zeolite with good performance in methanol-to-olefins. Journal of Materials Chemistry, 22(24), 12238. doi:10.1039/c2jm31479g

Iyoki, K., Kamimura, Y., Itabashi, K., Shimojima, A., & Okubo, T. (2010). Synthesis of MTW-type Zeolites in the Absence of Organic Structure-directing Agent. Chemistry Letters, 39(7), 730-731. doi:10.1246/cl.2010.730

Kamimura, Y., Iyoki, K., Elangovan, S. P., Itabashi, K., Shimojima, A., & Okubo, T. (2012). OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds. Microporous and Mesoporous Materials, 163, 282-290. doi:10.1016/j.micromeso.2012.07.014

Moteki, T., & Okubo, T. (2013). From Charge Density Mismatch to a Simplified, More Efficient Seed-Assisted Synthesis of UZM-4. Chemistry of Materials, 25(13), 2603-2609. doi:10.1021/cm400727r

Ogawa, A., Iyoki, K., Kamimura, Y., Elangovan, S. P., Itabashi, K., & Okubo, T. (2014). Seed-directed, rapid synthesis of MAZ-type zeolites without using organic structure-directing agent. Microporous and Mesoporous Materials, 186, 21-28. doi:10.1016/j.micromeso.2013.11.026

Kubota, Y., Itabashi, K., Inagaki, S., Nishita, Y., Komatsu, R., Tsuboi, Y., … Okubo, T. (2014). Effective Fabrication of Catalysts from Large-Pore, Multidimensional Zeolites Synthesized without Using Organic Structure-Directing Agents. Chemistry of Materials, 26(2), 1250-1259. doi:10.1021/cm403797j

Kamimura, Y., Itabashi, K., Kon, Y., Endo, A., & Okubo, T. (2017). Seed-Assisted Synthesis of MWW-Type Zeolite with Organic Structure-Directing Agent-Free Na-Aluminosilicate Gel System. Chemistry - An Asian Journal, 12(5), 530-542. doi:10.1002/asia.201601569

Iyoki, K., Takase, M., Itabashi, K., Muraoka, K., Chaikittisilp, W., & Okubo, T. (2015). Organic structure-directing agent-free synthesis of NES-type zeolites using EU-1 seed crystals. Microporous and Mesoporous Materials, 215, 191-198. doi:10.1016/j.micromeso.2015.05.042

ZHOU, H., WU, Y., ZHANG, W., & WANG, J. (2014). Organotemplate-free Hydrothermal Synthesis of SUZ-4 Zeolite: Influence of Synthesis Conditions. Chinese Journal of Chemical Engineering, 22(1), 120-126. doi:10.1016/s1004-9541(14)60019-7

Sogukkanli, S., Iyoki, K., Elangovan, S. P., Itabashi, K., & Okubo, T. (2017). Seed-directed Synthesis of CON-type Zeolite Using Tetraethylammonium Hydroxide as a Simple Organic Structure-directing Agent. Chemistry Letters, 46(9), 1419-1421. doi:10.1246/cl.170602

Luo, Y., Wang, Z., Sun, J., Wang, Y., Jin, S., Zhang, B., … Yang, W. (2017). A Facile and Green Method for the Synthesis of SFE Borosilicate Zeolite and Its Heteroatom-Substituted Analogues with Promising Catalytic Performances. Chemistry - A European Journal, 24(2), 306-311. doi:10.1002/chem.201704668

Iyoki, K., Itabashi, K., Chaikittisilp, W., Elangovan, S. P., Wakihara, T., Kohara, S., & Okubo, T. (2014). Broadening the Applicable Scope of Seed-Directed, Organic Structure-Directing Agent-Free Synthesis of Zeolite to Zincosilicate Components: A Case of VET-Type Zincosilicate Zeolites. Chemistry of Materials, 26(5), 1957-1966. doi:10.1021/cm500229f

Ng, E.-P., Chateigner, D., Bein, T., Valtchev, V., & Mintova, S. (2012). Capturing Ultrasmall EMT Zeolite from Template-Free Systems. Science, 335(6064), 70-73. doi:10.1126/science.1214798

Kamimura, Y., Itabashi, K., & Okubo, T. (2012). Seed-assisted, OSDA-free synthesis of MTW-type zeolite and «Green MTW» from sodium aluminosilicate gel systems. Microporous and Mesoporous Materials, 147(1), 149-156. doi:10.1016/j.micromeso.2011.05.038

Simancas, R., Dari, D., Velamazán, N., Navarro, M. T., Cantín, A., Jordá, J. L., … Rey, F. (2010). Modular Organic Structure-Directing Agents for the Synthesis of Zeolites. Science, 330(6008), 1219-1222. doi:10.1126/science.1196240

Ghorbanpour, A., Gumidyala, A., Grabow, L. C., Crossley, S. P., & Rimer, J. D. (2015). Epitaxial Growth of ZSM-5@Silicalite-1: A Core–Shell Zeolite Designed with Passivated Surface Acidity. ACS Nano, 9(4), 4006-4016. doi:10.1021/acsnano.5b01308

Bouizi, Y., Rouleau, L., & Valtchev, V. P. (2006). Bi-phase MOR/MFI-type zeolite core–shell composite. Microporous and Mesoporous Materials, 91(1-3), 70-77. doi:10.1016/j.micromeso.2005.11.016

PEREZPARIENTE, J. (1990). 29Si and 27Al MAS NMR study of zeolite $beta; with different Si/Al Ratios. Journal of Catalysis, 124(1), 217-223. doi:10.1016/0021-9517(90)90116-2

Lentz, P., Nagy, J. ., Delevoye, L., Dumazy, Y., Fernandez, C., Amoureux, J.-P., … Nastro, A. (1999). 2D multiple quantum 27Al NMR and 29Si NMR characterization of levyne. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 158(1-2), 13-20. doi:10.1016/s0927-7757(99)00125-9

Boronat, M., & Corma, A. (2019). What Is Measured When Measuring Acidity in Zeolites with Probe Molecules? ACS Catalysis, 9(2), 1539-1548. doi:10.1021/acscatal.8b04317

Maity, A., Chaudhari, S., Titman, J. J., & Polshettiwar, V. (2020). Catalytic nanosponges of acidic aluminosilicates for plastic degradation and CO2 to fuel conversion. Nature Communications, 11(1). doi:10.1038/s41467-020-17711-6

Dusselier, M., Van Wouwe, P., Dewaele, A., Jacobs, P. A., & Sels, B. F. (2015). Shape-selective zeolite catalysis for bioplastics production. Science, 349(6243), 78-80. doi:10.1126/science.aaa7169

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem