- -

Mass Casualty Management in Disaster Scene: A Systematic Review of OR&MS research in Humanitarian Operations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mass Casualty Management in Disaster Scene: A Systematic Review of OR&MS research in Humanitarian Operations

Mostrar el registro completo del ítem

Farahani, RZ.; Lotfi, MM.; Baghaian, A.; Ruiz García, R.; Rezapour, S. (2020). Mass Casualty Management in Disaster Scene: A Systematic Review of OR&MS research in Humanitarian Operations. European Journal of Operational Research. 287(3):787-819. https://doi.org/10.1016/j.ejor.2020.03.005

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165798

Ficheros en el ítem

Metadatos del ítem

Título: Mass Casualty Management in Disaster Scene: A Systematic Review of OR&MS research in Humanitarian Operations
Autor: Farahani, Reza Zanjirani Lotfi, M. M. Baghaian, Atefe Ruiz García, Rubén Rezapour, Shabnam
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
[EN] Disasters are usually managed through a four-phase cycle including mitigation, preparedness, response and recovery. The first two phases happen before a disaster and the last two after it. This survey focuses on ...[+]
Palabras clave: Humanitarian logistics , Casualty management , Disaster , Relief operations , Health operations
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
European Journal of Operational Research. (issn: 0377-2217 )
DOI: 10.1016/j.ejor.2020.03.005
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.ejor.2020.03.005
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094940-B-I00/ES/OPTIMIZACION DE OPERACIONES EN TERMINALES PORTUARIAS/
Agradecimientos:
Ruben Ruiz is partially supported by the Spanish Ministry of Science, Innovation, and Universities, under the project "OPTEP-Port Terminal Operations Optimization"(No. RTI2018-094940-B-I00) financed with FEDER funds.
Tipo: Artículo

References

Abdelgawad, H., & Abdulhai, B. (2009). Emergency evacuation planning as a network design problem: a critical review. Transportation Letters, 1(1), 41-58. doi:10.3328/tl.2009.01.01.41-58

Abidi, H., de Leeuw, S., & Klumpp, M. (2014). Humanitarian supply chain performance management: a systematic literature review. Supply Chain Management: An International Journal, 19(5/6), 592-608. doi:10.1108/scm-09-2013-0349

Al Theeb, N., & Murray, C. (2016). Vehicle routing and resource distribution in postdisaster humanitarian relief operations. International Transactions in Operational Research, 24(6), 1253-1284. doi:10.1111/itor.12308 [+]
Abdelgawad, H., & Abdulhai, B. (2009). Emergency evacuation planning as a network design problem: a critical review. Transportation Letters, 1(1), 41-58. doi:10.3328/tl.2009.01.01.41-58

Abidi, H., de Leeuw, S., & Klumpp, M. (2014). Humanitarian supply chain performance management: a systematic literature review. Supply Chain Management: An International Journal, 19(5/6), 592-608. doi:10.1108/scm-09-2013-0349

Al Theeb, N., & Murray, C. (2016). Vehicle routing and resource distribution in postdisaster humanitarian relief operations. International Transactions in Operational Research, 24(6), 1253-1284. doi:10.1111/itor.12308

Alinaghian, M., Aghaie, M., & Sabbagh, M. S. (2019). A mathematical model for location of temporary relief centers and dynamic routing of aerial rescue vehicles. Computers & Industrial Engineering, 131, 227-241. doi:10.1016/j.cie.2019.03.002

Alizadeh, M., Amiri-Aref, M., Mustafee, N., & Matilal, S. (2019). A robust stochastic Casualty Collection Points location problem. European Journal of Operational Research, 279(3), 965-983. doi:10.1016/j.ejor.2019.06.018

Al-Momani, N. M., & Harrald, J. R. (2003). Sensitivity of earthquake loss estimation model: how useful are the predictions. International Journal of Risk Assessment and Management, 4(1), 1. doi:10.1504/ijram.2003.003433

Alotaibi, E. T., Alqefari, S. S., & Koubaa, A. (2019). LSAR: Multi-UAV Collaboration for Search and Rescue Missions. IEEE Access, 7, 55817-55832. doi:10.1109/access.2019.2912306

Altay, N., & Green, W. G. (2006). OR/MS research in disaster operations management. European Journal of Operational Research, 175(1), 475-493. doi:10.1016/j.ejor.2005.05.016

Esposito Amideo, A., Scaparra, M. P., & Kotiadis, K. (2019). Optimising shelter location and evacuation routing operations: The critical issues. European Journal of Operational Research, 279(2), 279-295. doi:10.1016/j.ejor.2018.12.009

Anaya-Arenas, A. M., Renaud, J., & Ruiz, A. (2014). Relief distribution networks: a systematic review. Annals of Operations Research, 223(1), 53-79. doi:10.1007/s10479-014-1581-y

Apte, A., Heidtke, C., & Salmerón, J. (2015). Casualty Collection Points Optimization: A Study for the District of Columbia. Interfaces, 45(2), 149-165. doi:10.1287/inte.2014.0757

Baharmand, H., Comes, T., & Lauras, M. (2019). Bi-objective multi-layer location–allocation model for the immediate aftermath of sudden-onset disasters. Transportation Research Part E: Logistics and Transportation Review, 127, 86-110. doi:10.1016/j.tre.2019.05.002

Balcik, B., Beamon, B. M., & Smilowitz, K. (2008). Last Mile Distribution in Humanitarian Relief. Journal of Intelligent Transportation Systems, 12(2), 51-63. doi:10.1080/15472450802023329

Balcik, B., Bozkir, C. D. C., & Kundakcioglu, O. E. (2016). A literature review on inventory management in humanitarian supply chains. Surveys in Operations Research and Management Science, 21(2), 101-116. doi:10.1016/j.sorms.2016.10.002

Behl, A., & Dutta, P. (2018). Humanitarian supply chain management: a thematic literature review and future directions of research. Annals of Operations Research, 283(1-2), 1001-1044. doi:10.1007/s10479-018-2806-2

Berkoune, D., Renaud, J., Rekik, M., & Ruiz, A. (2012). Transportation in disaster response operations. Socio-Economic Planning Sciences, 46(1), 23-32. doi:10.1016/j.seps.2011.05.002

Besiou, M., Pedraza-Martinez, A. J., & Van Wassenhove, L. N. (2018). OR applied to humanitarian operations. European Journal of Operational Research, 269(2), 397-405. doi:10.1016/j.ejor.2018.02.046

Boonmee, C., Arimura, M., & Asada, T. (2017). Facility location optimization model for emergency humanitarian logistics. International Journal of Disaster Risk Reduction, 24, 485-498. doi:10.1016/j.ijdrr.2017.01.017

Bravo, R. Z. B., Leiras, A., & Cyrino Oliveira, F. L. (2018). The Use of UAVs in Humanitarian Relief: An Application of POMDP-Based Methodology for Finding Victims. Production and Operations Management, 28(2), 421-440. doi:10.1111/poms.12930

California Office of Statewide Health Planning & Development, 2016. Available online on http://oshpd.ca.gov/, Visited on 28 Nov (2016).

Canes, M. (2015). Mais de 10 mil pessoas foram atingidas por tornado em Xanxerê, Available online onhttp://agenciabrasil.ebc.com.br/geral/noticia/2015-04/mais-de-10-mil-pessoas-foram-atingidas-por-tornado-em-xanxere, Visited on 20 Jan 2017).

Çankaya, E., Ekici, A., & Özener, O. Ö. (2018). Humanitarian relief supplies distribution: an application of inventory routing problem. Annals of Operations Research, 283(1-2), 119-141. doi:10.1007/s10479-018-2781-7

Cao, C., Li, C., Yang, Q., Liu, Y., & Qu, T. (2018). A novel multi-objective programming model of relief distribution for sustainable disaster supply chain in large-scale natural disasters. Journal of Cleaner Production, 174, 1422-1435. doi:10.1016/j.jclepro.2017.11.037

Caunhye, A. M., Li, M., & Nie, X. (2015). A location-allocation model for casualty response planning during catastrophic radiological incidents. Socio-Economic Planning Sciences, 50, 32-44. doi:10.1016/j.seps.2015.02.001

Caunhye, A. M., & Nie, X. (2018). A Stochastic Programming Model for Casualty Response Planning During Catastrophic Health Events. Transportation Science, 52(2), 437-453. doi:10.1287/trsc.2017.0777

Caunhye, A. M., Nie, X., & Pokharel, S. (2012). Optimization models in emergency logistics: A literature review. Socio-Economic Planning Sciences, 46(1), 4-13. doi:10.1016/j.seps.2011.04.004

Chan, C. W., Green, L. V., Lu, Y., Leahy, N., & Yurt, R. (2013). Prioritizing Burn-Injured Patients During a Disaster. Manufacturing & Service Operations Management, 15(2), 170-190. doi:10.1287/msom.1120.0412

Chen, L., & Miller-Hooks, E. (2012). Optimal team deployment in urban search and rescue. Transportation Research Part B: Methodological, 46(8), 984-999. doi:10.1016/j.trb.2012.03.004

