Mostrar el registro sencillo del ítem
dc.contributor.author | Liu, Lichen | es_ES |
dc.contributor.author | Lopez-Haro, Miguel | es_ES |
dc.contributor.author | Wittee Lopes, Christian | es_ES |
dc.contributor.author | MEIRA, DEBORA M. | es_ES |
dc.contributor.author | Concepción Heydorn, Patricia | es_ES |
dc.contributor.author | Calvino, José J. | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2021-04-30T03:31:24Z | |
dc.date.available | 2021-04-30T03:31:24Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.issn | 0021-9517 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165799 | |
dc.description.abstract | [EN] To achieve high-loading of stable subnanometric metal clusters on solid carriers is a challenge since those small metal clusters have strong tendency to sinter into larger nanoparticles. Development of facile synthesis methodologies to obtain subnanometric metal catalysts with high metal loading and high stability against sintering at high temperature (>500 degrees C) in reductive atmosphere (such as H-2) is critical for the practical applications. In this work, we will present and discuss the generation of high-loading (similar to 1.4 wt%) subnanometric Pt clusters confined in the sinusoidal channels of MFI zeolite, on the basis of the atomic-level understanding on the evolution of Pt and Sn species during high-temperature oxidation-reduction treatments. It will be shown that the structural evolution of Pt and Sn species is dependent on the post-synthesis treatments. The Pt particles on the external surface can disintegrate into subnanometric Pt species and get stabilized in the zeolite channels during high-temperature calcination in air while Sn species migrate from surface region to internal region during high-temperature reduction treatment at 650 degrees C. The resultant material containing bimetallic PtSn clusters confined in the 10MR sinusoidal channels of the purely siliceous MFI zeolite show excellent catalytic activity and stability, as demonstrated for dehydrogenation of light alkanes at high reaction temperature. (C) 2020 Elsevier Inc. All rights reserved. | es_ES |
dc.description.sponsorship | This work has been supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the "Severo Ochoa Program"(SEV-2016-0683). The authors also thank Microscopy Service of UPV for the TEM and STEM measurements. The XAS measurements were carried out in CLAESS beamline of ALBA synchrotron and BM23 beamline at ESRF synchrotron. The kind supports from the scientific staffs in ALBA and ESRF are greatly appreciated. High-resolution STEM measurements were performed at DME-UCA node of ELECMI in Cadiz University, with financial support from FEDER/MINECO (MAT2017-87579-R and MAT2016-81118-P). C.W.L. thanks CAPES (Science without Frontiers Process no. 13191/13-6) for a predoctoral fellowship. Financial support on this work from ExxonMobil is greatly acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Catalysis | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Metal clusters | es_ES |
dc.subject | Isolated atoms | es_ES |
dc.subject | Pt | es_ES |
dc.subject | MFI zeolite | es_ES |
dc.subject | Propane dehydrogenation | es_ES |
dc.subject | Structural evolution | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jcat.2020.07.035 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAPES//13191%2F13-6/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-87579-R/ES/FASES 2D ULTRAFINAS SOBRE OXIDOS CON MORFOLOGIA CONTROLADA: PLATAFORMA DE NANOCATALIZADORES MULTICOMPONENTE CON APLICACIONES EN PROTECCION DEL MEDIO AMBIENTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-81118-P/ES/DISEÑO Y CARACTERIZACION AVANZADA DE CATALIZADORES CON NANOINTERFASES MODELO AU%2F%2FCEO2/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Liu, L.; Lopez-Haro, M.; Wittee Lopes, C.; Meira, DM.; Concepción Heydorn, P.; Calvino, JJ.; Corma Canós, A. (2020). Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites. Journal of Catalysis. 391:11-24. https://doi.org/10.1016/j.jcat.2020.07.035 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jcat.2020.07.035 | es_ES |
dc.description.upvformatpinicio | 11 | es_ES |
dc.description.upvformatpfin | 24 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 391 | es_ES |
dc.relation.pasarela | S\433269 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Gates, B. C. (1995). Supported Metal Clusters: Synthesis, Structure, and Catalysis. Chemical Reviews, 95(3), 511-522. doi:10.1021/cr00035a003 | es_ES |
dc.description.references | Flytzani-Stephanopoulos, M., & Gates, B. C. (2012). Atomically Dispersed Supported Metal Catalysts. Annual Review of Chemical and Biomolecular Engineering, 3(1), 545-574. doi:10.1146/annurev-chembioeng-062011-080939 | es_ES |
dc.description.references | Liu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118(10), 4981-5079. doi:10.1021/acs.chemrev.7b00776 | es_ES |
dc.description.references | Wang, A., Li, J., & Zhang, T. (2018). Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2(6), 65-81. doi:10.1038/s41570-018-0010-1 | es_ES |
dc.description.references | Ji, S., Chen, Y., Wang, X., Zhang, Z., Wang, D., & Li, Y. (2020). Chemical Synthesis of Single Atomic Site Catalysts. Chemical Reviews, 120(21), 11900-11955. doi:10.1021/acs.chemrev.9b00818 | es_ES |
dc.description.references | Chen, Y., Ji, S., Chen, C., Peng, Q., Wang, D., & Li, Y. (2018). Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule, 2(7), 1242-1264. doi:10.1016/j.joule.2018.06.019 | es_ES |
dc.description.references | Beniya, A., & Higashi, S. (2019). Towards dense single-atom catalysts for future automotive applications. Nature Catalysis, 2(7), 590-602. doi:10.1038/s41929-019-0282-y | es_ES |
dc.description.references | Lang, R., Xi, W., Liu, J.-C., Cui, Y.-T., Li, T., Lee, A. F., … Zhang, T. (2019). Non defect-stabilized thermally stable single-atom catalyst. Nature Communications, 10(1). doi:10.1038/s41467-018-08136-3 | es_ES |
dc.description.references | Kunwar, D., Zhou, S., DeLaRiva, A., Peterson, E. J., Xiong, H., Pereira-Hernández, X. I., … Datye, A. K. (2019). Stabilizing High Metal Loadings of Thermally Stable Platinum Single Atoms on an Industrial Catalyst Support. ACS Catalysis, 9(5), 3978-3990. doi:10.1021/acscatal.8b04885 | es_ES |
dc.description.references | Pereira-Hernández, X. I., DeLaRiva, A., Muravev, V., Kunwar, D., Xiong, H., Sudduth, B., … Datye, A. K. (2019). Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nature Communications, 10(1). doi:10.1038/s41467-019-09308-5 | es_ES |
dc.description.references | Ren, Y., Tang, Y., Zhang, L., Liu, X., Li, L., Miao, S., … Zhang, T. (2019). Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nature Communications, 10(1). doi:10.1038/s41467-019-12459-0 | es_ES |
dc.description.references | Kosinov, N., Liu, C., Hensen, E. J. M., & Pidko, E. A. (2018). Engineering of Transition Metal Catalysts Confined in Zeolites. Chemistry of Materials, 30(10), 3177-3198. doi:10.1021/acs.chemmater.8b01311 | es_ES |
dc.description.references | Wu, S., Yang, X., & Janiak, C. (2019). Confinement Effects in Zeolite‐Confined Noble Metals. Angewandte Chemie International Edition, 58(36), 12340-12354. doi:10.1002/anie.201900013 | es_ES |
dc.description.references | Moliner, M., Gabay, J. E., Kliewer, C. E., Carr, R. T., Guzman, J., Casty, G. L., … Corma, A. (2016). Reversible Transformation of Pt Nanoparticles into Single Atoms inside High-Silica Chabazite Zeolite. Journal of the American Chemical Society, 138(48), 15743-15750. doi:10.1021/jacs.6b10169 | es_ES |
dc.description.references | Moliner, M., Gabay, J., Kliewer, C., Serna, P., & Corma, A. (2018). Trapping of Metal Atoms and Metal Clusters by Chabazite under Severe Redox Stress. ACS Catalysis, 8(10), 9520-9528. doi:10.1021/acscatal.8b01717 | es_ES |
dc.description.references | Goel, S., Zones, S. I., & Iglesia, E. (2014). Encapsulation of Metal Clusters within MFI via Interzeolite Transformations and Direct Hydrothermal Syntheses and Catalytic Consequences of Their Confinement. Journal of the American Chemical Society, 136(43), 15280-15290. doi:10.1021/ja507956m | es_ES |
dc.description.references | Wang, N., Sun, Q., Bai, R., Li, X., Guo, G., & Yu, J. (2016). In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation. Journal of the American Chemical Society, 138(24), 7484-7487. doi:10.1021/jacs.6b03518 | es_ES |
dc.description.references | Zhang, J., Wang, L., Zhang, B., Zhao, H., Kolb, U., Zhu, Y., … Xiao, F.-S. (2018). Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nature Catalysis, 1(7), 540-546. doi:10.1038/s41929-018-0098-1 | es_ES |
dc.description.references | Kalz, K. F., Kraehnert, R., Dvoyashkin, M., Dittmeyer, R., Gläser, R., Krewer, U., … Grunwaldt, J.-D. (2016). Future Challenges in Heterogeneous Catalysis: Understanding Catalysts under Dynamic Reaction Conditions. ChemCatChem, 9(1), 17-29. doi:10.1002/cctc.201600996 | es_ES |
dc.description.references | Newton, M. A. (2008). Dynamic adsorbate/reaction induced structural change of supported metal nanoparticles: heterogeneous catalysis and beyond. Chemical Society Reviews, 37(12), 2644. doi:10.1039/b707746g | es_ES |
dc.description.references | Liu, L., Meira, D. M., Arenal, R., Concepcion, P., Puga, A. V., & Corma, A. (2019). Determination of the Evolution of Heterogeneous Single Metal Atoms and Nanoclusters under Reaction Conditions: Which Are the Working Catalytic Sites? ACS Catalysis, 9(12), 10626-10639. doi:10.1021/acscatal.9b04214 | es_ES |
dc.description.references | Borfecchia, E., Beato, P., Svelle, S., Olsbye, U., Lamberti, C., & Bordiga, S. (2018). Cu-CHA – a model system for applied selective redox catalysis. Chemical Society Reviews, 47(22), 8097-8133. doi:10.1039/c8cs00373d | es_ES |
dc.description.references | Liu, L., Zakharov, D. N., Arenal, R., Concepcion, P., Stach, E. A., & Corma, A. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 9(1). doi:10.1038/s41467-018-03012-6 | es_ES |
dc.description.references | Gates, B. C. (2019). Atomically Dispersed Supported Metal Catalysts: Seeing Is Believing. Trends in Chemistry, 1(1), 99-110. doi:10.1016/j.trechm.2019.01.004 | es_ES |
dc.description.references | López-Haro, M., Tinoco, M., Fernández-Garcia, S., Chen, X., Hungria, A. B., Cauqui, M. Á., & Calvino, J. J. (2017). A Macroscopically Relevant 3D-Metrology Approach for Nanocatalysis Research. Particle & Particle Systems Characterization, 35(3), 1700343. doi:10.1002/ppsc.201700343 | es_ES |
dc.description.references | Simonelli, L., Marini, C., Olszewski, W., ��vila P��rez, M., Ramanan, N., Guilera, G., … Klementiev, K. (2016). CL��SS: The hard X-ray absorption beamline of the ALBA CELLS synchrotron. Cogent Physics, 3(1). doi:10.1080/23311940.2016.1231987 | es_ES |
dc.description.references | Mathon, O., Beteva, A., Borrel, J., Bugnazet, D., Gatla, S., Hino, R., … Pascarelli, S. (2015). The time-resolved and extreme conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the general-purpose EXAFS bending-magnet beamline BM23. Journal of Synchrotron Radiation, 22(6), 1548-1554. doi:10.1107/s1600577515017786 | es_ES |
dc.description.references | Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719 | es_ES |
dc.description.references | Liu, L., Lopez-Haro, M., Lopes, C. W., Li, C., Concepcion, P., Simonelli, L., … Corma, A. (2019). Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nature Materials, 18(8), 866-873. doi:10.1038/s41563-019-0412-6 | es_ES |
dc.description.references | Morgan, K., Goguet, A., & Hardacre, C. (2015). Metal Redispersion Strategies for Recycling of Supported Metal Catalysts: A Perspective. ACS Catalysis, 5(6), 3430-3445. doi:10.1021/acscatal.5b00535 | es_ES |
dc.description.references | Jones, J., Xiong, H., DeLaRiva, A. T., Peterson, E. J., Pham, H., Challa, S. R., … Datye, A. K. (2016). Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 353(6295), 150-154. doi:10.1126/science.aaf8800 | es_ES |
dc.description.references | Behafarid, F., Pandey, S., Diaz, R. E., Stach, E. A., & Cuenya, B. R. (2014). An in situ transmission electron microscopy study of sintering and redispersion phenomena over size-selected metal nanoparticles: environmental effects. Phys. Chem. Chem. Phys., 16(34), 18176-18184. doi:10.1039/c4cp02574a | es_ES |
dc.description.references | Derevyannikova, E. A., Kardash, T. Y., Stadnichenko, A. I., Stonkus, O. A., Slavinskaya, E. M., Svetlichnyi, V. A., & Boronin, A. I. (2018). Structural Insight into Strong Pt–CeO2 Interaction: From Single Pt Atoms to PtOx Clusters. The Journal of Physical Chemistry C, 123(2), 1320-1334. doi:10.1021/acs.jpcc.8b11009 | es_ES |
dc.description.references | Uemura, Y., Inada, Y., Bando, K. K., Sasaki, T., Kamiuchi, N., Eguchi, K., … Iwasawa, Y. (2011). In situ time-resolved XAFS study on the structural transformation and phase separation of Pt3Sn and PtSn alloy nanoparticles on carbon in the oxidation process. Physical Chemistry Chemical Physics, 13(35), 15833. doi:10.1039/c1cp20994a | es_ES |
dc.description.references | Moscu, A., Theodoridi, C., Cardenas, L., Thieuleux, C., Motta-Meira, D., Agostini, G., … Meunier, F. (2018). CO dissociation on Pt-Sn nanoparticles triggers Sn oxidation and alloy segregation. Journal of Catalysis, 359, 76-81. doi:10.1016/j.jcat.2017.12.035 | es_ES |
dc.description.references | Michalak, W. D., Krier, J. M., Alayoglu, S., Shin, J.-Y., An, K., Komvopoulos, K., … Somorjai, G. A. (2014). CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions. Journal of Catalysis, 312, 17-25. doi:10.1016/j.jcat.2014.01.005 | es_ES |
dc.description.references | Concepción, P., Pérez, Y., Hernández-Garrido, J. C., Fajardo, M., Calvino, J. J., & Corma, A. (2013). The promotional effect of Sn-beta zeolites on platinum for the selective hydrogenation of α,β-unsaturated aldehydes. Physical Chemistry Chemical Physics, 15(29), 12048. doi:10.1039/c3cp50519g | es_ES |
dc.description.references | Serykh, A. I., Tkachenko, O. P., Yu. Borovkov, V., Kazansky, V. B., Beneke, M., Jaeger, N. I., & Schulz-Ekloff, G. (2000). Stable subnanometre Pt clusters in zeolite NaX via stoichiometric carbonyl complexes: Probing of negative charge by DRIFT spectroscopy of adsorbed CO and H2. Physical Chemistry Chemical Physics, 2(24), 5647-5652. doi:10.1039/b006609p | es_ES |
dc.description.references | De Me´norval, L.-C., Chaqroune, A., Coq, B., & François Figueras, and. (1997). Characterization of mono- and bi-metallic platinum catalysts using CO FTIR spectroscopy Size effects and topological segregation. Journal of the Chemical Society, Faraday Transactions, 93(20), 3715-3720. doi:10.1039/a702174g | es_ES |
dc.description.references | Tan, S. F., Chee, S. W., Baraissov, Z., Jin, H., Tan, T. L., & Mirsaidov, U. (2019). Real‐Time Imaging of Nanoscale Redox Reactions over Bimetallic Nanoparticles. Advanced Functional Materials, 29(37), 1903242. doi:10.1002/adfm.201903242 | es_ES |
dc.description.references | Prabhudev, S., Bugnet, M., Zhu, G.-Z., Bock, C., & Botton, G. A. (2015). Surface Segregation of Fe in Pt-Fe Alloy Nanoparticles: Its Precedence and Effect on the Ordered-Phase Evolution during Thermal Annealing. ChemCatChem, 7(22), 3655-3664. doi:10.1002/cctc.201500380 | es_ES |
dc.description.references | Zhang, B., Yang, H., Wang, Y., Dou, S., & Liu, H. (2018). A Comprehensive Review on Controlling Surface Composition of Pt‐Based Bimetallic Electrocatalysts. Advanced Energy Materials, 8(20), 1703597. doi:10.1002/aenm.201703597 | es_ES |
dc.description.references | Lari, G. M., Dapsens, P. Y., Scholz, D., Mitchell, S., Mondelli, C., & Pérez-Ramírez, J. (2016). Deactivation mechanisms of tin-zeolites in biomass conversions. Green Chemistry, 18(5), 1249-1260. doi:10.1039/c5gc02147b | es_ES |
dc.description.references | Wang, G., Zhang, H., Wang, H., Zhu, Q., Li, C., & Shan, H. (2016). The role of metallic Sn species in catalytic dehydrogenation of propane: Active component rather than only promoter. Journal of Catalysis, 344, 606-608. doi:10.1016/j.jcat.2016.11.003 | es_ES |
dc.description.references | Liu, L., Lopez-Haro, M., Lopes, C. W., Rojas-Buzo, S., Concepcion, P., Manzorro, R., … Corma, A. (2020). Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nature Catalysis, 3(8), 628-638. doi:10.1038/s41929-020-0472-7 | es_ES |