- -

Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Liu, Lichen es_ES
dc.contributor.author Lopez-Haro, Miguel es_ES
dc.contributor.author Wittee Lopes, Christian es_ES
dc.contributor.author MEIRA, DEBORA M. es_ES
dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author Calvino, José J. es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2021-04-30T03:31:24Z
dc.date.available 2021-04-30T03:31:24Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 0021-9517 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165799
dc.description.abstract [EN] To achieve high-loading of stable subnanometric metal clusters on solid carriers is a challenge since those small metal clusters have strong tendency to sinter into larger nanoparticles. Development of facile synthesis methodologies to obtain subnanometric metal catalysts with high metal loading and high stability against sintering at high temperature (>500 degrees C) in reductive atmosphere (such as H-2) is critical for the practical applications. In this work, we will present and discuss the generation of high-loading (similar to 1.4 wt%) subnanometric Pt clusters confined in the sinusoidal channels of MFI zeolite, on the basis of the atomic-level understanding on the evolution of Pt and Sn species during high-temperature oxidation-reduction treatments. It will be shown that the structural evolution of Pt and Sn species is dependent on the post-synthesis treatments. The Pt particles on the external surface can disintegrate into subnanometric Pt species and get stabilized in the zeolite channels during high-temperature calcination in air while Sn species migrate from surface region to internal region during high-temperature reduction treatment at 650 degrees C. The resultant material containing bimetallic PtSn clusters confined in the 10MR sinusoidal channels of the purely siliceous MFI zeolite show excellent catalytic activity and stability, as demonstrated for dehydrogenation of light alkanes at high reaction temperature. (C) 2020 Elsevier Inc. All rights reserved. es_ES
dc.description.sponsorship This work has been supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the "Severo Ochoa Program"(SEV-2016-0683). The authors also thank Microscopy Service of UPV for the TEM and STEM measurements. The XAS measurements were carried out in CLAESS beamline of ALBA synchrotron and BM23 beamline at ESRF synchrotron. The kind supports from the scientific staffs in ALBA and ESRF are greatly appreciated. High-resolution STEM measurements were performed at DME-UCA node of ELECMI in Cadiz University, with financial support from FEDER/MINECO (MAT2017-87579-R and MAT2016-81118-P). C.W.L. thanks CAPES (Science without Frontiers Process no. 13191/13-6) for a predoctoral fellowship. Financial support on this work from ExxonMobil is greatly acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Catalysis es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Metal clusters es_ES
dc.subject Isolated atoms es_ES
dc.subject Pt es_ES
dc.subject MFI zeolite es_ES
dc.subject Propane dehydrogenation es_ES
dc.subject Structural evolution es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jcat.2020.07.035 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//13191%2F13-6/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-87579-R/ES/FASES 2D ULTRAFINAS SOBRE OXIDOS CON MORFOLOGIA CONTROLADA: PLATAFORMA DE NANOCATALIZADORES MULTICOMPONENTE CON APLICACIONES EN PROTECCION DEL MEDIO AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-81118-P/ES/DISEÑO Y CARACTERIZACION AVANZADA DE CATALIZADORES CON NANOINTERFASES MODELO AU%2F%2FCEO2/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Liu, L.; Lopez-Haro, M.; Wittee Lopes, C.; Meira, DM.; Concepción Heydorn, P.; Calvino, JJ.; Corma Canós, A. (2020). Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites. Journal of Catalysis. 391:11-24. https://doi.org/10.1016/j.jcat.2020.07.035 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jcat.2020.07.035 es_ES