Christie, P. M. J., & Levary, R. R. (1998). Journal of Medical Systems, 22(5), 289-300. doi:10.1023/a:1020521909778

Cohen, I., Mandelbaum, A., & Zychlinski, N. (2014). Minimizing mortality in a mass casualty event: fluid networks in support of modeling and staffing. IIE Transactions, 46(7), 728-741. doi:10.1080/0740817x.2013.855846

Cook, W. D. (1977). A Model for the Evacuation of Casualties from a Field Hospital During a Crisis. Journal of the Operational Research Society, 28(4), 963-974. doi:10.1057/jors.1977.194

Cotta, C. (2011). Effective patient prioritization in mass casualty incidents using hyperheuristics and the pilot method. OR Spectrum, 33(3), 699-720. doi:10.1007/s00291-011-0238-3

CRED (Centre for Research on the Epidemiology of Disasters) (2018). Cred Crunch 52 - Economic Losses, Poverty and Disasters: 1998-2017. Available at www.cred.be/sites/default/files/CredCrunch52.pdf.

Davoodi, S. M. R., & Goli, A. (2019). An integrated disaster relief model based on covering tour using hybrid Benders decomposition and variable neighborhood search: Application in the Iranian context. Computers & Industrial Engineering, 130, 370-380. doi:10.1016/j.cie.2019.02.040

De la Torre, L. E., Dolinskaya, I. S., & Smilowitz, K. R. (2012). Disaster relief routing: Integrating research and practice. Socio-Economic Planning Sciences, 46(1), 88-97. doi:10.1016/j.seps.2011.06.001

Dean, M. D., & Nair, S. K. (2014). Mass-casualty triage: Distribution of victims to multiple hospitals using the SAVE model. European Journal of Operational Research, 238(1), 363-373. doi:10.1016/j.ejor.2014.03.028

Debacker, M., Van Utterbeeck, F., Ullrich, C., Dhondt, E., & Hubloue, I. (2016). SIMEDIS: a Discrete-Event Simulation Model for Testing Responses to Mass Casualty Incidents. Journal of Medical Systems, 40(12). doi:10.1007/s10916-016-0633-z

Department of Homeland Security. National planning scenarios: Executive summaries. (2005)., Available athttp://cees.tamiu.edu/covertheborder/TOOLS/NationalPlanningSen.pdf(April 2005).

Doan, X. V., & Shaw, D. (2019). Resource allocation when planning for simultaneous disasters. European Journal of Operational Research, 274(2), 687-709. doi:10.1016/j.ejor.2018.10.015

Drezner, T. (2004). Location of Casualty Collection Points. Environment and Planning C: Government and Policy, 22(6), 899-912. doi:10.1068/c13r

Edrissi, A., Nourinejad, M., & Roorda, M. J. (2015). Transportation network reliability in emergency response. Transportation Research Part E: Logistics and Transportation Review, 80, 56-73. doi:10.1016/j.tre.2015.05.005

Edrissi, A., Poorzahedy, H., Nassiri, H., & Nourinejad, M. (2013). A multi-agent optimization formulation of earthquake disaster prevention and management. European Journal of Operational Research, 229(1), 261-275. doi:10.1016/j.ejor.2013.03.008

EM-DAT, Natural Disasters (2017). Available atwww.cred.be/sites/default/fles/adsr_2017.pdf.

FEMA. National Incident Management System. (2008)., Available online onwww.fema.gov/media-library/assets/documents/25422, Visited on 11 Nov 2018.

Fiedrich, F., Gehbauer, F., & Rickers, U. (2000). Optimized resource allocation for emergency response after earthquake disasters. Safety Science, 35(1-3), 41-57. doi:10.1016/s0925-7535(00)00021-7

Franco, C., Toner, E., Waldhorn, R., Maldin, B., O’Toole, T., & Inglesby, T. V. (2006). Systemic Collapse: Medical Care in the Aftermath of Hurricane Katrina. Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science, 4(2), 135-146. doi:10.1089/bsp.2006.4.135

Frykberg, E. R. (2005). Triage: Principles and Practice. Scandinavian Journal of Surgery, 94(4), 272-278. doi:10.1177/145749690509400405

Galindo, G., & Batta, R. (2013). Review of recent developments in OR/MS research in disaster operations management. European Journal of Operational Research, 230(2), 201-211. doi:10.1016/j.ejor.2013.01.039

Ghasemi, P., Khalili-Damghani, K., Hafezalkotob, A., & Raissi, S. (2019). Uncertain multi-objective multi-commodity multi-period multi-vehicle location-allocation model for earthquake evacuation planning. Applied Mathematics and Computation, 350, 105-132. doi:10.1016/j.amc.2018.12.061

Gong, Q., & Batta, R. (2007). Allocation and reallocation of ambulances to casualty clusters in a disaster relief operation. IIE Transactions, 39(1), 27-39. doi:10.1080/07408170600743938

GPO Access Reports (2005). Chapter 24: Medical assistance. Available atwww.gpoaccess.gov/serialset/creports/pdf/sr109-322/ch24.pdfVisited on 30 Aug 2010.

Gu, J., Zhou, Y., Das, A., Moon, I., & Lee, G. M. (2018). Medical relief shelter location problem with patient severity under a limited relief budget. Computers & Industrial Engineering, 125, 720-728. doi:10.1016/j.cie.2018.03.027

Gupta, S., Starr, M. K., Farahani, R. Z., & Matinrad, N. (2016). Disaster Management from a POM Perspective: Mapping a New Domain. Production and Operations Management, 25(10), 1611-1637. doi:10.1111/poms.12591

Gutjahr, W. J., & Nolz, P. C. (2016). Multicriteria optimization in humanitarian aid. European Journal of Operational Research, 252(2), 351-366. doi:10.1016/j.ejor.2015.12.035

Haghi, M., Fatemi Ghomi, S. M. T., & Jolai, F. (2017). Developing a robust multi-objective model for pre/post disaster times under uncertainty in demand and resource. Journal of Cleaner Production, 154, 188-202. doi:10.1016/j.jclepro.2017.03.102

Hallak, J., Koyuncu, M., & Miç, P. (2019). Determining shelter locations in conflict areas by multiobjective modeling: A case study in northern Syria. International Journal of Disaster Risk Reduction, 38, 101202. doi:10.1016/j.ijdrr.2019.101202

Hamp, Q., Zhang, R., Chen, L., Gorgis, O., Ostertag, T., Loschonsky, M., & Reindl, L. (2014). New technologies for the search of trapped victims. Ad Hoc Networks, 13, 69-82. doi:10.1016/j.adhoc.2012.06.005

Hoyos, M. C., Morales, R. S., & Akhavan-Tabatabaei, R. (2015). OR models with stochastic components in disaster operations management: A literature survey. Computers & Industrial Engineering, 82, 183-197. doi:10.1016/j.cie.2014.11.025

Hu, X., Liu, Z., Yao, Y., Wang, N., & Dang, D. (2017). Crowdsourcing Model Research for the Identification of Post-Earthquake Rescue Objects. Journal of Earthquake Engineering, 23(5), 863-881. doi:10.1080/13632469.2017.1342304

Huang, K., Jiang, Y., Yuan, Y., & Zhao, L. (2015). Modeling multiple humanitarian objectives in emergency response to large-scale disasters. Transportation Research Part E: Logistics and Transportation Review, 75, 1-17. doi:10.1016/j.tre.2014.11.007

Jacobson, E. U., Argon, N. T., & Ziya, S. (2012). Priority Assignment in Emergency Response. Operations Research, 60(4), 813-832. doi:10.1287/opre.1120.1075

Jin, S., Jeong, S., Kim, J., & Kim, K. (2014). A logistics model for the transport of disaster victims with various injuries and survival probabilities. Annals of Operations Research, 230(1), 17-33. doi:10.1007/s10479-013-1515-0

Jones, L.M., .Bernknopf, R., Cox, D., Goltz, J., Hudnut, K., Mileti, D. et al. (2008). The ShakeOut scenario. U.S. Geological Survey and California Geological Survey, Reston, VA, http://pubs.usgs.gov/of/2008/1150/of2008-1150small.pdf.

Jotshi, A., Gong, Q., & Batta, R. (2009). Dispatching and routing of emergency vehicles in disaster mitigation using data fusion. Socio-Economic Planning Sciences, 43(1), 1-24. doi:10.1016/j.seps.2008.02.005

Kamali, B., Bish, D., & Glick, R. (2017). Optimal service order for mass-casualty incident response. European Journal of Operational Research, 261(1), 355-367. doi:10.1016/j.ejor.2017.01.047

Kang, J., Jeong, I.-J., & Kwun, J.-B. (2015). Optimal facility–final exit assignment algorithm for building complex evacuation. Computers & Industrial Engineering, 85, 169-176. doi:10.1016/j.cie.2015.03.012

Karatas, M., Razi, N., & Gunal, M. M. (2017). An ILP and simulation model to optimize search and rescue helicopter operations. Journal of the Operational Research Society, 68(11), 1335-1351. doi:10.1057/s41274-016-0154-7

Kilic, A., Dincer, M. C., & Gokce, M. A. (2014). Determining optimal treatment rate after a disaster. Journal of the Operational Research Society, 65(7), 1053-1067. doi:10.1057/jors.2013.52

Kim, S., Shin, Y., Lee, G. M., & Moon, I. (2018). Early stage response problem for post-disaster incidents. Engineering Optimization, 50(7), 1198-1211. doi:10.1080/0305215x.2017.1419345

Klein, K. R., & Nagel, N. E. (2007). Mass Medical Evacuation: Hurricane Katrina and Nursing Experiences at the New Orleans Airport. Disaster Management & Response, 5(2), 56-61. doi:10.1016/j.dmr.2007.03.001

Kovacs, G., & Moshtari, M. (2019). A roadmap for higher research quality in humanitarian operations: A methodological perspective. European Journal of Operational Research, 276(2), 395-408. doi:10.1016/j.ejor.2018.07.052

Lee, E. K., Chen, C.-H., Pietz, F., & Benecke, B. (2009). Modeling and Optimizing the Public-Health Infrastructure for Emergency Response. Interfaces, 39(5), 476-490. doi:10.1287/inte.1090.0463

Leiras, A., de Brito Jr, I., Queiroz Peres, E., Rejane Bertazzo, T., & Tsugunobu Yoshida Yoshizaki, H. (2014). Literature review of humanitarian logistics research: trends and challenges. Journal of Humanitarian Logistics and Supply Chain Management, 4(1), 95-130. doi:10.1108/jhlscm-04-2012-0008

Lerner, E. B., Schwartz, R. B., Coule, P. L., Weinstein, E. S., Cone, D. C., Hunt, R. C., … O’Connor, R. E. (2008). Mass Casualty Triage: An Evaluation of the Data and Development of a Proposed National Guideline. Disaster Medicine and Public Health Preparedness, 2(S1), S25-S34. doi:10.1097/dmp.0b013e318182194e

Li, D., & Glazebrook, K. D. (2010). An approximate dynamic programing approach to the development of heuristics for the scheduling of impatient jobs in a clearing system. Naval Research Logistics (NRL), 57(3), 225-236. doi:10.1002/nav.20395

Li, M.-Y., Zhao, X.-J., Fan, Z.-P., Cao, P.-P., & Qu, X.-N. (2019). A model for assignment of rescuers considering multiple disaster areas. International Journal of Disaster Risk Reduction, 38, 101201. doi:10.1016/j.ijdrr.2019.101201

Li, Y., & Chung, S. H. (2018). Disaster relief routing under uncertainty: A robust optimization approach. IISE Transactions, 51(8), 869-886. doi:10.1080/24725854.2018.1450540

Liu, Y., Cui, N., & Zhang, J. (2019). Integrated temporary facility location and casualty allocation planning for post-disaster humanitarian medical service. Transportation Research Part E: Logistics and Transportation Review, 128, 1-16. doi:10.1016/j.tre.2019.05.008

Liu, Y., Lei, H., Wu, Z., & Zhang, D. (2019). A robust model predictive control approach for post-disaster relief distribution. Computers & Industrial Engineering, 135, 1253-1270. doi:10.1016/j.cie.2018.09.005

Lodree, E. J., Altay, N., & Cook, R. A. (2017). Staff assignment policies for a mass casualty event queuing network. Annals of Operations Research, 283(1-2), 411-442. doi:10.1007/s10479-017-2635-8

Mahootchi, M., & Golmohammadi, S. (2017). Developing a new stochastic model considering bi-directional relations in a natural disaster: a possible earthquake in Tehran (the Capital of Islamic Republic of Iran). Annals of Operations Research, 269(1-2), 439-473. doi:10.1007/s10479-017-2596-y

Mills, A. F. (2016). A simple yet effective decision support policy for mass-casualty triage. European Journal of Operational Research, 253(3), 734-745. doi:10.1016/j.ejor.2016.03.005

Mills, A. F., Argon, N. T., & Ziya, S. (2013). Resource-Based Patient Prioritization in Mass-Casualty Incidents. Manufacturing & Service Operations Management, 15(3), 361-377. doi:10.1287/msom.1120.0426

Mills, A. F., Argon, N. T., & Ziya, S. (2018). Dynamic Distribution of Patients to Medical Facilities in the Aftermath of a Disaster. Operations Research, 66(3), 716-732. doi:10.1287/opre.2017.1695

Mollah, A. K., Sadhukhan, S., Das, P., & Anis, M. Z. (2018). A cost optimization model and solutions for shelter allocation and relief distribution in flood scenario. International Journal of Disaster Risk Reduction, 31, 1187-1198. doi:10.1016/j.ijdrr.2017.11.018

Na, H. S., & Banerjee, A. (2015). A disaster evacuation network model for transporting multiple priority evacuees. IIE Transactions, 47(11), 1287-1299. doi:10.1080/0740817x.2015.1040929

Najafi, M., Eshghi, K., & de Leeuw, S. (2013). A dynamic dispatching and routing model to plan/ re-plan logistics activities in response to an earthquake. OR Spectrum, 36(2), 323-356. doi:10.1007/s00291-012-0317-0

Najafi, M., Eshghi, K., & Dullaert, W. (2013). A multi-objective robust optimization model for logistics planning in the earthquake response phase. Transportation Research Part E: Logistics and Transportation Review, 49(1), 217-249. doi:10.1016/j.tre.2012.09.001

Natarajarathinam, M., Capar, I., & Narayanan, A. (2009). Managing supply chains in times of crisis: a review of literature and insights. International Journal of Physical Distribution & Logistics Management, 39(7), 535-573. doi:10.1108/09600030910996251

New Madrid Seismic Zone: Catastrophic earthquake response planning project. (2009). Available atwww.ideals.illinois.edu/bitstream/handle/2142/14810/ImpactofNewMadridSeismicZoneEarthquakeso%20theCentral%20USAVol1.pdf.

Ni, W., Shu, J., & Song, M. (2017). Location and Emergency Inventory Pre-Positioning for Disaster Response Operations: Min-Max Robust Model and a Case Study of Yushu Earthquake. Production and Operations Management, 27(1), 160-183. doi:10.1111/poms.12789

Niessner, H., Rauner, M. S., & Gutjahr, W. J. (2018). A dynamic simulation–optimization approach for managing mass casualty incidents. Operations Research for Health Care, 17, 82-100. doi:10.1016/j.orhc.2017.07.001

Nolz, P. C., Semet, F., & Doerner, K. F. (2011). Risk approaches for delivering disaster relief supplies. OR Spectrum, 33(3), 543-569. doi:10.1007/s00291-011-0258-z

Overstreet, R. E., Hall, D., Hanna, J. B., & Kelly Rainer, R. (2011). Research in humanitarian logistics. Journal of Humanitarian Logistics and Supply Chain Management, 1(2), 114-131. doi:10.1108/20426741111158421

Ozbay, E., Çavuş, Ö., & Kara, B. Y. (2019). Shelter site location under multi-hazard scenarios. Computers & Operations Research, 106, 102-118. doi:10.1016/j.cor.2019.02.008

Ozdamar, L. (2011). Planning helicopter logistics in disaster relief. OR Spectrum, 33(3), 655-672. doi:10.1007/s00291-011-0259-y

Özdamar, L., & Ertem, M. A. (2015). Models, solutions and enabling technologies in humanitarian logistics. European Journal of Operational Research, 244(1), 55-65. doi:10.1016/j.ejor.2014.11.030

Paul, J. A., & Batta, R. (2011). Improving hurricane disaster preparedness: models for optimal reallocation of hospital capacity. International Journal of Operational Research, 10(2), 194. doi:10.1504/ijor.2011.038584

Paul, J. A., & Hariharan, G. (2012). Location-allocation planning of stockpiles for effective disaster mitigation. Annals of Operations Research, 196(1), 469-490. doi:10.1007/s10479-011-1052-7

Paul, J. A., & MacDonald, L. (2016). Location and capacity allocations decisions to mitigate the impacts of unexpected disasters. European Journal of Operational Research, 251(1), 252-263. doi:10.1016/j.ejor.2015.10.028

Paul, J. A., & MacDonald, L. (2016). Optimal location, capacity and timing of stockpiles for improved hurricane preparedness. International Journal of Production Economics, 174, 11-28. doi:10.1016/j.ijpe.2016.01.006

Paul, J. A., & Zhang, M. (2019). Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework. European Journal of Operational Research, 274(1), 108-125. doi:10.1016/j.ejor.2018.09.042

Rachaniotis, N. P., Dasaklis, T. K., & Pappis, C. P. (2012). A deterministic resource scheduling model in epidemic control: A case study. European Journal of Operational Research, 216(1), 225-231. doi:10.1016/j.ejor.2011.07.009

Rauchecker, G., & Schryen, G. (2019). An exact branch-and-price algorithm for scheduling rescue units during disaster response. European Journal of Operational Research, 272(1), 352-363. doi:10.1016/j.ejor.2018.06.010

Rauner, M. S., Schaffhauser-Linzatti, M. M., & Niessner, H. (2012). Resource planning for ambulance services in mass casualty incidents: a DES-based policy model. Health Care Management Science, 15(3), 254-269. doi:10.1007/s10729-012-9198-7

Reach Resource Centre. (2015). https://www.impact-repository.org/document/reach/a13d50f1/reach_sdd_factsheet_bentiu_camp_poc_30july2015_0.pdf. Available online on www.reachre sourcecentre.info, Visited on 15 Oct 2018.

Repoussis, P. P., Paraskevopoulos, D. C., Vazacopoulos, A., & Hupert, N. (2016). Optimizing emergency preparedness and resource utilization in mass-casualty incidents. European Journal of Operational Research, 255(2), 531-544. doi:10.1016/j.ejor.2016.05.047

Rezapour, S., Naderi, N., Morshedlou, N., & Rezapourbehnagh, S. (2018). Optimal deployment of emergency resources in sudden onset disasters. International Journal of Production Economics, 204, 365-382. doi:10.1016/j.ijpe.2018.08.014

Rodríguez-Espíndola, O., Albores, P., & Brewster, C. (2018). Dynamic formulation for humanitarian response operations incorporating multiple organisations. International Journal of Production Economics, 204, 83-98. doi:10.1016/j.ijpe.2018.07.023

RSMeansOnline (2013). RSMeans Data Online, Construction Estimating Software. Available online onwww.rsmeansonline.com, 20 Feb 2013.

Sacco, W. J. (2005). Precise Formulation and Evidence-based Application of Resource-constrained Triage. Academic Emergency Medicine, 12(8), 759-770. doi:10.1197/j.aem.2005.04.003

Safaei, A. S., Farsad, S., & Paydar, M. M. (2018). Robust bi-level optimization of relief logistics operations. Applied Mathematical Modelling, 56, 359-380. doi:10.1016/j.apm.2017.12.003

Salman, F. S., & Gül, S. (2014). Deployment of field hospitals in mass casualty incidents. Computers & Industrial Engineering, 74, 37-51. doi:10.1016/j.cie.2014.04.020

Salmerón, J., & Apte, A. (2010). Stochastic Optimization for Natural Disaster Asset Prepositioning. Production and Operations Management, 19(5), 561-574. doi:10.1111/j.1937-5956.2009.01119.x

Sánchez-García, J., Reina, D. G., & Toral, S. L. (2019). A distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenario. Future Generation Computer Systems, 90, 129-148. doi:10.1016/j.future.2018.07.048

Setiawan, E., Liu, J., & French, A. (2019). Resource location for relief distribution and victim evacuation after a sudden-onset disaster. IISE Transactions, 51(8), 830-846. doi:10.1080/24725854.2018.1517284

Simpson, N. C., & Hancock, P. G. (2009). Fifty years of operational research and emergency response. Journal of the Operational Research Society, 60(sup1), S126-S139. doi:10.1057/jors.2009.3

Su, Z., Zhang, G., Liu, Y., Yue, F., & Jiang, J. (2016). Multiple emergency resource allocation for concurrent incidents in natural disasters. International Journal of Disaster Risk Reduction, 17, 199-212. doi:10.1016/j.ijdrr.2016.05.003

Sun, Z., Argon, N. T., & Ziya, S. (2018). Patient Triage and Prioritization Under Austere Conditions. Management Science, 64(10), 4471-4489. doi:10.1287/mnsc.2017.2855

Sung, I., & Lee, T. (2016). Optimal allocation of emergency medical resources in a mass casualty incident: Patient prioritization by column generation. European Journal of Operational Research, 252(2), 623-634. doi:10.1016/j.ejor.2016.01.028

Talarico, L., Meisel, F., & Sörensen, K. (2015). Ambulance routing for disaster response with patient groups. Computers & Operations Research, 56, 120-133. doi:10.1016/j.cor.2014.11.006

Tehran Atlas. (2014)., Available online onhttp://atlas.tehran.ir/Default.aspx?tabid=193, Visited on 08 Nov. 2018.

Telford J., Cosgrave, J., & Houghton, R. (2006). Joint Evaluation of the International Response to the Indian Ocean Tsunami (Synthesis Report). Tsunami Evaluation Coalition (TEC). Available at www.sida.se/publications.

UNOSAT. (2010). Remote sensing damage assessment: UNITAR/UNOSAT, EC JRC and World Bank. Available on www.unitar.org/unosat/haiti-earthquake-2010-remote-sensing-based-building- damage-assessment-data, Visited on 10 Sep 2018.

