Kowalczyk, A., Święs, A., Gil, B., Rutkowska, M., Piwowarska, Z., Borcuch, A., … Chmielarz, L. (2018). Effective catalysts for the low-temperature NH3-SCR process based on MCM-41 modified with copper by template ion-exchange (TIE) method. Applied Catalysis B: Environmental, 237, 927-937. doi:10.1016/j.apcatb.2018.06.052
Busca, G., Lietti, L., Ramis, G., & Berti, F. (1998). Chemical and mechanistic aspects of the selective catalytic reduction of NO by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental, 18(1-2), 1-36. doi:10.1016/s0926-3373(98)00040-x
Kompio, P. G. W. A., Brückner, A., Hipler, F., Auer, G., Löffler, E., & Grünert, W. (2012). A new view on the relations between tungsten and vanadium in V2O5WO3/TiO2 catalysts for the selective reduction of NO with NH3. Journal of Catalysis, 286, 237-247. doi:10.1016/j.jcat.2011.11.008
[+]
Kowalczyk, A., Święs, A., Gil, B., Rutkowska, M., Piwowarska, Z., Borcuch, A., … Chmielarz, L. (2018). Effective catalysts for the low-temperature NH3-SCR process based on MCM-41 modified with copper by template ion-exchange (TIE) method. Applied Catalysis B: Environmental, 237, 927-937. doi:10.1016/j.apcatb.2018.06.052
Busca, G., Lietti, L., Ramis, G., & Berti, F. (1998). Chemical and mechanistic aspects of the selective catalytic reduction of NO by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental, 18(1-2), 1-36. doi:10.1016/s0926-3373(98)00040-x
Kompio, P. G. W. A., Brückner, A., Hipler, F., Auer, G., Löffler, E., & Grünert, W. (2012). A new view on the relations between tungsten and vanadium in V2O5WO3/TiO2 catalysts for the selective reduction of NO with NH3. Journal of Catalysis, 286, 237-247. doi:10.1016/j.jcat.2011.11.008
Moon Lee, S., Su Kim, S., & Chang Hong, S. (2012). Systematic mechanism study of the high temperature SCR of NO by NH3 over a W/TiO2 catalyst. Chemical Engineering Science, 79, 177-185. doi:10.1016/j.ces.2012.05.032
Mladenović, M., Paprika, M., & Marinković, A. (2018). Denitrification techniques for biomass combustion. Renewable and Sustainable Energy Reviews, 82, 3350-3364. doi:10.1016/j.rser.2017.10.054
Rutkowska, M., Pacia, I., Basąg, S., Kowalczyk, A., Piwowarska, Z., Duda, M., … Chmielarz, L. (2017). Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH 3 -SCR and NH 3 -SCO processes. Microporous and Mesoporous Materials, 246, 193-206. doi:10.1016/j.micromeso.2017.03.017
Rutkowska, M., Díaz, U., Palomares, A. E., & Chmielarz, L. (2015). Cu and Fe modified derivatives of 2D MWW-type zeolites (MCM-22, ITQ-2 and MCM-36) as new catalysts for DeNO x process. Applied Catalysis B: Environmental, 168-169, 531-539. doi:10.1016/j.apcatb.2015.01.016
Jodłowski, P. J., Kuterasiński, Ł., Jędrzejczyk, R. J., Chlebda, D., Gancarczyk, A., Basąg, S., & Chmielarz, L. (2017). DeNOx Abatement Modelling over Sonically Prepared Copper USY and ZSM5 Structured Catalysts. Catalysts, 7(7), 205. doi:10.3390/catal7070205
Boroń, P., Chmielarz, L., & Dzwigaj, S. (2015). Influence of Cu on the catalytic activity of FeBEA zeolites in SCR of NO with NH 3. Applied Catalysis B: Environmental, 168-169, 377-384. doi:10.1016/j.apcatb.2014.12.052
Martín, N., Boruntea, C. R., Moliner, M., & Corma, A. (2015). Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications, 51(55), 11030-11033. doi:10.1039/c5cc03200h
Shan, Y., Sun, Y., Du, J., Zhang, Y., Shi, X., Yu, Y., … He, H. (2020). Hydrothermal aging alleviates the inhibition effects of NO2 on Cu-SSZ-13 for NH3-SCR. Applied Catalysis B: Environmental, 275, 119105. doi:10.1016/j.apcatb.2020.119105
Clark, A. H., Nuguid, R. J. G., Steiger, P., Marberger, A., Petrov, A. W., Ferri, D., … Kröcher, O. (2020). Selective Catalytic Reduction of NO with NH
3
on Cu−SSZ‐13: Deciphering the Low and High‐temperature Rate‐limiting Steps by Transient XAS Experiments. ChemCatChem, 12(5), 1429-1435. doi:10.1002/cctc.201901916
Shan, Y., Du, J., Yu, Y., Shan, W., Shi, X., & He, H. (2020). Precise control of post-treatment significantly increases hydrothermal stability of in-situ synthesized cu-zeolites for NH3-SCR reaction. Applied Catalysis B: Environmental, 266, 118655. doi:10.1016/j.apcatb.2020.118655
Marosz, M., Samojeden, B., Kowalczyk, A., Rutkowska, M., Motak, M., Díaz, U., … Chmielarz, L. (2020). MCM-22, MCM-36, and ITQ-2 Zeolites with Different Si/Al Molar Ratios as Effective Catalysts of Methanol and Ethanol Dehydration. Materials, 13(10), 2399. doi:10.3390/ma13102399
Chmielarz, L., & Jabłońska, M. (2015). Advances in selective catalytic oxidation of ammonia to dinitrogen: a review. RSC Advances, 5(54), 43408-43431. doi:10.1039/c5ra03218k
De Pietre, M. K., Bonk, F. A., Rettori, C., Garcia, F. A., & Pastore, H. O. (2011). [V,Al]-ITQ-6: Novel porous material and the effect of delamination conditions on V sites and their distribution. Microporous and Mesoporous Materials, 145(1-3), 108-117. doi:10.1016/j.micromeso.2011.04.031
Radko, M., Rutkowska, M., Kowalczyk, A., Mikrut, P., Święs, A., Díaz, U., … Chmielarz, L. (2020). Catalytic oxidation of organic sulfides by H2O2 in the presence of titanosilicate zeolites. Microporous and Mesoporous Materials, 302, 110219. doi:10.1016/j.micromeso.2020.110219
Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1996). PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Microporous Materials, 6(5-6), 259-271. doi:10.1016/0927-6513(96)00032-6
Ishihara, A., Hashimoto, T., & Nasu, H. (2012). Large Mesopore Generation in an Amorphous Silica-Alumina by Controlling the Pore Size with the Gel Skeletal Reinforcement and Its Application to Catalytic Cracking. Catalysts, 2(3), 368-385. doi:10.3390/catal2030368
Thommes, M. (2010). Physical Adsorption Characterization of Nanoporous Materials. Chemie Ingenieur Technik, 82(7), 1059-1073. doi:10.1002/cite.201000064
Hu, H., Ke, M., Zhang, K., Liu, Q., Yu, P., Liu, Y., … Liu, W. (2017). Designing ferrierite-based catalysts with improved properties for skeletal isomerization of n-butene to isobutene. RSC Advances, 7(50), 31535-31543. doi:10.1039/c7ra04777k
Domokos, L., Lefferts, L., Seshan, K., & Lercher, J. . (2000). The importance of acid site locations for n-butene skeletal isomerization on ferrierite. Journal of Molecular Catalysis A: Chemical, 162(1-2), 147-157. doi:10.1016/s1381-1169(00)00286-7
Cañizares, P., & Carrero, A. (2003). Dealumination of ferrierite by ammonium hexafluorosilicate treatment: characterization and testing in the skeletal isomerization of n-butene. Applied Catalysis A: General, 248(1-2), 227-237. doi:10.1016/s0926-860x(03)00159-5
Wichterlová, B., Tvarůžková, Z., Sobalı́k, Z., & Sarv, P. (1998). Determination and properties of acid sites in H-ferrierite. Microporous and Mesoporous Materials, 24(4-6), 223-233. doi:10.1016/s1387-1811(98)00167-x
Thibault-Starzyk, F., Stan, I., Abelló, S., Bonilla, A., Thomas, K., Fernandez, C., … Pérez-Ramírez, J. (2009). Quantification of enhanced acid site accessibility in hierarchical zeolites – The accessibility index. Journal of Catalysis, 264(1), 11-14. doi:10.1016/j.jcat.2009.03.006
Macina, D., Piwowarska, Z., Tarach, K., Góra-Marek, K., Ryczkowski, J., & Chmielarz, L. (2016). Mesoporous silica materials modified with alumina polycations as catalysts for the synthesis of dimethyl ether from methanol. Materials Research Bulletin, 74, 425-435. doi:10.1016/j.materresbull.2015.11.018
Huo, Q., Margolese, D. I., & Stucky, G. D. (1996). Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. Chemistry of Materials, 8(5), 1147-1160. doi:10.1021/cm960137h
Martins, L., Peguin, R. P. S., Wallau, M., & Urquieta, G. A. (2004). Cu-, Co-, Cu/Ca- and Co/Ca-exchanged ZSM-5 zeolites: Activity in the reduction of NO with methane or propane. Recent Advances in the Science and Technology of Zeolites and Related Materials, Proceedings of the 14th International Zeolite Conference, 2475-2483. doi:10.1016/s0167-2991(04)80513-5
Carniti, P., Gervasini, A., Modica, V. H., & Ravasio, N. (2000). Catalytic selective reduction of NO with ethylene over a series of copper catalysts on amorphous silicas. Applied Catalysis B: Environmental, 28(3-4), 175-185. doi:10.1016/s0926-3373(00)00172-7
Minchev, C., Köhn, R., Tsoncheva, T., Dimitrov, M., & Fröba, M. (2001). 07-P-19-Preparation and characterization of copper oxide modified MCM-41 molecular sieves. Zeolites and Mesoporous Materials at the dawn of the 21st century, Proceedings of the 13th International Zeolite Conference,, 253. doi:10.1016/s0167-2991(01)81539-1
Martins, L., Peguin, R. P. S., & Urquiet-González, E. A. (2006). Cu and Co exchanged ZSM-5 zeolites: activity towards no reduction and hydrocarbon oxidation. Química Nova, 29(2), 223-229. doi:10.1590/s0100-40422006000200009
Sullivan, J. A., & Cunningham, J. (1998). Selective catalytic reduction of NO with C2H4 over Cu/ZSM-5: Influences of oxygen partial pressure and incorporated rhodia. Applied Catalysis B: Environmental, 15(3-4), 275-289. doi:10.1016/s0926-3373(97)00055-6
Yang, X., Wang, X., Qiao, X., Jin, Y., & Fan, B. (2020). Effect of Hydrothermal Aging Treatment on Decomposition of NO by Cu-ZSM-5 and Modified Mechanism of Doping Ce against This Influence. Materials, 13(4), 888. doi:10.3390/ma13040888
[-]