- -

Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites

Show full item record

Liu, L.; Lopez-Haro, M.; Wittee Lopes, C.; Meira, DM.; Concepción Heydorn, P.; Calvino, JJ.; Corma Canós, A. (2020). Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites. Journal of Catalysis. 391:11-24. https://doi.org/10.1016/j.jcat.2020.07.035

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165799

Files in this item

Item Metadata

Title: Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites
Author: Liu, Lichen Lopez-Haro, Miguel Wittee Lopes, Christian MEIRA, DEBORA M. Concepción Heydorn, Patricia Calvino, José J. Corma Canós, Avelino
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] To achieve high-loading of stable subnanometric metal clusters on solid carriers is a challenge since those small metal clusters have strong tendency to sinter into larger nanoparticles. Development of facile synthesis ...[+]
Subjects: Metal clusters , Isolated atoms , Pt , MFI zeolite , Propane dehydrogenation , Structural evolution
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Journal of Catalysis. (issn: 0021-9517 )
DOI: 10.1016/j.jcat.2020.07.035
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.jcat.2020.07.035
Project ID:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
info:eu-repo/grantAgreement/CAPES//13191%2F13-6/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-87579-R/ES/FASES 2D ULTRAFINAS SOBRE OXIDOS CON MORFOLOGIA CONTROLADA: PLATAFORMA DE NANOCATALIZADORES MULTICOMPONENTE CON APLICACIONES EN PROTECCION DEL MEDIO AMBIENTE/
info:eu-repo/grantAgreement/MINECO//MAT2016-81118-P/ES/DISEÑO Y CARACTERIZACION AVANZADA DE CATALIZADORES CON NANOINTERFASES MODELO AU%2F%2FCEO2/
Thanks:
This work has been supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the "Severo Ochoa Program"(SEV-2016-0683). The authors ...[+]
Type: Artículo

References

Gates, B. C. (1995). Supported Metal Clusters: Synthesis, Structure, and Catalysis. Chemical Reviews, 95(3), 511-522. doi:10.1021/cr00035a003

Flytzani-Stephanopoulos, M., & Gates, B. C. (2012). Atomically Dispersed Supported Metal Catalysts. Annual Review of Chemical and Biomolecular Engineering, 3(1), 545-574. doi:10.1146/annurev-chembioeng-062011-080939

Liu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118(10), 4981-5079. doi:10.1021/acs.chemrev.7b00776 [+]
Gates, B. C. (1995). Supported Metal Clusters: Synthesis, Structure, and Catalysis. Chemical Reviews, 95(3), 511-522. doi:10.1021/cr00035a003

Flytzani-Stephanopoulos, M., & Gates, B. C. (2012). Atomically Dispersed Supported Metal Catalysts. Annual Review of Chemical and Biomolecular Engineering, 3(1), 545-574. doi:10.1146/annurev-chembioeng-062011-080939

Liu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118(10), 4981-5079. doi:10.1021/acs.chemrev.7b00776

Wang, A., Li, J., & Zhang, T. (2018). Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2(6), 65-81. doi:10.1038/s41570-018-0010-1

Ji, S., Chen, Y., Wang, X., Zhang, Z., Wang, D., & Li, Y. (2020). Chemical Synthesis of Single Atomic Site Catalysts. Chemical Reviews, 120(21), 11900-11955. doi:10.1021/acs.chemrev.9b00818

Chen, Y., Ji, S., Chen, C., Peng, Q., Wang, D., & Li, Y. (2018). Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule, 2(7), 1242-1264. doi:10.1016/j.joule.2018.06.019

Beniya, A., & Higashi, S. (2019). Towards dense single-atom catalysts for future automotive applications. Nature Catalysis, 2(7), 590-602. doi:10.1038/s41929-019-0282-y

Lang, R., Xi, W., Liu, J.-C., Cui, Y.-T., Li, T., Lee, A. F., … Zhang, T. (2019). Non defect-stabilized thermally stable single-atom catalyst. Nature Communications, 10(1). doi:10.1038/s41467-018-08136-3

Kunwar, D., Zhou, S., DeLaRiva, A., Peterson, E. J., Xiong, H., Pereira-Hernández, X. I., … Datye, A. K. (2019). Stabilizing High Metal Loadings of Thermally Stable Platinum Single Atoms on an Industrial Catalyst Support. ACS Catalysis, 9(5), 3978-3990. doi:10.1021/acscatal.8b04885

Pereira-Hernández, X. I., DeLaRiva, A., Muravev, V., Kunwar, D., Xiong, H., Sudduth, B., … Datye, A. K. (2019). Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nature Communications, 10(1). doi:10.1038/s41467-019-09308-5

Ren, Y., Tang, Y., Zhang, L., Liu, X., Li, L., Miao, S., … Zhang, T. (2019). Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nature Communications, 10(1). doi:10.1038/s41467-019-12459-0

Kosinov, N., Liu, C., Hensen, E. J. M., & Pidko, E. A. (2018). Engineering of Transition Metal Catalysts Confined in Zeolites. Chemistry of Materials, 30(10), 3177-3198. doi:10.1021/acs.chemmater.8b01311

Wu, S., Yang, X., & Janiak, C. (2019). Confinement Effects in Zeolite‐Confined Noble Metals. Angewandte Chemie International Edition, 58(36), 12340-12354. doi:10.1002/anie.201900013

Moliner, M., Gabay, J. E., Kliewer, C. E., Carr, R. T., Guzman, J., Casty, G. L., … Corma, A. (2016). Reversible Transformation of Pt Nanoparticles into Single Atoms inside High-Silica Chabazite Zeolite. Journal of the American Chemical Society, 138(48), 15743-15750. doi:10.1021/jacs.6b10169

Moliner, M., Gabay, J., Kliewer, C., Serna, P., & Corma, A. (2018). Trapping of Metal Atoms and Metal Clusters by Chabazite under Severe Redox Stress. ACS Catalysis, 8(10), 9520-9528. doi:10.1021/acscatal.8b01717

Goel, S., Zones, S. I., & Iglesia, E. (2014). Encapsulation of Metal Clusters within MFI via Interzeolite Transformations and Direct Hydrothermal Syntheses and Catalytic Consequences of Their Confinement. Journal of the American Chemical Society, 136(43), 15280-15290. doi:10.1021/ja507956m

Wang, N., Sun, Q., Bai, R., Li, X., Guo, G., & Yu, J. (2016). In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation. Journal of the American Chemical Society, 138(24), 7484-7487. doi:10.1021/jacs.6b03518

Zhang, J., Wang, L., Zhang, B., Zhao, H., Kolb, U., Zhu, Y., … Xiao, F.-S. (2018). Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nature Catalysis, 1(7), 540-546. doi:10.1038/s41929-018-0098-1

Kalz, K. F., Kraehnert, R., Dvoyashkin, M., Dittmeyer, R., Gläser, R., Krewer, U., … Grunwaldt, J.-D. (2016). Future Challenges in Heterogeneous Catalysis: Understanding Catalysts under Dynamic Reaction Conditions. ChemCatChem, 9(1), 17-29. doi:10.1002/cctc.201600996

Newton, M. A. (2008). Dynamic adsorbate/reaction induced structural change of supported metal nanoparticles: heterogeneous catalysis and beyond. Chemical Society Reviews, 37(12), 2644. doi:10.1039/b707746g

Liu, L., Meira, D. M., Arenal, R., Concepcion, P., Puga, A. V., & Corma, A. (2019). Determination of the Evolution of Heterogeneous Single Metal Atoms and Nanoclusters under Reaction Conditions: Which Are the Working Catalytic Sites? ACS Catalysis, 9(12), 10626-10639. doi:10.1021/acscatal.9b04214

Borfecchia, E., Beato, P., Svelle, S., Olsbye, U., Lamberti, C., & Bordiga, S. (2018). Cu-CHA – a model system for applied selective redox catalysis. Chemical Society Reviews, 47(22), 8097-8133. doi:10.1039/c8cs00373d

Liu, L., Zakharov, D. N., Arenal, R., Concepcion, P., Stach, E. A., & Corma, A. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 9(1). doi:10.1038/s41467-018-03012-6

Gates, B. C. (2019). Atomically Dispersed Supported Metal Catalysts: Seeing Is Believing. Trends in Chemistry, 1(1), 99-110. doi:10.1016/j.trechm.2019.01.004

López-Haro, M., Tinoco, M., Fernández-Garcia, S., Chen, X., Hungria, A. B., Cauqui, M. Á., & Calvino, J. J. (2017). A Macroscopically Relevant 3D-Metrology Approach for Nanocatalysis Research. Particle & Particle Systems Characterization, 35(3), 1700343. doi:10.1002/ppsc.201700343

Simonelli, L., Marini, C., Olszewski, W., ��vila P��rez, M., Ramanan, N., Guilera, G., … Klementiev, K. (2016). CL��SS: The hard X-ray absorption beamline of the ALBA CELLS synchrotron. Cogent Physics, 3(1). doi:10.1080/23311940.2016.1231987

Mathon, O., Beteva, A., Borrel, J., Bugnazet, D., Gatla, S., Hino, R., … Pascarelli, S. (2015). The time-resolved and extreme conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the general-purpose EXAFS bending-magnet beamline BM23. Journal of Synchrotron Radiation, 22(6), 1548-1554. doi:10.1107/s1600577515017786

Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719

Liu, L., Lopez-Haro, M., Lopes, C. W., Li, C., Concepcion, P., Simonelli, L., … Corma, A. (2019). Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nature Materials, 18(8), 866-873. doi:10.1038/s41563-019-0412-6

Morgan, K., Goguet, A., & Hardacre, C. (2015). Metal Redispersion Strategies for Recycling of Supported Metal Catalysts: A Perspective. ACS Catalysis, 5(6), 3430-3445. doi:10.1021/acscatal.5b00535

Jones, J., Xiong, H., DeLaRiva, A. T., Peterson, E. J., Pham, H., Challa, S. R., … Datye, A. K. (2016). Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 353(6295), 150-154. doi:10.1126/science.aaf8800

Behafarid, F., Pandey, S., Diaz, R. E., Stach, E. A., & Cuenya, B. R. (2014). An in situ transmission electron microscopy study of sintering and redispersion phenomena over size-selected metal nanoparticles: environmental effects. Phys. Chem. Chem. Phys., 16(34), 18176-18184. doi:10.1039/c4cp02574a

Derevyannikova, E. A., Kardash, T. Y., Stadnichenko, A. I., Stonkus, O. A., Slavinskaya, E. M., Svetlichnyi, V. A., & Boronin, A. I. (2018). Structural Insight into Strong Pt–CeO2 Interaction: From Single Pt Atoms to PtOx Clusters. The Journal of Physical Chemistry C, 123(2), 1320-1334. doi:10.1021/acs.jpcc.8b11009

Uemura, Y., Inada, Y., Bando, K. K., Sasaki, T., Kamiuchi, N., Eguchi, K., … Iwasawa, Y. (2011). In situ time-resolved XAFS study on the structural transformation and phase separation of Pt3Sn and PtSn alloy nanoparticles on carbon in the oxidation process. Physical Chemistry Chemical Physics, 13(35), 15833. doi:10.1039/c1cp20994a

Moscu, A., Theodoridi, C., Cardenas, L., Thieuleux, C., Motta-Meira, D., Agostini, G., … Meunier, F. (2018). CO dissociation on Pt-Sn nanoparticles triggers Sn oxidation and alloy segregation. Journal of Catalysis, 359, 76-81. doi:10.1016/j.jcat.2017.12.035

Michalak, W. D., Krier, J. M., Alayoglu, S., Shin, J.-Y., An, K., Komvopoulos, K., … Somorjai, G. A. (2014). CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions. Journal of Catalysis, 312, 17-25. doi:10.1016/j.jcat.2014.01.005

Concepción, P., Pérez, Y., Hernández-Garrido, J. C., Fajardo, M., Calvino, J. J., & Corma, A. (2013). The promotional effect of Sn-beta zeolites on platinum for the selective hydrogenation of α,β-unsaturated aldehydes. Physical Chemistry Chemical Physics, 15(29), 12048. doi:10.1039/c3cp50519g

Serykh, A. I., Tkachenko, O. P., Yu. Borovkov, V., Kazansky, V. B., Beneke, M., Jaeger, N. I., & Schulz-Ekloff, G. (2000). Stable subnanometre Pt clusters in zeolite NaX via stoichiometric carbonyl complexes: Probing of negative charge by DRIFT spectroscopy of adsorbed CO and H2. Physical Chemistry Chemical Physics, 2(24), 5647-5652. doi:10.1039/b006609p

De Me´norval, L.-C., Chaqroune, A., Coq, B., & François Figueras, and. (1997). Characterization of mono- and bi-metallic platinum catalysts using CO FTIR spectroscopy Size effects and topological segregation. Journal of the Chemical Society, Faraday Transactions, 93(20), 3715-3720. doi:10.1039/a702174g

Tan, S. F., Chee, S. W., Baraissov, Z., Jin, H., Tan, T. L., & Mirsaidov, U. (2019). Real‐Time Imaging of Nanoscale Redox Reactions over Bimetallic Nanoparticles. Advanced Functional Materials, 29(37), 1903242. doi:10.1002/adfm.201903242

Prabhudev, S., Bugnet, M., Zhu, G.-Z., Bock, C., & Botton, G. A. (2015). Surface Segregation of Fe in Pt-Fe Alloy Nanoparticles: Its Precedence and Effect on the Ordered-Phase Evolution during Thermal Annealing. ChemCatChem, 7(22), 3655-3664. doi:10.1002/cctc.201500380

Zhang, B., Yang, H., Wang, Y., Dou, S., & Liu, H. (2018). A Comprehensive Review on Controlling Surface Composition of Pt‐Based Bimetallic Electrocatalysts. Advanced Energy Materials, 8(20), 1703597. doi:10.1002/aenm.201703597

Lari, G. M., Dapsens, P. Y., Scholz, D., Mitchell, S., Mondelli, C., & Pérez-Ramírez, J. (2016). Deactivation mechanisms of tin-zeolites in biomass conversions. Green Chemistry, 18(5), 1249-1260. doi:10.1039/c5gc02147b

Wang, G., Zhang, H., Wang, H., Zhu, Q., Li, C., & Shan, H. (2016). The role of metallic Sn species in catalytic dehydrogenation of propane: Active component rather than only promoter. Journal of Catalysis, 344, 606-608. doi:10.1016/j.jcat.2016.11.003

Liu, L., Lopez-Haro, M., Lopes, C. W., Rojas-Buzo, S., Concepcion, P., Manzorro, R., … Corma, A. (2020). Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nature Catalysis, 3(8), 628-638. doi:10.1038/s41929-020-0472-7

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record