Venkat, A., Kekre, S., Hegde, G. G., Shang, J., & Campbell, T. P. (2015). Strategic Management of Operations in the Emergency Department. Production and Operations Management, 24(11), 1706-1723. doi:10.1111/poms.12346

Verdu, D. (2016)., Available online onhttp://brasil.elpais.com/brasil/2016/04/30/eps/1462052785_347240.html, Visited on 12 January 2018.

Wang, Y., Luangkesorn, K. L., & Shuman, L. (2012). Modeling emergency medical response to a mass casualty incident using agent based simulation. Socio-Economic Planning Sciences, 46(4), 281-290. doi:10.1016/j.seps.2012.07.002

Wanying, C., Alain, G., & Angel, R. (2016). Modeling the logistics response to a bioterrorist anthrax attack. European Journal of Operational Research, 254(2), 458-471. doi:10.1016/j.ejor.2016.03.052

Wex, F., Schryen, G., Feuerriegel, S., & Neumann, D. (2014). Emergency response in natural disaster management: Allocation and scheduling of rescue units. European Journal of Operational Research, 235(3), 697-708. doi:10.1016/j.ejor.2013.10.029

Wilson, D. T., Hawe, G. I., Coates, G., & Crouch, R. S. (2013). A multi-objective combinatorial model of casualty processing in major incident response. European Journal of Operational Research, 230(3), 643-655. doi:10.1016/j.ejor.2013.04.040

Wilson, D. T., Hawe, G. I., Coates, G., & Crouch, R. S. (2014). Evaluation of centralised and autonomous routing strategies in major incident response. Safety Science, 70, 80-88. doi:10.1016/j.ssci.2014.05.001

Wilson, D. T., Hawe, G. I., Coates, G., & Crouch, R. S. (2016). Online optimization of casualty processing in major incident response: An experimental analysis. European Journal of Operational Research, 252(1), 334-348. doi:10.1016/j.ejor.2016.01.021

Xiang, Y., & Zhuang, J. (2014). A medical resource allocation model for serving emergency victims with deteriorating health conditions. Annals of Operations Research, 236(1), 177-196. doi:10.1007/s10479-014-1716-1

Yi, P., George, S. K., Paul, J. A., & Lin, L. (2010). Hospital capacity planning for disaster emergency management. Socio-Economic Planning Sciences, 44(3), 151-160. doi:10.1016/j.seps.2009.11.002

Yi, W., & Kumar, A. (2007). Ant colony optimization for disaster relief operations. Transportation Research Part E: Logistics and Transportation Review, 43(6), 660-672. doi:10.1016/j.tre.2006.05.004

Yi, W., & Özdamar, L. (2007). A dynamic logistics coordination model for evacuation and support in disaster response activities. European Journal of Operational Research, 179(3), 1177-1193. doi:10.1016/j.ejor.2005.03.077

Yu, L., Yang, H., Miao, L., & Zhang, C. (2018). Rollout algorithms for resource allocation in humanitarian logistics. IISE Transactions, 51(8), 887-909. doi:10.1080/24725854.2017.1417655

Yurt, R. W., Bessey, P. Q., Bauer, G. J., Dembicki, R., Laznick, H., Alden, N., & Rabbits, A. (2005). A Regional Burn Center???s Response to a Disaster: September 11, 2001, and the Days Beyond. Journal of Burn Care & Rehabilitation, 26(2), 117-124. doi:10.1097/01.bcr.0000155543.46107.e6

Zhang, S., Guo, H., Zhu, K., Yu, S., & Li, J. (2017). Multistage assignment optimization for emergency rescue teams in the disaster chain. Knowledge-Based Systems, 137, 123-137. doi:10.1016/j.knosys.2017.09.024

Zheng, Y.-J., Chen, S.-Y., & Ling, H.-F. (2015). Evolutionary optimization for disaster relief operations: A survey. Applied Soft Computing, 27, 553-566. doi:10.1016/j.asoc.2014.09.041

Zheng, Y.-J., Ling, H.-F., Chen, S.-Y., & Xue, J.-Y. (2015). A Hybrid Neuro-Fuzzy Network Based on Differential Biogeography-Based Optimization for Online Population Classification in Earthquakes. IEEE Transactions on Fuzzy Systems, 23(4), 1070-1083. doi:10.1109/tfuzz.2014.2337938

Zhou, L., Wu, X., Xu, Z., & Fujita, H. (2018). Emergency decision making for natural disasters: An overview. International Journal of Disaster Risk Reduction, 27, 567-576. doi:10.1016/j.ijdrr.2017.09.037

Zhu, L., Gong, Y., Xu, Y., & Gu, J. (2018). Emergency relief routing models for injured victims considering equity and priority. Annals of Operations Research, 283(1-2), 1573-1606. doi:10.1007/s10479-018-3089-3

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem