- -

Effect of Ionic Liquid Content on the Crystallization Kinetics and Morphology of Semicrystalline Poly(vinylidene Fluoride)/Ionic Liquid Blends

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Effect of Ionic Liquid Content on the Crystallization Kinetics and Morphology of Semicrystalline Poly(vinylidene Fluoride)/Ionic Liquid Blends

Show full item record

Correia, DM.; Costa, CM.; Rodriguez-Hernandez, J.; Tort-Ausina, I.; Teruel Biosca, L.; Torregrosa Cabanilles, C.; Meseguer Dueñas, JM.... (2020). Effect of Ionic Liquid Content on the Crystallization Kinetics and Morphology of Semicrystalline Poly(vinylidene Fluoride)/Ionic Liquid Blends. Crystal Growth & Design. 20(8):4967-4979. https://doi.org/10.1021/acs.cgd.0c00042

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165800

Files in this item

Item Metadata

Title: Effect of Ionic Liquid Content on the Crystallization Kinetics and Morphology of Semicrystalline Poly(vinylidene Fluoride)/Ionic Liquid Blends
Author: Correia, Daniela M. Costa, Carlos M. Rodriguez-Hernandez, Jose-Carlos Tort-Ausina, Isabel Teruel Biosca, Laura Torregrosa Cabanilles, Constantino Meseguer Dueñas, José María Lanceros-Méndez, Senentxu Gómez Ribelles, José Luís
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] The crystallization kinetics of poly(vinylidene fluoride) (PVDF) in blends with the ionic liquid (IL) 1-ethyl-3-methylimidazolium chloride [Emim][Cl] has been studied as a function of [Emim][Cl] content up to 40 wt ...[+]
Subjects: Salts , Melting , Crystallization , Fluoropolymers , Solvents
Copyrigths: Reserva de todos los derechos
Source:
Crystal Growth & Design. (issn: 1528-7483 )
DOI: 10.1021/acs.cgd.0c00042
Publisher:
American Chemical Society
Publisher version: https://doi.org/10.1021/acs.cgd.0c00042
Project ID:
info:eu-repo/grantAgreement/FCT/3599-PPCDT/121526/PT/Heterometallic Metal-organic Frameworks: Smart Materials for Advanced Applications/
...[+]
info:eu-repo/grantAgreement/FCT/3599-PPCDT/121526/PT/Heterometallic Metal-organic Frameworks: Smart Materials for Advanced Applications/
info:eu-repo/grantAgreement/FCT/SFRH/FCT%2FSFRH%2FBPD%2F112547%2F2015/PT/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F28159%2F2006/PT/MOLECULAR MECHANISM OF HEALING, REPAIR AND REGENERATION IN VERTEBRATES/
info:eu-repo/grantAgreement/FCT//UID%2FFIS%2F04650%2F2020/
info:eu-repo/grantAgreement/FCT//SFRH%2FBPD%2F121526%2F2016/
info:eu-repo/grantAgreement/FCT//PTDC%2FFIS-MAC%2F28157%2F2017/
info:eu-repo/grantAgreement/FCT//PTDC%2FEMD-EMD%2F28159%2F2017/
info:eu-repo/grantAgreement/FCT//PTDC%2FBTM-MAT%2F28237%2F2017/
info:eu-repo/grantAgreement/Eusko Jaurlaritza//PIBA-2018-06/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106099RB-C41/ES/MICROGELES BIOMIMETICOS PARA EL ESTUDIO DE LA GENERACION DE RESISTENCIAS A FARMACOS EN EL MIELOMA MULTIPLE./
info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/
[-]
Thanks:
This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2020. The authors thank FEDER funds through the COMPETE 2020 Programme and ...[+]
Type: Artículo

References

Drossel, W.-G., Meinel, F., Bucht, A., & Kunze, H. (2018). Smart materials for smart production – a cross-disciplinary innovation network in the field of smart materials. Procedia Manufacturing, 21, 197-204. doi:10.1016/j.promfg.2018.02.111

