Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i
C. Baerlocher and L. B.McCusker , Database of Zeolite Structures , http://www.iza-structure.org/databases/ , accessed June 8, 2018
Lobo, R. F., Pan, M., Chan, I., Medrud, R. C., Zones, S. I., Crozier, P. A., & Davis, M. E. (1994). Physicochemical Characterization of Zeolites SSZ-26 and SSZ-33. The Journal of Physical Chemistry, 98(46), 12040-12052. doi:10.1021/j100097a033
[+]
Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i
C. Baerlocher and L. B.McCusker , Database of Zeolite Structures , http://www.iza-structure.org/databases/ , accessed June 8, 2018
Lobo, R. F., Pan, M., Chan, I., Medrud, R. C., Zones, S. I., Crozier, P. A., & Davis, M. E. (1994). Physicochemical Characterization of Zeolites SSZ-26 and SSZ-33. The Journal of Physical Chemistry, 98(46), 12040-12052. doi:10.1021/j100097a033
Lobo, R. F., Pan, M., Chan, I., Li, H.-X., Medrud, R. C., Zones, S. I., … Davis, M. E. (1993). SSZ-26 and SSZ-33: Two Molecular Sieves with Intersecting 10- and 12-Ring Pores. Science, 262(5139), 1543-1546. doi:10.1126/science.262.5139.1543
Marler, B., Grünewald-Lüke, A., & Gies, H. (1995). Decasils, a new order-disorder family of microporous silicas. Zeolites, 15(5), 388-399. doi:10.1016/0144-2449(94)00065-z
Burton, A., Darton, R. J., Davis, M. E., Hwang, S.-J., Morris, R. E., Ogino, I., & Zones, S. I. (2006). Structure-Directing Agent Location and Non-Centrosymmetric Structure of Fluoride-Containing Zeolite SSZ-55. The Journal of Physical Chemistry B, 110(11), 5273-5278. doi:10.1021/jp054950o
Lobo, R. F., & Davis, M. E. (1995). CIT-1: A New Molecular Sieve with Intersecting Pores Bounded by 10- and 12-Rings. Journal of the American Chemical Society, 117(13), 3766-3779. doi:10.1021/ja00118a013
Paul, F., Meyer, W. E., Toupet, L., Jiao, H., Gladysz, J. A., & Lapinte, C. (2000). A «Conjugal» Consanguineous Family of Butadiynediyl-Derived Complexes: Synthesis and Electronic Ground States of Neutral, Radical Cationic, and Dicationic Iron/Rhenium C4 Species. Journal of the American Chemical Society, 122(39), 9405-9414. doi:10.1021/ja0011055
Vortmann, S., Marler, B., Gies, H., & Daniels, P. (1995). Synthesis and crystal structure of the new borosilicate zeolite RUB-13. Microporous Materials, 4(2-3), 111-121. doi:10.1016/0927-6513(94)00090-i
Wagner, P., Terasaki, O., Ritsch, S., Nery, J. G., Zones, S. I., Davis, M. E., & Hiraga, K. (1999). Electron Diffraction Structure Solution of a Nanocrystalline Zeolite at Atomic Resolution. The Journal of Physical Chemistry B, 103(39), 8245-8250. doi:10.1021/jp991389j
Burton, A., Elomari, S., Medrud, R. C., Chan, I. Y., Chen, C.-Y., Bull, L. M., & Vittoratos, E. S. (2003). The Synthesis, Characterization, and Structure Solution of SSZ-58: A Novel Two-Dimensional 10-Ring Pore Zeolite with Previously Unseen Double 5-Ring Subunits. Journal of the American Chemical Society, 125(6), 1633-1642. doi:10.1021/ja021242x
Burton, A., Elomari, S., Chen, C.-Y., Medrud, R. C., Chan, I. Y., Bull, L. M., … Vittoratos, E. S. (2003). SSZ-53 and SSZ-59: Two Novel Extra-Large Pore Zeolites. Chemistry - A European Journal, 9(23), 5737-5748. doi:10.1002/chem.200305238
Elomari, S., Burton, A., Medrud, R. C., & Grosse-Kunstleve, R. (2009). The synthesis, characterization, and structure solution of SSZ-56: An extreme example of isomer specificity in the structure direction of zeolites. Microporous and Mesoporous Materials, 118(1-3), 325-333. doi:10.1016/j.micromeso.2008.09.011
Elomari, S., Burton, A. W., Ong, K., Pradhan, A. R., & Chan, I. Y. (2007). Synthesis and Structure Solution of Zeolite SSZ-65. Chemistry of Materials, 19(23), 5485-5492. doi:10.1021/cm070459t
Burton, A., & Elomari, S. (2004). SSZ-60: a new large-pore zeolite related to ZSM-23. Chemical Communications, (22), 2618. doi:10.1039/b410010g
Xie, D., McCusker, L. B., & Baerlocher, C. (2011). Structure of the Borosilicate Zeolite Catalyst SSZ-82 Solved Using 2D-XPD Charge Flipping. Journal of the American Chemical Society, 133(50), 20604-20610. doi:10.1021/ja209220a
Strohmaier, K. G., & Vaughan, D. E. W. (2003). Structure of the First Silicate Molecular Sieve with 18-Ring Pore Openings, ECR-34. Journal of the American Chemical Society, 125(51), 16035-16039. doi:10.1021/ja0371653
Freyhardt, C. C., Lobo, R. F., Khodabandeh, S., Lewis,, J. E., Tsapatsis, M., Yoshikawa, M., … Davis, M. E. (1996). VPI-8: A High-Silica Molecular Sieve with a Novel «Pinwheel» Building Unit and Its Implications for the Synthesis of Extra-Large Pore Molecular Sieves. Journal of the American Chemical Society, 118(31), 7299-7310. doi:10.1021/ja954337q
McKeen, J. C., & Davis, M. E. (2009). Conductivity of Mono- and Divalent Cations in the Microporous Zincosilicate VPI-9. The Journal of Physical Chemistry C, 113(22), 9870-9877. doi:10.1021/jp902235z
Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016
Jiang, J., Jorda, J. L., Diaz-Cabanas, M. J., Yu, J., & Corma, A. (2010). The Synthesis of an Extra-Large-Pore Zeolite with Double Three-Ring Building Units and a Low Framework Density. Angewandte Chemie International Edition, 49(29), 4986-4988. doi:10.1002/anie.201001506
Jiang, J., Jorda, J. L., Yu, J., Baumes, L. A., Mugnaioli, E., Diaz-Cabanas, M. J., … Corma, A. (2011). Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science, 333(6046), 1131-1134. doi:10.1126/science.1208652
Jiang, J., Yun, Y., Zou, X., Jorda, J. L., & Corma, A. (2015). ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels. Chemical Science, 6(1), 480-485. doi:10.1039/c4sc02577f
Zhang, C., Kapaca, E., Li, J., Liu, Y., Yi, X., Zheng, A., … Yu, J. (2018). An Extra‐Large‐Pore Zeolite with 24×8×8‐Ring Channels Using a Structure‐Directing Agent Derived from Traditional Chinese Medicine. Angewandte Chemie International Edition, 57(22), 6486-6490. doi:10.1002/anie.201801386
Li, J., Corma, A., & Yu, J. (2015). Synthesis of new zeolite structures. Chemical Society Reviews, 44(20), 7112-7127. doi:10.1039/c5cs00023h
Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r
C. Y. Chen and S. I.Zones , in Zeolite and Catalysis: Synthesis, Reaction and Application , ed. A. C. Jiri Cejka and S. Zones , Wiley-VCH Verlag GmbH & Co. KGaA , Weinheim , 2010 , ch. 6, vol. 1 , pp. 155–164
Valtchev, V., Majano, G., Mintova, S., & Pérez-Ramírez, J. (2013). Tailored crystalline microporous materials by post-synthesis modification. Chem. Soc. Rev., 42(1), 263-290. doi:10.1039/c2cs35196j
Zones, S. I., Benin, A., Hwang, S.-J., Xie, D., Elomari, S., & Hsieh, M.-F. (2014). Studies of Aluminum Reinsertion into Borosilicate Zeolites with Intersecting Channels of 10- and 12-Ring Channel Systems. Journal of the American Chemical Society, 136(4), 1462-1471. doi:10.1021/ja4100194
Gao, F., Jaber, M., Bozhilov, K., Vicente, A., Fernandez, C., & Valtchev, V. (2009). Framework Stabilization of Ge-Rich Zeolites via Postsynthesis Alumination. Journal of the American Chemical Society, 131(45), 16580-16586. doi:10.1021/ja904458y
Meng, X., & Xiao, F.-S. (2013). Green Routes for Synthesis of Zeolites. Chemical Reviews, 114(2), 1521-1543. doi:10.1021/cr4001513
Iyoki, K., Itabashi, K., & Okubo, T. (2014). Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents. Microporous and Mesoporous Materials, 189, 22-30. doi:10.1016/j.micromeso.2013.08.008
Xie, B., Song, J., Ren, L., Ji, Y., Li, J., & Xiao, F.-S. (2008). Organotemplate-Free and Fast Route for Synthesizing Beta Zeolite. Chemistry of Materials, 20(14), 4533-4535. doi:10.1021/cm801167e
Zhang, H., Xie, B., Meng, X., Müller, U., Yilmaz, B., Feyen, M., … Xiao, F.-S. (2013). Rational synthesis of Beta zeolite with improved quality by decreasing crystallization temperature in organotemplate-free route. Microporous and Mesoporous Materials, 180, 123-129. doi:10.1016/j.micromeso.2013.06.031
Liao, Y., Pan, S., Bian, C., Meng, X., & Xiao, F.-S. (2015). Improved catalytic activity in methanol electro-oxidation over the nickel form of aluminum-rich beta-SDS zeolite modified electrode. Journal of Materials Chemistry A, 3(11), 5811-5814. doi:10.1039/c4ta06699e
Yokoi, T., Yoshioka, M., Imai, H., & Tatsumi, T. (2009). Diversification of RTH-Type Zeolite and Its Catalytic Application. Angewandte Chemie International Edition, 48(52), 9884-9887. doi:10.1002/anie.200905214
Song, J., Dai, L., Ji, Y., & Xiao, F.-S. (2006). Organic Template Free Synthesis of Aluminosilicate Zeolite ECR-1. Chemistry of Materials, 18(12), 2775-2777. doi:10.1021/cm052593o
Zhang, H., Yang, C., Zhu, L., Meng, X., Yilmaz, B., Müller, U., … Xiao, F.-S. (2012). Organotemplate-free and seed-directed synthesis of levyne zeolite. Microporous and Mesoporous Materials, 155, 1-7. doi:10.1016/j.micromeso.2011.12.051
Xie, B., Zhang, H., Yang, C., Liu, S., Ren, L., Zhang, L., … Xiao, F.-S. (2011). Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates. Chemical Communications, 47(13), 3945. doi:10.1039/c0cc05414c
Zhang, H., Guo, Q., Ren, L., Yang, C., Zhu, L., Meng, X., … Xiao, F.-S. (2011). Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units. Journal of Materials Chemistry, 21(26), 9494. doi:10.1039/c1jm11786f
Wang, Y., Wang, X., Wu, Q., Meng, X., Jin, Y., Zhou, X., & Xiao, F.-S. (2014). Seed-directed and organotemplate-free synthesis of TON zeolite. Catalysis Today, 226, 103-108. doi:10.1016/j.cattod.2013.08.002
Wu, Q., Wang, X., Meng, X., Yang, C., Liu, Y., Jin, Y., … Xiao, F.-S. (2014). Organotemplate-free, seed-directed, and rapid synthesis of Al-rich zeolite MTT with improved catalytic performance in isomerization of m-xylene. Microporous and Mesoporous Materials, 186, 106-112. doi:10.1016/j.micromeso.2013.11.043
Zhang, L., Yang, C., Meng, X., Xie, B., Wang, L., Ren, L., … Xiao, F.-S. (2010). Organotemplate-Free Syntheses of ZSM-34 Zeolite and Its Heteroatom-Substituted Analogues with Good Catalytic Performance. Chemistry of Materials, 22(10), 3099-3107. doi:10.1021/cm100030x
Yang, C., Ren, L., Zhang, H., Zhu, L., Wang, L., Meng, X., & Xiao, F.-S. (2012). Organotemplate-free and seed-directed synthesis of ZSM-34 zeolite with good performance in methanol-to-olefins. Journal of Materials Chemistry, 22(24), 12238. doi:10.1039/c2jm31479g
Iyoki, K., Kamimura, Y., Itabashi, K., Shimojima, A., & Okubo, T. (2010). Synthesis of MTW-type Zeolites in the Absence of Organic Structure-directing Agent. Chemistry Letters, 39(7), 730-731. doi:10.1246/cl.2010.730
Kamimura, Y., Iyoki, K., Elangovan, S. P., Itabashi, K., Shimojima, A., & Okubo, T. (2012). OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds. Microporous and Mesoporous Materials, 163, 282-290. doi:10.1016/j.micromeso.2012.07.014
Moteki, T., & Okubo, T. (2013). From Charge Density Mismatch to a Simplified, More Efficient Seed-Assisted Synthesis of UZM-4. Chemistry of Materials, 25(13), 2603-2609. doi:10.1021/cm400727r
Ogawa, A., Iyoki, K., Kamimura, Y., Elangovan, S. P., Itabashi, K., & Okubo, T. (2014). Seed-directed, rapid synthesis of MAZ-type zeolites without using organic structure-directing agent. Microporous and Mesoporous Materials, 186, 21-28. doi:10.1016/j.micromeso.2013.11.026
Kubota, Y., Itabashi, K., Inagaki, S., Nishita, Y., Komatsu, R., Tsuboi, Y., … Okubo, T. (2014). Effective Fabrication of Catalysts from Large-Pore, Multidimensional Zeolites Synthesized without Using Organic Structure-Directing Agents. Chemistry of Materials, 26(2), 1250-1259. doi:10.1021/cm403797j