dc.description.upvformatpinicio 11 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 391 es_ES
dc.relation.pasarela S\433269 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Gates, B. C. (1995). Supported Metal Clusters: Synthesis, Structure, and Catalysis. Chemical Reviews, 95(3), 511-522. doi:10.1021/cr00035a003 es_ES
dc.description.references Flytzani-Stephanopoulos, M., & Gates, B. C. (2012). Atomically Dispersed Supported Metal Catalysts. Annual Review of Chemical and Biomolecular Engineering, 3(1), 545-574. doi:10.1146/annurev-chembioeng-062011-080939 es_ES
dc.description.references Liu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118(10), 4981-5079. doi:10.1021/acs.chemrev.7b00776 es_ES
dc.description.references Wang, A., Li, J., & Zhang, T. (2018). Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2(6), 65-81. doi:10.1038/s41570-018-0010-1 es_ES
dc.description.references Ji, S., Chen, Y., Wang, X., Zhang, Z., Wang, D., & Li, Y. (2020). Chemical Synthesis of Single Atomic Site Catalysts. Chemical Reviews, 120(21), 11900-11955. doi:10.1021/acs.chemrev.9b00818 es_ES
dc.description.references Chen, Y., Ji, S., Chen, C., Peng, Q., Wang, D., & Li, Y. (2018). Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule, 2(7), 1242-1264. doi:10.1016/j.joule.2018.06.019 es_ES
dc.description.references Beniya, A., & Higashi, S. (2019). Towards dense single-atom catalysts for future automotive applications. Nature Catalysis, 2(7), 590-602. doi:10.1038/s41929-019-0282-y es_ES
dc.description.references Lang, R., Xi, W., Liu, J.-C., Cui, Y.-T., Li, T., Lee, A. F., … Zhang, T. (2019). Non defect-stabilized thermally stable single-atom catalyst. Nature Communications, 10(1). doi:10.1038/s41467-018-08136-3 es_ES
dc.description.references Kunwar, D., Zhou, S., DeLaRiva, A., Peterson, E. J., Xiong, H., Pereira-Hernández, X. I., … Datye, A. K. (2019). Stabilizing High Metal Loadings of Thermally Stable Platinum Single Atoms on an Industrial Catalyst Support. ACS Catalysis, 9(5), 3978-3990. doi:10.1021/acscatal.8b04885 es_ES
dc.description.references Pereira-Hernández, X. I., DeLaRiva, A., Muravev, V., Kunwar, D., Xiong, H., Sudduth, B., … Datye, A. K. (2019). Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nature Communications, 10(1). doi:10.1038/s41467-019-09308-5 es_ES
dc.description.references Ren, Y., Tang, Y., Zhang, L., Liu, X., Li, L., Miao, S., … Zhang, T. (2019). Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nature Communications, 10(1). doi:10.1038/s41467-019-12459-0 es_ES
dc.description.references Kosinov, N., Liu, C., Hensen, E. J. M., & Pidko, E. A. (2018). Engineering of Transition Metal Catalysts Confined in Zeolites. Chemistry of Materials, 30(10), 3177-3198. doi:10.1021/acs.chemmater.8b01311 es_ES
dc.description.references Wu, S., Yang, X., & Janiak, C. (2019). Confinement Effects in Zeolite‐Confined Noble Metals. Angewandte Chemie International Edition, 58(36), 12340-12354. doi:10.1002/anie.201900013 es_ES
dc.description.references Moliner, M., Gabay, J. E., Kliewer, C. E., Carr, R. T., Guzman, J., Casty, G. L., … Corma, A. (2016). Reversible Transformation of Pt Nanoparticles into Single Atoms inside High-Silica Chabazite Zeolite. Journal of the American Chemical Society, 138(48), 15743-15750. doi:10.1021/jacs.6b10169 es_ES
dc.description.references Moliner, M., Gabay, J., Kliewer, C., Serna, P., & Corma, A. (2018). Trapping of Metal Atoms and Metal Clusters by Chabazite under Severe Redox Stress. ACS Catalysis, 8(10), 9520-9528. doi:10.1021/acscatal.8b01717 es_ES
dc.description.references Goel, S., Zones, S. I., & Iglesia, E. (2014). Encapsulation of Metal Clusters within MFI via Interzeolite Transformations and Direct Hydrothermal Syntheses and Catalytic Consequences of Their Confinement. Journal of the American Chemical Society, 136(43), 15280-15290. doi:10.1021/ja507956m es_ES
dc.description.references Wang, N., Sun, Q., Bai, R., Li, X., Guo, G., & Yu, J. (2016). In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation. Journal of the American Chemical Society, 138(24), 7484-7487. doi:10.1021/jacs.6b03518 es_ES
dc.description.references Zhang, J., Wang, L., Zhang, B., Zhao, H., Kolb, U., Zhu, Y., … Xiao, F.-S. (2018). Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nature Catalysis, 1(7), 540-546. doi:10.1038/s41929-018-0098-1 es_ES
dc.description.references Kalz, K. F., Kraehnert, R., Dvoyashkin, M., Dittmeyer, R., Gläser, R., Krewer, U., … Grunwaldt, J.-D. (2016). Future Challenges in Heterogeneous Catalysis: Understanding Catalysts under Dynamic Reaction Conditions. ChemCatChem, 9(1), 17-29. doi:10.1002/cctc.201600996 es_ES
dc.description.references Newton, M. A. (2008). Dynamic adsorbate/reaction induced structural change of supported metal nanoparticles: heterogeneous catalysis and beyond. Chemical Society Reviews, 37(12), 2644. doi:10.1039/b707746g es_ES
dc.description.references Liu, L., Meira, D. M., Arenal, R., Concepcion, P., Puga, A. V., & Corma, A. (2019). Determination of the Evolution of Heterogeneous Single Metal Atoms and Nanoclusters under Reaction Conditions: Which Are the Working Catalytic Sites? ACS Catalysis, 9(12), 10626-10639. doi:10.1021/acscatal.9b04214 es_ES
dc.description.references Borfecchia, E., Beato, P., Svelle, S., Olsbye, U., Lamberti, C., & Bordiga, S. (2018). Cu-CHA – a model system for applied selective redox catalysis. Chemical Society Reviews, 47(22), 8097-8133. doi:10.1039/c8cs00373d es_ES
dc.description.references Liu, L., Zakharov, D. N., Arenal, R., Concepcion, P., Stach, E. A., & Corma, A. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 9(1). doi:10.1038/s41467-018-03012-6 es_ES
dc.description.references Gates, B. C. (2019). Atomically Dispersed Supported Metal Catalysts: Seeing Is Believing. Trends in Chemistry, 1(1), 99-110. doi:10.1016/j.trechm.2019.01.004 es_ES
dc.description.references López-Haro, M., Tinoco, M., Fernández-Garcia, S., Chen, X., Hungria, A. B., Cauqui, M. Á., & Calvino, J. J. (2017). A Macroscopically Relevant 3D-Metrology Approach for Nanocatalysis Research. Particle & Particle Systems Characterization, 35(3), 1700343. doi:10.1002/ppsc.201700343 es_ES
dc.description.references Simonelli, L., Marini, C., Olszewski, W., ��vila P��rez, M., Ramanan, N., Guilera, G., … Klementiev, K. (2016). CL��SS: The hard X-ray absorption beamline of the ALBA CELLS synchrotron. Cogent Physics, 3(1). doi:10.1080/23311940.2016.1231987 es_ES
dc.description.references Mathon, O., Beteva, A., Borrel, J., Bugnazet, D., Gatla, S., Hino, R., … Pascarelli, S. (2015). The time-resolved and extreme conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the general-purpose EXAFS bending-magnet beamline BM23. Journal of Synchrotron Radiation, 22(6), 1548-1554. doi:10.1107/s1600577515017786 es_ES
dc.description.references Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719 es_ES
dc.description.references Liu, L., Lopez-Haro, M., Lopes, C. W., Li, C., Concepcion, P., Simonelli, L., … Corma, A. (2019). Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nature Materials, 18(8), 866-873. doi:10.1038/s41563-019-0412-6 es_ES
dc.description.references Morgan, K., Goguet, A., & Hardacre, C. (2015). Metal Redispersion Strategies for Recycling of Supported Metal Catalysts: A Perspective. ACS Catalysis, 5(6), 3430-3445. doi:10.1021/acscatal.5b00535 es_ES
dc.description.references Jones, J., Xiong, H., DeLaRiva, A. T., Peterson, E. J., Pham, H., Challa, S. R., … Datye, A. K. (2016). Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 353(6295), 150-154. doi:10.1126/science.aaf8800 es_ES
dc.description.references Behafarid, F., Pandey, S., Diaz, R. E., Stach, E. A., & Cuenya, B. R. (2014). An in situ transmission electron microscopy study of sintering and redispersion phenomena over size-selected metal nanoparticles: environmental effects. Phys. Chem. Chem. Phys., 16(34), 18176-18184. doi:10.1039/c4cp02574a es_ES
dc.description.references Derevyannikova, E. A., Kardash, T. Y., Stadnichenko, A. I., Stonkus, O. A., Slavinskaya, E. M., Svetlichnyi, V. A., & Boronin, A. I. (2018). Structural Insight into Strong Pt–CeO2 Interaction: From Single Pt Atoms to PtOx Clusters. The Journal of Physical Chemistry C, 123(2), 1320-1334. doi:10.1021/acs.jpcc.8b11009 es_ES
dc.description.references Uemura, Y., Inada, Y., Bando, K. K., Sasaki, T., Kamiuchi, N., Eguchi, K., … Iwasawa, Y. (2011). In situ time-resolved XAFS study on the structural transformation and phase separation of Pt3Sn and PtSn alloy nanoparticles on carbon in the oxidation process. Physical Chemistry Chemical Physics, 13(35), 15833. doi:10.1039/c1cp20994a es_ES
dc.description.references Moscu, A., Theodoridi, C., Cardenas, L., Thieuleux, C., Motta-Meira, D., Agostini, G., … Meunier, F. (2018). CO dissociation on Pt-Sn nanoparticles triggers Sn oxidation and alloy segregation. Journal of Catalysis, 359, 76-81. doi:10.1016/j.jcat.2017.12.035 es_ES
dc.description.references Michalak, W. D., Krier, J. M., Alayoglu, S., Shin, J.-Y., An, K., Komvopoulos, K., … Somorjai, G. A. (2014). CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions. Journal of Catalysis, 312, 17-25. doi:10.1016/j.jcat.2014.01.005 es_ES
dc.description.references Concepción, P., Pérez, Y., Hernández-Garrido, J. C., Fajardo, M., Calvino, J. J., & Corma, A. (2013). The promotional effect of Sn-beta zeolites on platinum for the selective hydrogenation of α,β-unsaturated aldehydes. Physical Chemistry Chemical Physics, 15(29), 12048. doi:10.1039/c3cp50519g es_ES
dc.description.references Serykh, A. I., Tkachenko, O. P., Yu. Borovkov, V., Kazansky, V. B., Beneke, M., Jaeger, N. I., & Schulz-Ekloff, G. (2000). Stable subnanometre Pt clusters in zeolite NaX via stoichiometric carbonyl complexes: Probing of negative charge by DRIFT spectroscopy of adsorbed CO and H2. Physical Chemistry Chemical Physics, 2(24), 5647-5652. doi:10.1039/b006609p es_ES
dc.description.references De Me´norval, L.-C., Chaqroune, A., Coq, B., & François Figueras, and. (1997). Characterization of mono- and bi-metallic platinum catalysts using CO FTIR spectroscopy Size effects and topological segregation. Journal of the Chemical Society, Faraday Transactions, 93(20), 3715-3720. doi:10.1039/a702174g es_ES
dc.description.references Tan, S. F., Chee, S. W., Baraissov, Z., Jin, H., Tan, T. L., & Mirsaidov, U. (2019). Real‐Time Imaging of Nanoscale Redox Reactions over Bimetallic Nanoparticles. Advanced Functional Materials, 29(37), 1903242. doi:10.1002/adfm.201903242 es_ES
dc.description.references Prabhudev, S., Bugnet, M., Zhu, G.-Z., Bock, C., & Botton, G. A. (2015). Surface Segregation of Fe in Pt-Fe Alloy Nanoparticles: Its Precedence and Effect on the Ordered-Phase Evolution during Thermal Annealing. ChemCatChem, 7(22), 3655-3664. doi:10.1002/cctc.201500380 es_ES
dc.description.references Zhang, B., Yang, H., Wang, Y., Dou, S., & Liu, H. (2018). A Comprehensive Review on Controlling Surface Composition of Pt‐Based Bimetallic Electrocatalysts. Advanced Energy Materials, 8(20), 1703597. doi:10.1002/aenm.201703597 es_ES
dc.description.references Lari, G. M., Dapsens, P. Y., Scholz, D., Mitchell, S., Mondelli, C., & Pérez-Ramírez, J. (2016). Deactivation mechanisms of tin-zeolites in biomass conversions. Green Chemistry, 18(5), 1249-1260. doi:10.1039/c5gc02147b es_ES
dc.description.references Wang, G., Zhang, H., Wang, H., Zhu, Q., Li, C., & Shan, H. (2016). The role of metallic Sn species in catalytic dehydrogenation of propane: Active component rather than only promoter. Journal of Catalysis, 344, 606-608. doi:10.1016/j.jcat.2016.11.003 es_ES
dc.description.references Liu, L., Lopez-Haro, M., Lopes, C. W., Rojas-Buzo, S., Concepcion, P., Manzorro, R., … Corma, A. (2020). Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nature Catalysis, 3(8), 628-638. doi:10.1038/s41929-020-0472-7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem