- -

Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alvim, C. Bretas es_ES
dc.contributor.author Bes-Piá, M.A. es_ES
dc.contributor.author Mendoza Roca, José Antonio es_ES
dc.date.accessioned 2021-04-30T03:31:34Z
dc.date.available 2021-04-30T03:31:34Z
dc.date.issued 2020-12-15 es_ES
dc.identifier.issn 1385-8947 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165801
dc.description.abstract [EN] Although wastewater treatment plants can retain a high percentage of microplastics (MP) arriving at the facilities, no method for extracting and characterizing these microparticles has been still standardized in these units. This study investigated three protocols of chemical digestion, prior to analysis of microplastics, one directed to the effluents, using peroxidation, and two for activated sludge (peroxidation and Fenton). The samples (primary effluent, secondary effluent and activated sludge) were collected from a wastewater treatment plant (WWTP) located in Valencia (Spain). In addition, four common types of polymers (Low density polyethylene-LDPE, Polypropylene-PP, Polystyrene-PS and Polyethylene terephthalate-PET) were used to assess the influence of reagent exposure on microparticle integrity. Peroxidation was effective in treating the studied effluents (primary and secondary) and was also identified as the ideal protocol for activated sludge. The analysis showed that the use of H2O2 does not compromise the identification of the polymers evaluated by FTIR and also significantly reduced the concentration of suspended solids, resulting in an efficient visual separation of the microparticles. After been properly separated, the microparticles were characterized according to their size, colour and shape, and a fraction submitted to identification by mu-ATR-FTIR/ATR-FTIR. In all samples, a high presence of microfibers (MF) was observed, corresponding to more than 90% of the microparticles. However, in relation to secondary effluents, only 9% of these MF were identified as plastics, the remaining ones corresponded to cotton. The fragments found in the samples were classified as secondary in origin, and were mainly PE and PP, lower than 1 mm size. es_ES
dc.description.sponsorship Authors thank the Spanish Ministry of Science, Innovation and Universities for the financial support (Reference of the project: RTI2018-096916-B-I00). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemical Engineering Journal es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Activated sludge es_ES
dc.subject Effluents es_ES
dc.subject Microfiber es_ES
dc.subject Microplastic es_ES
dc.subject Wastewater treatment plant es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cej.2020.126293 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096916-B-I00/ES/ELIMINACION E INFLUENCIA DE LOS MICROPLASTICOS Y NANOPLASTICOS EN BIORREACTORES DE MEMBRANA Y EN PROCESOS DE REGENERACION DE AGUAS RESIDUALES CON MEMBRANAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Alvim, CB.; Bes-Piá, M.; Mendoza Roca, JA. (2020). Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants. Chemical Engineering Journal. 402:1-10. https://doi.org/10.1016/j.cej.2020.126293 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cej.2020.126293 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 402 es_ES
dc.relation.pasarela S\416009 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references PlasticsEurope, Plastics – the Facts, Plast. – Facts 2018. (2018) 38. https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf (accessed 02 Septiembre 2019). es_ES
dc.description.references Auta, H. S., Emenike, C. ., & Fauziah, S. . (2017). Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environment International, 102, 165-176. doi:10.1016/j.envint.2017.02.013 es_ES
dc.description.references Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174-182. doi:10.1016/j.watres.2016.01.002 es_ES
dc.description.references Li, J., Liu, H., & Paul Chen, J. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362-374. doi:10.1016/j.watres.2017.12.056 es_ES
dc.description.references Fendall, L. S., & Sewell, M. A. (2009). Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine Pollution Bulletin, 58(8), 1225-1228. doi:10.1016/j.marpolbul.2009.04.025 es_ES
dc.description.references Guerranti, C., Martellini, T., Perra, G., Scopetani, C., & Cincinelli, A. (2019). Microplastics in cosmetics: Environmental issues and needs for global bans. Environmental Toxicology and Pharmacology, 68, 75-79. doi:10.1016/j.etap.2019.03.007 es_ES
dc.description.references Napper, I. E., Bakir, A., Rowland, S. J., & Thompson, R. C. (2015). Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Marine Pollution Bulletin, 99(1-2), 178-185. doi:10.1016/j.marpolbul.2015.07.029 es_ES
dc.description.references Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553-561. doi:10.1016/j.marpolbul.2018.06.006 es_ES