Kamimura, Y., Itabashi, K., Kon, Y., Endo, A., & Okubo, T. (2017). Seed-Assisted Synthesis of MWW-Type Zeolite with Organic Structure-Directing Agent-Free Na-Aluminosilicate Gel System. Chemistry - An Asian Journal, 12(5), 530-542. doi:10.1002/asia.201601569
Iyoki, K., Takase, M., Itabashi, K., Muraoka, K., Chaikittisilp, W., & Okubo, T. (2015). Organic structure-directing agent-free synthesis of NES-type zeolites using EU-1 seed crystals. Microporous and Mesoporous Materials, 215, 191-198. doi:10.1016/j.micromeso.2015.05.042
ZHOU, H., WU, Y., ZHANG, W., & WANG, J. (2014). Organotemplate-free Hydrothermal Synthesis of SUZ-4 Zeolite: Influence of Synthesis Conditions. Chinese Journal of Chemical Engineering, 22(1), 120-126. doi:10.1016/s1004-9541(14)60019-7
Sogukkanli, S., Iyoki, K., Elangovan, S. P., Itabashi, K., & Okubo, T. (2017). Seed-directed Synthesis of CON-type Zeolite Using Tetraethylammonium Hydroxide as a Simple Organic Structure-directing Agent. Chemistry Letters, 46(9), 1419-1421. doi:10.1246/cl.170602
Luo, Y., Wang, Z., Sun, J., Wang, Y., Jin, S., Zhang, B., … Yang, W. (2017). A Facile and Green Method for the Synthesis of SFE Borosilicate Zeolite and Its Heteroatom-Substituted Analogues with Promising Catalytic Performances. Chemistry - A European Journal, 24(2), 306-311. doi:10.1002/chem.201704668
Iyoki, K., Itabashi, K., Chaikittisilp, W., Elangovan, S. P., Wakihara, T., Kohara, S., & Okubo, T. (2014). Broadening the Applicable Scope of Seed-Directed, Organic Structure-Directing Agent-Free Synthesis of Zeolite to Zincosilicate Components: A Case of VET-Type Zincosilicate Zeolites. Chemistry of Materials, 26(5), 1957-1966. doi:10.1021/cm500229f
Ng, E.-P., Chateigner, D., Bein, T., Valtchev, V., & Mintova, S. (2012). Capturing Ultrasmall EMT Zeolite from Template-Free Systems. Science, 335(6064), 70-73. doi:10.1126/science.1214798
Kamimura, Y., Itabashi, K., & Okubo, T. (2012). Seed-assisted, OSDA-free synthesis of MTW-type zeolite and «Green MTW» from sodium aluminosilicate gel systems. Microporous and Mesoporous Materials, 147(1), 149-156. doi:10.1016/j.micromeso.2011.05.038
Simancas, R., Dari, D., Velamazán, N., Navarro, M. T., Cantín, A., Jordá, J. L., … Rey, F. (2010). Modular Organic Structure-Directing Agents for the Synthesis of Zeolites. Science, 330(6008), 1219-1222. doi:10.1126/science.1196240
Ghorbanpour, A., Gumidyala, A., Grabow, L. C., Crossley, S. P., & Rimer, J. D. (2015). Epitaxial Growth of ZSM-5@Silicalite-1: A Core–Shell Zeolite Designed with Passivated Surface Acidity. ACS Nano, 9(4), 4006-4016. doi:10.1021/acsnano.5b01308
Bouizi, Y., Rouleau, L., & Valtchev, V. P. (2006). Bi-phase MOR/MFI-type zeolite core–shell composite. Microporous and Mesoporous Materials, 91(1-3), 70-77. doi:10.1016/j.micromeso.2005.11.016
PEREZPARIENTE, J. (1990). 29Si and 27Al MAS NMR study of zeolite $beta; with different Si/Al Ratios. Journal of Catalysis, 124(1), 217-223. doi:10.1016/0021-9517(90)90116-2
Lentz, P., Nagy, J. ., Delevoye, L., Dumazy, Y., Fernandez, C., Amoureux, J.-P., … Nastro, A. (1999). 2D multiple quantum 27Al NMR and 29Si NMR characterization of levyne. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 158(1-2), 13-20. doi:10.1016/s0927-7757(99)00125-9
Boronat, M., & Corma, A. (2019). What Is Measured When Measuring Acidity in Zeolites with Probe Molecules? ACS Catalysis, 9(2), 1539-1548. doi:10.1021/acscatal.8b04317
Maity, A., Chaudhari, S., Titman, J. J., & Polshettiwar, V. (2020). Catalytic nanosponges of acidic aluminosilicates for plastic degradation and CO2 to fuel conversion. Nature Communications, 11(1). doi:10.1038/s41467-020-17711-6
Dusselier, M., Van Wouwe, P., Dewaele, A., Jacobs, P. A., & Sels, B. F. (2015). Shape-selective zeolite catalysis for bioplastics production. Science, 349(6243), 78-80. doi:10.1126/science.aaa7169
[-]