Mostrar el registro sencillo del ítem
dc.contributor.author | Farahani, Reza Zanjirani | es_ES |
dc.contributor.author | Lotfi, M. M. | es_ES |
dc.contributor.author | Baghaian, Atefe | es_ES |
dc.contributor.author | Ruiz García, Rubén | es_ES |
dc.contributor.author | Rezapour, Shabnam | es_ES |
dc.date.accessioned | 2021-04-30T03:31:22Z | |
dc.date.available | 2021-04-30T03:31:22Z | |
dc.date.issued | 2020-12-16 | es_ES |
dc.identifier.issn | 0377-2217 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165798 | |
dc.description.abstract | [EN] Disasters are usually managed through a four-phase cycle including mitigation, preparedness, response and recovery. The first two phases happen before a disaster and the last two after it. This survey focuses on casualty management (CM), which is one of the actions taken in the response phase of a disaster. Right after a severe disaster strikes, we may be confronted with a large number of casualties in a very short period of time. These casualties are in need of urgent treatment and their survival depends on a rapid response. Therefore, managing resources in the first few hours after a disaster is critical and efficient CM can significantly increase the survival rate of casualties. Uncertainty in the location of a disaster, disruption to transportation networks, scarcity of resources and possible deaths of rescue and medical teams due to the disaster in such situations make it hard to manage casualties. In this survey, we focus on CM for disasters where the following five steps are taken, respectively: (i) Resource dispatching/search and rescue, (ii) on-site triage, (iii) on-site medical assistance, (iv) transportation to hospitals and (v) triage and comprehensive treatment. With a special focus on Operations Research (OR) techniques, we categorize the existing research papers and case studies in each of these steps. Then, by critically observing and investigating gaps, trends and the practicality of the extant research studies, we suggest future directions for academics and practitioners. | es_ES |
dc.description.sponsorship | Ruben Ruiz is partially supported by the Spanish Ministry of Science, Innovation, and Universities, under the project "OPTEP-Port Terminal Operations Optimization"(No. RTI2018-094940-B-I00) financed with FEDER funds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | European Journal of Operational Research | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Humanitarian logistics | es_ES |
dc.subject | Casualty management | es_ES |
dc.subject | Disaster | es_ES |
dc.subject | Relief operations | es_ES |
dc.subject | Health operations | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Mass Casualty Management in Disaster Scene: A Systematic Review of OR&MS research in Humanitarian Operations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ejor.2020.03.005 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094940-B-I00/ES/OPTIMIZACION DE OPERACIONES EN TERMINALES PORTUARIAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Farahani, RZ.; Lotfi, MM.; Baghaian, A.; Ruiz García, R.; Rezapour, S. (2020). Mass Casualty Management in Disaster Scene: A Systematic Review of OR&MS research in Humanitarian Operations. European Journal of Operational Research. 287(3):787-819. https://doi.org/10.1016/j.ejor.2020.03.005 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ejor.2020.03.005 | es_ES |
dc.description.upvformatpinicio | 787 | es_ES |
dc.description.upvformatpfin | 819 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 287 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\424887 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Abdelgawad, H., & Abdulhai, B. (2009). Emergency evacuation planning as a network design problem: a critical review. Transportation Letters, 1(1), 41-58. doi:10.3328/tl.2009.01.01.41-58 | es_ES |
dc.description.references | Abidi, H., de Leeuw, S., & Klumpp, M. (2014). Humanitarian supply chain performance management: a systematic literature review. Supply Chain Management: An International Journal, 19(5/6), 592-608. doi:10.1108/scm-09-2013-0349 | es_ES |
dc.description.references | Al Theeb, N., & Murray, C. (2016). Vehicle routing and resource distribution in postdisaster humanitarian relief operations. International Transactions in Operational Research, 24(6), 1253-1284. doi:10.1111/itor.12308 | es_ES |
dc.description.references | Alinaghian, M., Aghaie, M., & Sabbagh, M. S. (2019). A mathematical model for location of temporary relief centers and dynamic routing of aerial rescue vehicles. Computers & Industrial Engineering, 131, 227-241. doi:10.1016/j.cie.2019.03.002 | es_ES |
dc.description.references | Alizadeh, M., Amiri-Aref, M., Mustafee, N., & Matilal, S. (2019). A robust stochastic Casualty Collection Points location problem. European Journal of Operational Research, 279(3), 965-983. doi:10.1016/j.ejor.2019.06.018 | es_ES |
dc.description.references | Al-Momani, N. M., & Harrald, J. R. (2003). Sensitivity of earthquake loss estimation model: how useful are the predictions. International Journal of Risk Assessment and Management, 4(1), 1. doi:10.1504/ijram.2003.003433 | es_ES |
dc.description.references | Alotaibi, E. T., Alqefari, S. S., & Koubaa, A. (2019). LSAR: Multi-UAV Collaboration for Search and Rescue Missions. IEEE Access, 7, 55817-55832. doi:10.1109/access.2019.2912306 | es_ES |
dc.description.references | Altay, N., & Green, W. G. (2006). OR/MS research in disaster operations management. European Journal of Operational Research, 175(1), 475-493. doi:10.1016/j.ejor.2005.05.016 | es_ES |
dc.description.references | Esposito Amideo, A., Scaparra, M. P., & Kotiadis, K. (2019). Optimising shelter location and evacuation routing operations: The critical issues. European Journal of Operational Research, 279(2), 279-295. doi:10.1016/j.ejor.2018.12.009 | es_ES |
dc.description.references | Anaya-Arenas, A. M., Renaud, J., & Ruiz, A. (2014). Relief distribution networks: a systematic review. Annals of Operations Research, 223(1), 53-79. doi:10.1007/s10479-014-1581-y | es_ES |
dc.description.references | Apte, A., Heidtke, C., & Salmerón, J. (2015). Casualty Collection Points Optimization: A Study for the District of Columbia. Interfaces, 45(2), 149-165. doi:10.1287/inte.2014.0757 | es_ES |
dc.description.references | Baharmand, H., Comes, T., & Lauras, M. (2019). Bi-objective multi-layer location–allocation model for the immediate aftermath of sudden-onset disasters. Transportation Research Part E: Logistics and Transportation Review, 127, 86-110. doi:10.1016/j.tre.2019.05.002 | es_ES |
dc.description.references | Balcik, B., Beamon, B. M., & Smilowitz, K. (2008). Last Mile Distribution in Humanitarian Relief. Journal of Intelligent Transportation Systems, 12(2), 51-63. doi:10.1080/15472450802023329 | es_ES |
dc.description.references | Balcik, B., Bozkir, C. D. C., & Kundakcioglu, O. E. (2016). A literature review on inventory management in humanitarian supply chains. Surveys in Operations Research and Management Science, 21(2), 101-116. doi:10.1016/j.sorms.2016.10.002 | es_ES |
dc.description.references | Behl, A., & Dutta, P. (2018). Humanitarian supply chain management: a thematic literature review and future directions of research. Annals of Operations Research, 283(1-2), 1001-1044. doi:10.1007/s10479-018-2806-2 | es_ES |
dc.description.references | Berkoune, D., Renaud, J., Rekik, M., & Ruiz, A. (2012). Transportation in disaster response operations. Socio-Economic Planning Sciences, 46(1), 23-32. doi:10.1016/j.seps.2011.05.002 | es_ES |
dc.description.references | Besiou, M., Pedraza-Martinez, A. J., & Van Wassenhove, L. N. (2018). OR applied to humanitarian operations. European Journal of Operational Research, 269(2), 397-405. doi:10.1016/j.ejor.2018.02.046 | es_ES |
dc.description.references | Boonmee, C., Arimura, M., & Asada, T. (2017). Facility location optimization model for emergency humanitarian logistics. International Journal of Disaster Risk Reduction, 24, 485-498. doi:10.1016/j.ijdrr.2017.01.017 | es_ES |
dc.description.references | Bravo, R. Z. B., Leiras, A., & Cyrino Oliveira, F. L. (2018). The Use of UAVs in Humanitarian Relief: An Application of POMDP-Based Methodology for Finding Victims. Production and Operations Management, 28(2), 421-440. doi:10.1111/poms.12930 | es_ES |
dc.description.references | California Office of Statewide Health Planning & Development, 2016. Available online on http://oshpd.ca.gov/, Visited on 28 Nov (2016). | es_ES |
dc.description.references | Canes, M. (2015). Mais de 10 mil pessoas foram atingidas por tornado em Xanxerê, Available online onhttp://agenciabrasil.ebc.com.br/geral/noticia/2015-04/mais-de-10-mil-pessoas-foram-atingidas-por-tornado-em-xanxere, Visited on 20 Jan 2017). | es_ES |
dc.description.references | Çankaya, E., Ekici, A., & Özener, O. Ö. (2018). Humanitarian relief supplies distribution: an application of inventory routing problem. Annals of Operations Research, 283(1-2), 119-141. doi:10.1007/s10479-018-2781-7 | es_ES |
dc.description.references | Cao, C., Li, C., Yang, Q., Liu, Y., & Qu, T. (2018). A novel multi-objective programming model of relief distribution for sustainable disaster supply chain in large-scale natural disasters. Journal of Cleaner Production, 174, 1422-1435. doi:10.1016/j.jclepro.2017.11.037 | es_ES |
dc.description.references | Caunhye, A. M., Li, M., & Nie, X. (2015). A location-allocation model for casualty response planning during catastrophic radiological incidents. Socio-Economic Planning Sciences, 50, 32-44. doi:10.1016/j.seps.2015.02.001 | es_ES |
dc.description.references | Caunhye, A. M., & Nie, X. (2018). A Stochastic Programming Model for Casualty Response Planning During Catastrophic Health Events. Transportation Science, 52(2), 437-453. doi:10.1287/trsc.2017.0777 | es_ES |
dc.description.references | Caunhye, A. M., Nie, X., & Pokharel, S. (2012). Optimization models in emergency logistics: A literature review. Socio-Economic Planning Sciences, 46(1), 4-13. doi:10.1016/j.seps.2011.04.004 | es_ES |
dc.description.references | Chan, C. W., Green, L. V., Lu, Y., Leahy, N., & Yurt, R. (2013). Prioritizing Burn-Injured Patients During a Disaster. Manufacturing & Service Operations Management, 15(2), 170-190. doi:10.1287/msom.1120.0412 | es_ES |
dc.description.references | Chen, L., & Miller-Hooks, E. (2012). Optimal team deployment in urban search and rescue. Transportation Research Part B: Methodological, 46(8), 984-999. doi:10.1016/j.trb.2012.03.004 | es_ES |
dc.description.references | Christie, P. M. J., & Levary, R. R. (1998). Journal of Medical Systems, 22(5), 289-300. doi:10.1023/a:1020521909778 | es_ES |
dc.description.references | Cohen, I., Mandelbaum, A., & Zychlinski, N. (2014). Minimizing mortality in a mass casualty event: fluid networks in support of modeling and staffing. IIE Transactions, 46(7), 728-741. doi:10.1080/0740817x.2013.855846 | es_ES |
dc.description.references | Cook, W. D. (1977). A Model for the Evacuation of Casualties from a Field Hospital During a Crisis. Journal of the Operational Research Society, 28(4), 963-974. doi:10.1057/jors.1977.194 | es_ES |
dc.description.references | Cotta, C. (2011). Effective patient prioritization in mass casualty incidents using hyperheuristics and the pilot method. OR Spectrum, 33(3), 699-720. doi:10.1007/s00291-011-0238-3 | es_ES |
dc.description.references | CRED (Centre for Research on the Epidemiology of Disasters) (2018). Cred Crunch 52 - Economic Losses, Poverty and Disasters: 1998-2017. Available at www.cred.be/sites/default/files/CredCrunch52.pdf. | es_ES |
dc.description.references | Davoodi, S. M. R., & Goli, A. (2019). An integrated disaster relief model based on covering tour using hybrid Benders decomposition and variable neighborhood search: Application in the Iranian context. Computers & Industrial Engineering, 130, 370-380. doi:10.1016/j.cie.2019.02.040 | es_ES |
dc.description.references | De la Torre, L. E., Dolinskaya, I. S., & Smilowitz, K. R. (2012). Disaster relief routing: Integrating research and practice. Socio-Economic Planning Sciences, 46(1), 88-97. doi:10.1016/j.seps.2011.06.001 | es_ES |
dc.description.references | Dean, M. D., & Nair, S. K. (2014). Mass-casualty triage: Distribution of victims to multiple hospitals using the SAVE model. European Journal of Operational Research, 238(1), 363-373. doi:10.1016/j.ejor.2014.03.028 | es_ES |
dc.description.references | Debacker, M., Van Utterbeeck, F., Ullrich, C., Dhondt, E., & Hubloue, I. (2016). SIMEDIS: a Discrete-Event Simulation Model for Testing Responses to Mass Casualty Incidents. Journal of Medical Systems, 40(12). doi:10.1007/s10916-016-0633-z | es_ES |
dc.description.references | Department of Homeland Security. National planning scenarios: Executive summaries. (2005)., Available athttp://cees.tamiu.edu/covertheborder/TOOLS/NationalPlanningSen.pdf(April 2005). | es_ES |
dc.description.references | Doan, X. V., & Shaw, D. (2019). Resource allocation when planning for simultaneous disasters. European Journal of Operational Research, 274(2), 687-709. doi:10.1016/j.ejor.2018.10.015 | es_ES |
dc.description.references | Drezner, T. (2004). Location of Casualty Collection Points. Environment and Planning C: Government and Policy, 22(6), 899-912. doi:10.1068/c13r | es_ES |
dc.description.references | Edrissi, A., Nourinejad, M., & Roorda, M. J. (2015). Transportation network reliability in emergency response. Transportation Research Part E: Logistics and Transportation Review, 80, 56-73. doi:10.1016/j.tre.2015.05.005 | es_ES |
dc.description.references | Edrissi, A., Poorzahedy, H., Nassiri, H., & Nourinejad, M. (2013). A multi-agent optimization formulation of earthquake disaster prevention and management. European Journal of Operational Research, 229(1), 261-275. doi:10.1016/j.ejor.2013.03.008 | es_ES |
dc.description.references | EM-DAT, Natural Disasters (2017). Available atwww.cred.be/sites/default/fles/adsr_2017.pdf. | es_ES |
dc.description.references | FEMA. National Incident Management System. (2008)., Available online onwww.fema.gov/media-library/assets/documents/25422, Visited on 11 Nov 2018. | es_ES |
dc.description.references | Fiedrich, F., Gehbauer, F., & Rickers, U. (2000). Optimized resource allocation for emergency response after earthquake disasters. Safety Science, 35(1-3), 41-57. doi:10.1016/s0925-7535(00)00021-7 | es_ES |
dc.description.references | Franco, C., Toner, E., Waldhorn, R., Maldin, B., O’Toole, T., & Inglesby, T. V. (2006). Systemic Collapse: Medical Care in the Aftermath of Hurricane Katrina. Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science, 4(2), 135-146. doi:10.1089/bsp.2006.4.135 | es_ES |
dc.description.references | Frykberg, E. R. (2005). Triage: Principles and Practice. Scandinavian Journal of Surgery, 94(4), 272-278. doi:10.1177/145749690509400405 | es_ES |
dc.description.references | Galindo, G., & Batta, R. (2013). Review of recent developments in OR/MS research in disaster operations management. European Journal of Operational Research, 230(2), 201-211. doi:10.1016/j.ejor.2013.01.039 | es_ES |
dc.description.references | Ghasemi, P., Khalili-Damghani, K., Hafezalkotob, A., & Raissi, S. (2019). Uncertain multi-objective multi-commodity multi-period multi-vehicle location-allocation model for earthquake evacuation planning. Applied Mathematics and Computation, 350, 105-132. doi:10.1016/j.amc.2018.12.061 | es_ES |
dc.description.references | Gong, Q., & Batta, R. (2007). Allocation and reallocation of ambulances to casualty clusters in a disaster relief operation. IIE Transactions, 39(1), 27-39. doi:10.1080/07408170600743938 | es_ES |
dc.description.references | GPO Access Reports (2005). Chapter 24: Medical assistance. Available atwww.gpoaccess.gov/serialset/creports/pdf/sr109-322/ch24.pdfVisited on 30 Aug 2010. | es_ES |
dc.description.references | Gu, J., Zhou, Y., Das, A., Moon, I., & Lee, G. M. (2018). Medical relief shelter location problem with patient severity under a limited relief budget. Computers & Industrial Engineering, 125, 720-728. doi:10.1016/j.cie.2018.03.027 | es_ES |
dc.description.references | Gupta, S., Starr, M. K., Farahani, R. Z., & Matinrad, N. (2016). Disaster Management from a POM Perspective: Mapping a New Domain. Production and Operations Management, 25(10), 1611-1637. doi:10.1111/poms.12591 | es_ES |
dc.description.references | Gutjahr, W. J., & Nolz, P. C. (2016). Multicriteria optimization in humanitarian aid. European Journal of Operational Research, 252(2), 351-366. doi:10.1016/j.ejor.2015.12.035 | es_ES |
dc.description.references | Haghi, M., Fatemi Ghomi, S. M. T., & Jolai, F. (2017). Developing a robust multi-objective model for pre/post disaster times under uncertainty in demand and resource. Journal of Cleaner Production, 154, 188-202. doi:10.1016/j.jclepro.2017.03.102 | es_ES |
dc.description.references | Hallak, J., Koyuncu, M., & Miç, P. (2019). Determining shelter locations in conflict areas by multiobjective modeling: A case study in northern Syria. International Journal of Disaster Risk Reduction, 38, 101202. doi:10.1016/j.ijdrr.2019.101202 | es_ES |
dc.description.references | Hamp, Q., Zhang, R., Chen, L., Gorgis, O., Ostertag, T., Loschonsky, M., & Reindl, L. (2014). New technologies for the search of trapped victims. Ad Hoc Networks, 13, 69-82. doi:10.1016/j.adhoc.2012.06.005 | es_ES |
dc.description.references | Hoyos, M. C., Morales, R. S., & Akhavan-Tabatabaei, R. (2015). OR models with stochastic components in disaster operations management: A literature survey. Computers & Industrial Engineering, 82, 183-197. doi:10.1016/j.cie.2014.11.025 | es_ES |
dc.description.references | Hu, X., Liu, Z., Yao, Y., Wang, N., & Dang, D. (2017). Crowdsourcing Model Research for the Identification of Post-Earthquake Rescue Objects. Journal of Earthquake Engineering, 23(5), 863-881. doi:10.1080/13632469.2017.1342304 | es_ES |
dc.description.references | Huang, K., Jiang, Y., Yuan, Y., & Zhao, L. (2015). Modeling multiple humanitarian objectives in emergency response to large-scale disasters. Transportation Research Part E: Logistics and Transportation Review, 75, 1-17. doi:10.1016/j.tre.2014.11.007 | es_ES |
dc.description.references | Jacobson, E. U., Argon, N. T., & Ziya, S. (2012). Priority Assignment in Emergency Response. Operations Research, 60(4), 813-832. doi:10.1287/opre.1120.1075 | es_ES |
dc.description.references | Jin, S., Jeong, S., Kim, J., & Kim, K. (2014). A logistics model for the transport of disaster victims with various injuries and survival probabilities. Annals of Operations Research, 230(1), 17-33. doi:10.1007/s10479-013-1515-0 | es_ES |
dc.description.references | Jones, L.M., .Bernknopf, R., Cox, D., Goltz, J., Hudnut, K., Mileti, D. et al. (2008). The ShakeOut scenario. U.S. Geological Survey and California Geological Survey, Reston, VA, http://pubs.usgs.gov/of/2008/1150/of2008-1150small.pdf. | es_ES |
dc.description.references | Jotshi, A., Gong, Q., & Batta, R. (2009). Dispatching and routing of emergency vehicles in disaster mitigation using data fusion. Socio-Economic Planning Sciences, 43(1), 1-24. doi:10.1016/j.seps.2008.02.005 | es_ES |
dc.description.references | Kamali, B., Bish, D., & Glick, R. (2017). Optimal service order for mass-casualty incident response. European Journal of Operational Research, 261(1), 355-367. doi:10.1016/j.ejor.2017.01.047 | es_ES |
dc.description.references | Kang, J., Jeong, I.-J., & Kwun, J.-B. (2015). Optimal facility–final exit assignment algorithm for building complex evacuation. Computers & Industrial Engineering, 85, 169-176. doi:10.1016/j.cie.2015.03.012 | es_ES |
dc.description.references | Karatas, M., Razi, N., & Gunal, M. M. (2017). An ILP and simulation model to optimize search and rescue helicopter operations. Journal of the Operational Research Society, 68(11), 1335-1351. doi:10.1057/s41274-016-0154-7 | es_ES |
dc.description.references | Kilic, A., Dincer, M. C., & Gokce, M. A. (2014). Determining optimal treatment rate after a disaster. Journal of the Operational Research Society, 65(7), 1053-1067. doi:10.1057/jors.2013.52 | es_ES |
dc.description.references | Kim, S., Shin, Y., Lee, G. M., & Moon, I. (2018). Early stage response problem for post-disaster incidents. Engineering Optimization, 50(7), 1198-1211. doi:10.1080/0305215x.2017.1419345 | es_ES |
dc.description.references | Klein, K. R., & Nagel, N. E. (2007). Mass Medical Evacuation: Hurricane Katrina and Nursing Experiences at the New Orleans Airport. Disaster Management & Response, 5(2), 56-61. doi:10.1016/j.dmr.2007.03.001 | es_ES |
dc.description.references | Kovacs, G., & Moshtari, M. (2019). A roadmap for higher research quality in humanitarian operations: A methodological perspective. European Journal of Operational Research, 276(2), 395-408. doi:10.1016/j.ejor.2018.07.052 | es_ES |
dc.description.references | Lee, E. K., Chen, C.-H., Pietz, F., & Benecke, B. (2009). Modeling and Optimizing the Public-Health Infrastructure for Emergency Response. Interfaces, 39(5), 476-490. doi:10.1287/inte.1090.0463 | es_ES |
dc.description.references | Leiras, A., de Brito Jr, I., Queiroz Peres, E., Rejane Bertazzo, T., & Tsugunobu Yoshida Yoshizaki, H. (2014). Literature review of humanitarian logistics research: trends and challenges. Journal of Humanitarian Logistics and Supply Chain Management, 4(1), 95-130. doi:10.1108/jhlscm-04-2012-0008 | es_ES |
dc.description.references | Lerner, E. B., Schwartz, R. B., Coule, P. L., Weinstein, E. S., Cone, D. C., Hunt, R. C., … O’Connor, R. E. (2008). Mass Casualty Triage: An Evaluation of the Data and Development of a Proposed National Guideline. Disaster Medicine and Public Health Preparedness, 2(S1), S25-S34. doi:10.1097/dmp.0b013e318182194e | es_ES |
dc.description.references | Li, D., & Glazebrook, K. D. (2010). An approximate dynamic programing approach to the development of heuristics for the scheduling of impatient jobs in a clearing system. Naval Research Logistics (NRL), 57(3), 225-236. doi:10.1002/nav.20395 | es_ES |
dc.description.references | Li, M.-Y., Zhao, X.-J., Fan, Z.-P., Cao, P.-P., & Qu, X.-N. (2019). A model for assignment of rescuers considering multiple disaster areas. International Journal of Disaster Risk Reduction, 38, 101201. doi:10.1016/j.ijdrr.2019.101201 | es_ES |
dc.description.references | Li, Y., & Chung, S. H. (2018). Disaster relief routing under uncertainty: A robust optimization approach. IISE Transactions, 51(8), 869-886. doi:10.1080/24725854.2018.1450540 | es_ES |
dc.description.references | Liu, Y., Cui, N., & Zhang, J. (2019). Integrated temporary facility location and casualty allocation planning for post-disaster humanitarian medical service. Transportation Research Part E: Logistics and Transportation Review, 128, 1-16. doi:10.1016/j.tre.2019.05.008 | es_ES |
dc.description.references | Liu, Y., Lei, H., Wu, Z., & Zhang, D. (2019). A robust model predictive control approach for post-disaster relief distribution. Computers & Industrial Engineering, 135, 1253-1270. doi:10.1016/j.cie.2018.09.005 | es_ES |
dc.description.references | Lodree, E. J., Altay, N., & Cook, R. A. (2017). Staff assignment policies for a mass casualty event queuing network. Annals of Operations Research, 283(1-2), 411-442. doi:10.1007/s10479-017-2635-8 | es_ES |
dc.description.references | Mahootchi, M., & Golmohammadi, S. (2017). Developing a new stochastic model considering bi-directional relations in a natural disaster: a possible earthquake in Tehran (the Capital of Islamic Republic of Iran). Annals of Operations Research, 269(1-2), 439-473. doi:10.1007/s10479-017-2596-y | es_ES |
dc.description.references | Mills, A. F. (2016). A simple yet effective decision support policy for mass-casualty triage. European Journal of Operational Research, 253(3), 734-745. doi:10.1016/j.ejor.2016.03.005 | es_ES |
dc.description.references | Mills, A. F., Argon, N. T., & Ziya, S. (2013). Resource-Based Patient Prioritization in Mass-Casualty Incidents. Manufacturing & Service Operations Management, 15(3), 361-377. doi:10.1287/msom.1120.0426 | es_ES |
dc.description.references | Mills, A. F., Argon, N. T., & Ziya, S. (2018). Dynamic Distribution of Patients to Medical Facilities in the Aftermath of a Disaster. Operations Research, 66(3), 716-732. doi:10.1287/opre.2017.1695 | es_ES |
dc.description.references | Mollah, A. K., Sadhukhan, S., Das, P., & Anis, M. Z. (2018). A cost optimization model and solutions for shelter allocation and relief distribution in flood scenario. International Journal of Disaster Risk Reduction, 31, 1187-1198. doi:10.1016/j.ijdrr.2017.11.018 | es_ES |
dc.description.references | Na, H. S., & Banerjee, A. (2015). A disaster evacuation network model for transporting multiple priority evacuees. IIE Transactions, 47(11), 1287-1299. doi:10.1080/0740817x.2015.1040929 | es_ES |
dc.description.references | Najafi, M., Eshghi, K., & de Leeuw, S. (2013). A dynamic dispatching and routing model to plan/ re-plan logistics activities in response to an earthquake. OR Spectrum, 36(2), 323-356. doi:10.1007/s00291-012-0317-0 | es_ES |
dc.description.references | Najafi, M., Eshghi, K., & Dullaert, W. (2013). A multi-objective robust optimization model for logistics planning in the earthquake response phase. Transportation Research Part E: Logistics and Transportation Review, 49(1), 217-249. doi:10.1016/j.tre.2012.09.001 | es_ES |
dc.description.references | Natarajarathinam, M., Capar, I., & Narayanan, A. (2009). Managing supply chains in times of crisis: a review of literature and insights. International Journal of Physical Distribution & Logistics Management, 39(7), 535-573. doi:10.1108/09600030910996251 | es_ES |
dc.description.references | New Madrid Seismic Zone: Catastrophic earthquake response planning project. (2009). Available atwww.ideals.illinois.edu/bitstream/handle/2142/14810/ImpactofNewMadridSeismicZoneEarthquakeso%20theCentral%20USAVol1.pdf. | es_ES |
dc.description.references | Ni, W., Shu, J., & Song, M. (2017). Location and Emergency Inventory Pre-Positioning for Disaster Response Operations: Min-Max Robust Model and a Case Study of Yushu Earthquake. Production and Operations Management, 27(1), 160-183. doi:10.1111/poms.12789 | es_ES |
dc.description.references | Niessner, H., Rauner, M. S., & Gutjahr, W. J. (2018). A dynamic simulation–optimization approach for managing mass casualty incidents. Operations Research for Health Care, 17, 82-100. doi:10.1016/j.orhc.2017.07.001 | es_ES |
dc.description.references | Nolz, P. C., Semet, F., & Doerner, K. F. (2011). Risk approaches for delivering disaster relief supplies. OR Spectrum, 33(3), 543-569. doi:10.1007/s00291-011-0258-z | es_ES |
dc.description.references | Overstreet, R. E., Hall, D., Hanna, J. B., & Kelly Rainer, R. (2011). Research in humanitarian logistics. Journal of Humanitarian Logistics and Supply Chain Management, 1(2), 114-131. doi:10.1108/20426741111158421 | es_ES |
dc.description.references | Ozbay, E., Çavuş, Ö., & Kara, B. Y. (2019). Shelter site location under multi-hazard scenarios. Computers & Operations Research, 106, 102-118. doi:10.1016/j.cor.2019.02.008 | es_ES |
dc.description.references | Ozdamar, L. (2011). Planning helicopter logistics in disaster relief. OR Spectrum, 33(3), 655-672. doi:10.1007/s00291-011-0259-y | es_ES |
dc.description.references | Özdamar, L., & Ertem, M. A. (2015). Models, solutions and enabling technologies in humanitarian logistics. European Journal of Operational Research, 244(1), 55-65. doi:10.1016/j.ejor.2014.11.030 | es_ES |
dc.description.references | Paul, J. A., & Batta, R. (2011). Improving hurricane disaster preparedness: models for optimal reallocation of hospital capacity. International Journal of Operational Research, 10(2), 194. doi:10.1504/ijor.2011.038584 | es_ES |
dc.description.references | Paul, J. A., & Hariharan, G. (2012). Location-allocation planning of stockpiles for effective disaster mitigation. Annals of Operations Research, 196(1), 469-490. doi:10.1007/s10479-011-1052-7 | es_ES |
dc.description.references | Paul, J. A., & MacDonald, L. (2016). Location and capacity allocations decisions to mitigate the impacts of unexpected disasters. European Journal of Operational Research, 251(1), 252-263. doi:10.1016/j.ejor.2015.10.028 | es_ES |
dc.description.references | Paul, J. A., & MacDonald, L. (2016). Optimal location, capacity and timing of stockpiles for improved hurricane preparedness. International Journal of Production Economics, 174, 11-28. doi:10.1016/j.ijpe.2016.01.006 | es_ES |
dc.description.references | Paul, J. A., & Zhang, M. (2019). Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework. European Journal of Operational Research, 274(1), 108-125. doi:10.1016/j.ejor.2018.09.042 | es_ES |
dc.description.references | Rachaniotis, N. P., Dasaklis, T. K., & Pappis, C. P. (2012). A deterministic resource scheduling model in epidemic control: A case study. European Journal of Operational Research, 216(1), 225-231. doi:10.1016/j.ejor.2011.07.009 | es_ES |
dc.description.references | Rauchecker, G., & Schryen, G. (2019). An exact branch-and-price algorithm for scheduling rescue units during disaster response. European Journal of Operational Research, 272(1), 352-363. doi:10.1016/j.ejor.2018.06.010 | es_ES |
dc.description.references | Rauner, M. S., Schaffhauser-Linzatti, M. M., & Niessner, H. (2012). Resource planning for ambulance services in mass casualty incidents: a DES-based policy model. Health Care Management Science, 15(3), 254-269. doi:10.1007/s10729-012-9198-7 | es_ES |
dc.description.references | Reach Resource Centre. (2015). https://www.impact-repository.org/document/reach/a13d50f1/reach_sdd_factsheet_bentiu_camp_poc_30july2015_0.pdf. Available online on www.reachre sourcecentre.info, Visited on 15 Oct 2018. | es_ES |
dc.description.references | Repoussis, P. P., Paraskevopoulos, D. C., Vazacopoulos, A., & Hupert, N. (2016). Optimizing emergency preparedness and resource utilization in mass-casualty incidents. European Journal of Operational Research, 255(2), 531-544. doi:10.1016/j.ejor.2016.05.047 | es_ES |
dc.description.references | Rezapour, S., Naderi, N., Morshedlou, N., & Rezapourbehnagh, S. (2018). Optimal deployment of emergency resources in sudden onset disasters. International Journal of Production Economics, 204, 365-382. doi:10.1016/j.ijpe.2018.08.014 | es_ES |
dc.description.references | Rodríguez-Espíndola, O., Albores, P., & Brewster, C. (2018). Dynamic formulation for humanitarian response operations incorporating multiple organisations. International Journal of Production Economics, 204, 83-98. doi:10.1016/j.ijpe.2018.07.023 | es_ES |
dc.description.references | RSMeansOnline (2013). RSMeans Data Online, Construction Estimating Software. Available online onwww.rsmeansonline.com, 20 Feb 2013. | es_ES |
dc.description.references | Sacco, W. J. (2005). Precise Formulation and Evidence-based Application of Resource-constrained Triage. Academic Emergency Medicine, 12(8), 759-770. doi:10.1197/j.aem.2005.04.003 | es_ES |
dc.description.references | Safaei, A. S., Farsad, S., & Paydar, M. M. (2018). Robust bi-level optimization of relief logistics operations. Applied Mathematical Modelling, 56, 359-380. doi:10.1016/j.apm.2017.12.003 | es_ES |
dc.description.references | Salman, F. S., & Gül, S. (2014). Deployment of field hospitals in mass casualty incidents. Computers & Industrial Engineering, 74, 37-51. doi:10.1016/j.cie.2014.04.020 | es_ES |
dc.description.references | Salmerón, J., & Apte, A. (2010). Stochastic Optimization for Natural Disaster Asset Prepositioning. Production and Operations Management, 19(5), 561-574. doi:10.1111/j.1937-5956.2009.01119.x | es_ES |
dc.description.references | Sánchez-García, J., Reina, D. G., & Toral, S. L. (2019). A distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenario. Future Generation Computer Systems, 90, 129-148. doi:10.1016/j.future.2018.07.048 | es_ES |
dc.description.references | Setiawan, E., Liu, J., & French, A. (2019). Resource location for relief distribution and victim evacuation after a sudden-onset disaster. IISE Transactions, 51(8), 830-846. doi:10.1080/24725854.2018.1517284 | es_ES |
dc.description.references | Simpson, N. C., & Hancock, P. G. (2009). Fifty years of operational research and emergency response. Journal of the Operational Research Society, 60(sup1), S126-S139. doi:10.1057/jors.2009.3 | es_ES |
dc.description.references | Su, Z., Zhang, G., Liu, Y., Yue, F., & Jiang, J. (2016). Multiple emergency resource allocation for concurrent incidents in natural disasters. International Journal of Disaster Risk Reduction, 17, 199-212. doi:10.1016/j.ijdrr.2016.05.003 | es_ES |
dc.description.references | Sun, Z., Argon, N. T., & Ziya, S. (2018). Patient Triage and Prioritization Under Austere Conditions. Management Science, 64(10), 4471-4489. doi:10.1287/mnsc.2017.2855 | es_ES |
dc.description.references | Sung, I., & Lee, T. (2016). Optimal allocation of emergency medical resources in a mass casualty incident: Patient prioritization by column generation. European Journal of Operational Research, 252(2), 623-634. doi:10.1016/j.ejor.2016.01.028 | es_ES |
dc.description.references | Talarico, L., Meisel, F., & Sörensen, K. (2015). Ambulance routing for disaster response with patient groups. Computers & Operations Research, 56, 120-133. doi:10.1016/j.cor.2014.11.006 | es_ES |
dc.description.references | Tehran Atlas. (2014)., Available online onhttp://atlas.tehran.ir/Default.aspx?tabid=193, Visited on 08 Nov. 2018. | es_ES |
dc.description.references | Telford J., Cosgrave, J., & Houghton, R. (2006). Joint Evaluation of the International Response to the Indian Ocean Tsunami (Synthesis Report). Tsunami Evaluation Coalition (TEC). Available at www.sida.se/publications. | es_ES |
dc.description.references | UNOSAT. (2010). Remote sensing damage assessment: UNITAR/UNOSAT, EC JRC and World Bank. Available on www.unitar.org/unosat/haiti-earthquake-2010-remote-sensing-based-building- damage-assessment-data, Visited on 10 Sep 2018. | es_ES |
dc.description.references | Venkat, A., Kekre, S., Hegde, G. G., Shang, J., & Campbell, T. P. (2015). Strategic Management of Operations in the Emergency Department. Production and Operations Management, 24(11), 1706-1723. doi:10.1111/poms.12346 | es_ES |
dc.description.references | Verdu, D. (2016)., Available online onhttp://brasil.elpais.com/brasil/2016/04/30/eps/1462052785_347240.html, Visited on 12 January 2018. | es_ES |
dc.description.references | Wang, Y., Luangkesorn, K. L., & Shuman, L. (2012). Modeling emergency medical response to a mass casualty incident using agent based simulation. Socio-Economic Planning Sciences, 46(4), 281-290. doi:10.1016/j.seps.2012.07.002 | es_ES |
dc.description.references | Wanying, C., Alain, G., & Angel, R. (2016). Modeling the logistics response to a bioterrorist anthrax attack. European Journal of Operational Research, 254(2), 458-471. doi:10.1016/j.ejor.2016.03.052 | es_ES |
dc.description.references | Wex, F., Schryen, G., Feuerriegel, S., & Neumann, D. (2014). Emergency response in natural disaster management: Allocation and scheduling of rescue units. European Journal of Operational Research, 235(3), 697-708. doi:10.1016/j.ejor.2013.10.029 | es_ES |
dc.description.references | Wilson, D. T., Hawe, G. I., Coates, G., & Crouch, R. S. (2013). A multi-objective combinatorial model of casualty processing in major incident response. European Journal of Operational Research, 230(3), 643-655. doi:10.1016/j.ejor.2013.04.040 | es_ES |
dc.description.references | Wilson, D. T., Hawe, G. I., Coates, G., & Crouch, R. S. (2014). Evaluation of centralised and autonomous routing strategies in major incident response. Safety Science, 70, 80-88. doi:10.1016/j.ssci.2014.05.001 | es_ES |
dc.description.references | Wilson, D. T., Hawe, G. I., Coates, G., & Crouch, R. S. (2016). Online optimization of casualty processing in major incident response: An experimental analysis. European Journal of Operational Research, 252(1), 334-348. doi:10.1016/j.ejor.2016.01.021 | es_ES |
dc.description.references | Xiang, Y., & Zhuang, J. (2014). A medical resource allocation model for serving emergency victims with deteriorating health conditions. Annals of Operations Research, 236(1), 177-196. doi:10.1007/s10479-014-1716-1 | es_ES |
dc.description.references | Yi, P., George, S. K., Paul, J. A., & Lin, L. (2010). Hospital capacity planning for disaster emergency management. Socio-Economic Planning Sciences, 44(3), 151-160. doi:10.1016/j.seps.2009.11.002 | es_ES |
dc.description.references | Yi, W., & Kumar, A. (2007). Ant colony optimization for disaster relief operations. Transportation Research Part E: Logistics and Transportation Review, 43(6), 660-672. doi:10.1016/j.tre.2006.05.004 | es_ES |
dc.description.references | Yi, W., & Özdamar, L. (2007). A dynamic logistics coordination model for evacuation and support in disaster response activities. European Journal of Operational Research, 179(3), 1177-1193. doi:10.1016/j.ejor.2005.03.077 | es_ES |
dc.description.references | Yu, L., Yang, H., Miao, L., & Zhang, C. (2018). Rollout algorithms for resource allocation in humanitarian logistics. IISE Transactions, 51(8), 887-909. doi:10.1080/24725854.2017.1417655 | es_ES |
dc.description.references | Yurt, R. W., Bessey, P. Q., Bauer, G. J., Dembicki, R., Laznick, H., Alden, N., & Rabbits, A. (2005). A Regional Burn Center???s Response to a Disaster: September 11, 2001, and the Days Beyond. Journal of Burn Care & Rehabilitation, 26(2), 117-124. doi:10.1097/01.bcr.0000155543.46107.e6 | es_ES |
dc.description.references | Zhang, S., Guo, H., Zhu, K., Yu, S., & Li, J. (2017). Multistage assignment optimization for emergency rescue teams in the disaster chain. Knowledge-Based Systems, 137, 123-137. doi:10.1016/j.knosys.2017.09.024 | es_ES |
dc.description.references | Zheng, Y.-J., Chen, S.-Y., & Ling, H.-F. (2015). Evolutionary optimization for disaster relief operations: A survey. Applied Soft Computing, 27, 553-566. doi:10.1016/j.asoc.2014.09.041 | es_ES |
dc.description.references | Zheng, Y.-J., Ling, H.-F., Chen, S.-Y., & Xue, J.-Y. (2015). A Hybrid Neuro-Fuzzy Network Based on Differential Biogeography-Based Optimization for Online Population Classification in Earthquakes. IEEE Transactions on Fuzzy Systems, 23(4), 1070-1083. doi:10.1109/tfuzz.2014.2337938 | es_ES |
dc.description.references | Zhou, L., Wu, X., Xu, Z., & Fujita, H. (2018). Emergency decision making for natural disasters: An overview. International Journal of Disaster Risk Reduction, 27, 567-576. doi:10.1016/j.ijdrr.2017.09.037 | es_ES |
dc.description.references | Zhu, L., Gong, Y., Xu, Y., & Gu, J. (2018). Emergency relief routing models for injured victims considering equity and priority. Annals of Operations Research, 283(1-2), 1573-1606. doi:10.1007/s10479-018-3089-3 | es_ES |