dc.description.references Michielssen, M. R., Michielssen, E. R., Ni, J., & Duhaime, M. B. (2016). Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed. Environmental Science: Water Research & Technology, 2(6), 1064-1073. doi:10.1039/c6ew00207b es_ES
dc.description.references Gündoğdu, S., Çevik, C., Güzel, E., & Kilercioğlu, S. (2018). Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environmental Monitoring and Assessment, 190(11). doi:10.1007/s10661-018-7010-y es_ES
dc.description.references Mason, S. A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., … Rogers, D. L. (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environmental Pollution, 218, 1045-1054. doi:10.1016/j.envpol.2016.08.056 es_ES
dc.description.references Ziajahromi, S., Neale, P. A., Rintoul, L., & Leusch, F. D. L. (2017). Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, 112, 93-99. doi:10.1016/j.watres.2017.01.042 es_ES
dc.description.references He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163-172. doi:10.1016/j.trac.2018.10.006 es_ES
dc.description.references Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science & Technology, 50(11), 5800-5808. doi:10.1021/acs.est.5b05416 es_ES
dc.description.references Plastics - the Facts 2019, (2019). https://www.plasticseurope.org/en/resources/market-data. (accessed 30 January 2020). es_ES
dc.description.references Munno, K., Helm, P. A., Jackson, D. A., Rochman, C., & Sims, A. (2017). Impacts of temperature and selected chemical digestion methods on microplastic particles. Environmental Toxicology and Chemistry, 37(1), 91-98. doi:10.1002/etc.3935 es_ES
dc.description.references Lee, H., & Kim, Y. (2018). Treatment characteristics of microplastics at biological sewage treatment facilities in Korea. Marine Pollution Bulletin, 137, 1-8. doi:10.1016/j.marpolbul.2018.09.050 es_ES
dc.description.references Lares, M., Ncibi, M. C., Sillanpää, M., & Sillanpää, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research, 133, 236-246. doi:10.1016/j.watres.2018.01.049 es_ES
dc.description.references Bretas Alvim, C., Mendoza-Roca, J. A., & Bes-Piá, A. (2020). Wastewater treatment plant as microplastics release source – Quantification and identification techniques. Journal of Environmental Management, 255, 109739. doi:10.1016/j.jenvman.2019.109739 es_ES
dc.description.references Tagg, A. S., Sapp, M., Harrison, J. P., & Ojeda, J. J. (2015). Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging. Analytical Chemistry, 87(12), 6032-6040. doi:10.1021/acs.analchem.5b00495 es_ES
dc.description.references Tagg, A. S., Harrison, J. P., Ju-Nam, Y., Sapp, M., Bradley, E. L., Sinclair, C. J., & Ojeda, J. J. (2017). Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater. Chemical Communications, 53(2), 372-375. doi:10.1039/c6cc08798a es_ES
dc.description.references Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environmental Science & Technology, 46(6), 3060-3075. doi:10.1021/es2031505 es_ES
dc.description.references Hidayaturrahman, H., & Lee, T.-G. (2019). A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Marine Pollution Bulletin, 146, 696-702. doi:10.1016/j.marpolbul.2019.06.071 es_ES
dc.description.references Talvitie, J., Heinonen, M., Pääkkönen, J.-P., Vahtera, E., Mikola, A., Setälä, O., & Vahala, R. (2015). Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Science and Technology, 72(9), 1495-1504. doi:10.2166/wst.2015.360 es_ES
dc.description.references Peets, P., Leito, I., Pelt, J., & Vahur, S. (2017). Identification and classification of textile fibres using ATR-FT-IR spectroscopy with chemometric methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173, 175-181. doi:10.1016/j.saa.2016.09.007 es_ES
dc.description.references E. Andreassen, Infrared and Raman spectroscopy of polypropylene, (1999) 320–328. DOI:10.1007/978-94-011-4421-6_46. es_ES
dc.description.references Tang, C.-C., Chen, H.-I., Brimblecombe, P., & Lee, C.-L. (2019). Morphology and chemical properties of polypropylene pellets degraded in simulated terrestrial and marine environments. Marine Pollution Bulletin, 149, 110626. doi:10.1016/j.marpolbul.2019.110626 es_ES
dc.description.references Xiong, J., Liao, X., Zhu, J., An, Z., Yang, Q., Huang, Y., & Li, G. (2017). Natural weathering mechanism of isotatic polypropylene under different outdoor climates in China. Polymer Degradation and Stability, 146, 212-222. doi:10.1016/j.polymdegradstab.2017.10.012 es_ES
dc.description.references Hurley, R. R., Lusher, A. L., Olsen, M., & Nizzetto, L. (2018). Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environmental Science & Technology, 52(13), 7409-7417. doi:10.1021/acs.est.8b01517 es_ES
dc.description.references Zhang, M., Dong, H., Zhao, L., Wang, D., & Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of The Total Environment, 670, 110-121. doi:10.1016/j.scitotenv.2019.03.180 es_ES