Correia, D. M., Barbosa, J. C., Costa, C. M., Reis, P. M., Esperança, J. M. S. S., de Zea Bermudez, V., & Lanceros-Méndez, S. (2019). Ionic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly(vinylidene fluoride)-Based Soft Actuators. The Journal of Physical Chemistry C, 123(20), 12744-12752. doi:10.1021/acs.jpcc.9b00868

Bauer, S., & Bauer, F. (2008). Piezoelectric Polymers and Their Applications. Springer Series in Materials Science, 157-177. doi:10.1007/978-3-540-68683-5_6 [+]
Drossel, W.-G., Meinel, F., Bucht, A., & Kunze, H. (2018). Smart materials for smart production – a cross-disciplinary innovation network in the field of smart materials. Procedia Manufacturing, 21, 197-204. doi:10.1016/j.promfg.2018.02.111

Correia, D. M., Barbosa, J. C., Costa, C. M., Reis, P. M., Esperança, J. M. S. S., de Zea Bermudez, V., & Lanceros-Méndez, S. (2019). Ionic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly(vinylidene fluoride)-Based Soft Actuators. The Journal of Physical Chemistry C, 123(20), 12744-12752. doi:10.1021/acs.jpcc.9b00868

Bauer, S., & Bauer, F. (2008). Piezoelectric Polymers and Their Applications. Springer Series in Materials Science, 157-177. doi:10.1007/978-3-540-68683-5_6

Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683-706. doi:10.1016/j.progpolymsci.2013.07.006

Mejri, R., Dias, J. C., Besbes Hentati, S., Botelho, G., Esperança, J. M. S. S., Costa, C. M., & Lanceros- Mendez, S. (2016). Imidazolium-based ionic liquid type dependence of the bending response of polymer actuators. European Polymer Journal, 85, 445-451. doi:10.1016/j.eurpolymj.2016.10.052

Correia, D. M., Sabater i Serra, R., Gómez Tejedor, J. A., de Zea Bermudez, V., Andrio Balado, A., Meseguer-Dueñas, J. M., … Costa, C. M. (2018). Ionic and conformational mobility in poly(vinylidene fluoride)/ionic liquid blends: Dielectric and electrical conductivity behavior. Polymer, 143, 164-172. doi:10.1016/j.polymer.2018.04.019

Hu, Y., Kang, W., Fang, Y., Xie, L., Qiu, L., & Jin, T. (2018). Piezoelectric Poly(vinylidene fluoride) (PVDF) Polymer-Based Sensor for Wrist Motion Signal Detection. Applied Sciences, 8(5), 836. doi:10.3390/app8050836

Barbosa, J., Dias, J., Lanceros-Méndez, S., & Costa, C. (2018). Recent Advances in Poly(vinylidene fluoride) and Its Copolymers for Lithium-Ion Battery Separators. Membranes, 8(3), 45. doi:10.3390/membranes8030045

Liu, J., Wang, C., Wu, X., Zhu, F., Liu, M., & Xi, Y. (2018). An enhanced poly(vinylidene fluoride) matrix separator with TEOS for good performance lithium-ion batteries. Journal of Solid State Electrochemistry, 23(1), 277-284. doi:10.1007/s10008-018-4126-5

Tandon, B., Kamble, P., Olsson, R., Blaker, J., & Cartmell, S. (2019). Fabrication and Characterisation of Stimuli Responsive Piezoelectric PVDF and Hydroxyapatite-Filled PVDF Fibrous Membranes. Molecules, 24(10), 1903. doi:10.3390/molecules24101903

Cardoso, V., Correia, D., Ribeiro, C., Fernandes, M., & Lanceros-Méndez, S. (2018). Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications. Polymers, 10(2), 161. doi:10.3390/polym10020161

Correia, D. M., Martins, P., Tariq, M., Esperança, J. M. S. S., & Lanceros-Méndez, S. (2018). Low-field giant magneto-ionic response in polymer-based nanocomposites. Nanoscale, 10(33), 15747-15754. doi:10.1039/c8nr03259a

Fernandes, L. C., Correia, D. M., García-Astrain, C., Pereira, N., Tariq, M., Esperança, J. M. S. S., & Lanceros-Méndez, S. (2019). Ionic-Liquid-Based Printable Materials for Thermochromic and Thermoresistive Applications. ACS Applied Materials & Interfaces, 11(22), 20316-20324. doi:10.1021/acsami.9b00645

Fernandes, L. C., Correia, D. M., Pereira, N., Tubio, C. R., & Lanceros-Méndez, S. (2019). Highly Sensitive Humidity Sensor Based on Ionic Liquid–Polymer Composites. ACS Applied Polymer Materials, 1(10), 2723-2730. doi:10.1021/acsapm.9b00675

Ye, Y.-S., Rick, J., & Hwang, B.-J. (2013). Ionic liquid polymer electrolytes. J. Mater. Chem. A, 1(8), 2719-2743. doi:10.1039/c2ta00126h

Correia, D. M., Costa, C. M., Lizundia, E., Sabater i Serra, R., Gómez-Tejedor, J. A., Biosca, L. T., … Lanceros-Méndez, S. (2019). Influence of Cation and Anion Type on the Formation of the Electroactive β-Phase and Thermal and Dynamic Mechanical Properties of Poly(vinylidene fluoride)/Ionic Liquids Blends. The Journal of Physical Chemistry C, 123(45), 27917-27926. doi:10.1021/acs.jpcc.9b07986

Xing, C., Zhao, M., Zhao, L., You, J., Cao, X., & Li, Y. (2013). Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polymer Chemistry, 4(24), 5726. doi:10.1039/c3py00466j

Mago, G., Fisher, F., & Kalyon, D. (2009). Deformation-Induced Crystallization and Associated Morphology Development of Carbon Nanotube-PVDF Nanocomposites. Journal of Nanoscience and Nanotechnology, 9(5), 3330-3340. doi:10.1166/jnn.2009.vc08

Lopes, A. C., Ferreira, J. C. C., Costa, C. M., & Lanceros-Méndez, S. (2013). Crystallization kinetics of montmorillonite/poly(vinylidene fluoride) composites and its correlation with the crystalline polymer phase formation. Thermochimica Acta, 574, 19-25. doi:10.1016/j.tca.2013.08.003

Sencadas, V., Martins, P., Pitães, A., Benelmekki, M., Gómez Ribelles, J. L., & Lanceros-Mendez, S. (2011). Influence of Ferrite Nanoparticle Type and Content on the Crystallization Kinetics and Electroactive Phase Nucleation of Poly(vinylidene fluoride). Langmuir, 27(11), 7241-7249. doi:10.1021/la2008864

Abolhasani, M. M., Rezaei Abadchi, M., Magniez, K., & Guo, Q. (2014). Different thermal analysis technique application in determination of fold surface-free energy. Journal of Thermal Analysis and Calorimetry, 119(1), 527-536. doi:10.1007/s10973-014-4121-8

Xu, P., Fu, W., Cui, Z., & Ding, Y. (2018). Synergistic promotion of polar phase crystallization of PVDF by ionic liquid with PEG segment. Applied Surface Science, 444, 480-484. doi:10.1016/j.apsusc.2018.02.242

Bahader, A., Haoguan, G., Nawaz, M., Bangesh, M., Bangesh, F., Ibrar, M., & Yunsheng, D. (2019). Impact of ionic liquid’s self-assembly on the crystallization behavior of poly (vinylidene fluoride). Journal of Molecular Liquids, 276, 115-119. doi:10.1016/j.molliq.2018.11.145

Roy, A., Dutta, B., & Bhattacharya, S. (2016). Electroactive phase nucleation and non-isothermal crystallization kinetics study in [DEMM][TFSI] ionic liquid incorporated P(VDF-HFP) co-polymer membranes. Journal of Materials Science, 51(17), 7814-7830. doi:10.1007/s10853-016-9978-4

Zhang, H., Shi, W., Cheng, H., Chen, S., & Wang, L. (2018). Effect of ionic liquid on crystallization kinetics and crystal form transition of poly(vinylidene fluoride) blends. Journal of Thermal Analysis and Calorimetry, 132(2), 1153-1165. doi:10.1007/s10973-018-7029-x

Ribeiro, C., Costa, C. M., Correia, D. M., Nunes-Pereira, J., Oliveira, J., Martins, P., … Lanceros-Méndez, S. (2018). Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 13(4), 681-704. doi:10.1038/nprot.2017.157

Efimova, A., Pfützner, L., & Schmidt, P. (2015). Thermal stability and decomposition mechanism of 1-ethyl-3-methylimidazolium halides. Thermochimica Acta, 604, 129-136. doi:10.1016/j.tca.2015.02.001

Cai, X., Lei, T., Sun, D., & Lin, L. (2017). A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Advances, 7(25), 15382-15389. doi:10.1039/c7ra01267e

Dharaskar, S. A., Varma, M. N., Shende, D. Z., Yoo, C. K., & Wasewar, K. L. (2013). Synthesis, Characterization and Application of 1-Butyl-3 Methylimidazolium Chloride as Green Material for Extractive Desulfurization of Liquid Fuel. The Scientific World Journal, 2013, 1-9. doi:10.1155/2013/395274

Martins, P., Costa, C. M., Benelmekki, M., Botelho, G., & Lanceros-Mendez, S. (2012). On the origin of the electroactive poly(vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. CrystEngComm, 14(8), 2807. doi:10.1039/c2ce06654h

Dias, J. C., Martins, M. S., Ribeiro, S., Silva, M. M., Esperança, J. M. S. S., Ribeiro, C., … Lanceros-Mendez, S. (2016). Electromechanical actuators based on poly(vinylidene fluoride) with [N1 1 1 2(OH)][NTf2] and [C2mim] [C2SO4]. Journal of Materials Science, 51(20), 9490-9503. doi:10.1007/s10853-016-0193-0

Gregorio, R. (2006). Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. Journal of Applied Polymer Science, 100(4), 3272-3279. doi:10.1002/app.23137

Sencadas, V., Costa, C. M., Gómez Ribelles, J. L., & Lanceros-Mendez, S. (2009). Isothermal crystallization kinetics of poly(vinylidene fluoride) in the α-phase in the scope of the Avrami equation. Journal of Materials Science, 45(5), 1328-1335. doi:10.1007/s10853-009-4086-3

Mancarella, C., & Martuscelli, E. (1977). Crystallization kinetics of poly(vinylidene fluoride). Polymer, 18(12), 1240-1242. doi:10.1016/0032-3861(77)90286-5

Ducharme, S., Bune, A. V., Blinov, L. M., Fridkin, V. M., Palto, S. P., Sorokin, A. V., & Yudin, S. G. (1998). Critical point in ferroelectric Langmuir-Blodgett polymer films. Physical Review B, 57(1), 25-28. doi:10.1103/physrevb.57.25

Hoffman, J. D., & Weeks, J. J. (1962). Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 66A(1), 13. doi:10.6028/jres.066a.003

Sajkiewicz, P. (1999). Crystallization behaviour of poly(vinylidene fluoride). European Polymer Journal, 35(9), 1581-1590. doi:10.1016/s0014-3057(98)00242-0

Flory, P. J., & Yoon, D. Y. (1978). Molecular morphology in semicrystalline polymers. Nature, 272(5650), 226-229. doi:10.1038/272226a0

Avrami, M. (1941). Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. The Journal of Chemical Physics, 9(2), 177-184. doi:10.1063/1.1750872

Avrami, M. (1939). Kinetics of Phase Change. I General Theory. The Journal of Chemical Physics, 7(12), 1103-1112. doi:10.1063/1.1750380

Avrami, M. (1940). Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei. The Journal of Chemical Physics, 8(2), 212-224. doi:10.1063/1.1750631

Lorenzo, A. T., Arnal, M. L., Albuerne, J., & Müller, A. J. (2007). DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: Guidelines to avoid common problems. Polymer Testing, 26(2), 222-231. doi:10.1016/j.polymertesting.2006.10.005

Tamaño‐Machiavello, M. N., Costa, C. M., Romero‐Colomer, F. J., María Meseguer Dueñas, J., Lanceros‐Mendez, S., & Luis Gómez Ribelles, J. (2017). Crystallization kinetics of poly(ethylene oxide) confined in semicrystalline poly(vinylidene) fluoride. Journal of Polymer Science Part B: Polymer Physics, 56(7), 588-597. doi:10.1002/polb.24564

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record