dc.description.references BADAWY, M., & ALI, M. (2006). Fenton’s peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater. Journal of Hazardous Materials, 136(3), 961-966. doi:10.1016/j.jhazmat.2006.01.042 es_ES
dc.description.references Kang, S.-F., Liao, C.-H., & Chen, M.-C. (2002). Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere, 46(6), 923-928. doi:10.1016/s0045-6535(01)00159-x es_ES
dc.description.references Amudha, V., Kavitha, S., Fernandez, C., Adishkumar, S., & Banu, J. R. (2016). Effect of deflocculation on the efficiency of sludge reduction by Fenton process. Environmental Science and Pollution Research, 23(19), 19281-19291. doi:10.1007/s11356-016-7118-y es_ES
dc.description.references Edo, C., González-Pleiter, M., Leganés, F., Fernández-Piñas, F., & Rosal, R. (2020). Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environmental Pollution, 259, 113837. doi:10.1016/j.envpol.2019.113837 es_ES
dc.description.references Magni, S., Binelli, A., Pittura, L., Avio, C. G., Della Torre, C., Parenti, C. C., … Regoli, F. (2019). The fate of microplastics in an Italian Wastewater Treatment Plant. Science of The Total Environment, 652, 602-610. doi:10.1016/j.scitotenv.2018.10.269 es_ES
dc.description.references Liu, X., Yuan, W., Di, M., Li, Z., & Wang, J. (2019). Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chemical Engineering Journal, 362, 176-182. doi:10.1016/j.cej.2019.01.033 es_ES
dc.description.references Kalčíková, G., Alič, B., Skalar, T., Bundschuh, M., & Gotvajn, A. Ž. (2017). Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater. Chemosphere, 188, 25-31. doi:10.1016/j.chemosphere.2017.08.131 es_ES
dc.description.references Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596-1605. doi:10.1016/j.marpolbul.2011.05.030 es_ES
dc.description.references Zettler, E. R., Mincer, T. J., & Amaral-Zettler, L. A. (2013). Life in the «Plastisphere»: Microbial Communities on Plastic Marine Debris. Environmental Science & Technology, 47(13), 7137-7146. doi:10.1021/es401288x es_ES
dc.description.references Liu, M., Lu, S., Song, Y., Lei, L., Hu, J., Lv, W., … He, D. (2018). Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, 242, 855-862. doi:10.1016/j.envpol.2018.07.051 es_ES
dc.description.references Bouwmeester, H., Hollman, P. C. H., & Peters, R. J. B. (2015). Potential Health Impact of Environmentally Released Micro- and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. Environmental Science & Technology, 49(15), 8932-8947. doi:10.1021/acs.est.5b01090 es_ES
dc.description.references Leslie, H. A., Brandsma, S. H., van Velzen, M. J. M., & Vethaak, A. D. (2017). Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environment International, 101, 133-142. doi:10.1016/j.envint.2017.01.018 es_ES
dc.description.references Sutton, R., Mason, S. A., Stanek, S. K., Willis-Norton, E., Wren, I. F., & Box, C. (2016). Microplastic contamination in the San Francisco Bay, California, USA. Marine Pollution Bulletin, 109(1), 230-235. doi:10.1016/j.marpolbul.2016.05.077 es_ES
dc.description.references Yang, L., Li, K., Cui, S., Kang, Y., An, L., & Lei, K. (2019). Removal of microplastics in municipal sewage from China’s largest water reclamation plant. Water Research, 155, 175-181. doi:10.1016/j.watres.2019.02.046 es_ES
dc.description.references Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environmental Science & Technology, 45(21), 9175-9179. doi:10.1021/es201811s es_ES
dc.description.references Carney Almroth, B. M., Åström, L., Roslund, S., Petersson, H., Johansson, M., & Persson, N.-K. (2017). Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environmental Science and Pollution Research, 25(2), 1191-1199. doi:10.1007/s11356-017-0528-7 es_ES
dc.description.references Remy, F., Collard, F., Gilbert, B., Compère, P., Eppe, G., & Lepoint, G. (2015). When Microplastic Is Not Plastic: The Ingestion of Artificial Cellulose Fibers by Macrofauna Living in Seagrass Macrophytodetritus. Environmental Science & Technology, 49(18), 11158-11166. doi:10.1021/acs.est.5b02005 es_ES
dc.description.references Ladewig, S. M., Bao, S., & Chow, A. T. (2015). Natural Fibers: A Missing Link to Chemical Pollution Dispersion in Aquatic Environments. Environmental Science & Technology, 49(21), 12609-12610. doi:10.1021/acs.est.5b04754 es_ES
dc.description.references Talvitie, J., Mikola, A., Setälä, O., Heinonen, M., & Koistinen, A. (2017). How well is microlitter purified from wastewater? – A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Research, 109, 164-172. doi:10.1016/j.watres.2016.11.046 es_ES
dc.description.references Bayo, J., Olmos, S., & López-Castellanos, J. (2020). Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors. Chemosphere, 238, 124593. doi:10.1016/j.chemosphere.2019.124593 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem