- -

Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants

Mostrar el registro completo del ítem

Alvim, CB.; Bes-Piá, M.; Mendoza Roca, JA. (2020). Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants. Chemical Engineering Journal. 402:1-10. https://doi.org/10.1016/j.cej.2020.126293

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165801

Ficheros en el ítem

Metadatos del ítem

Título: Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants
Autor: Alvim, C. Bretas Bes-Piá, M.A. Mendoza Roca, José Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] Although wastewater treatment plants can retain a high percentage of microplastics (MP) arriving at the facilities, no method for extracting and characterizing these microparticles has been still standardized in these ...[+]
Palabras clave: Activated sludge , Effluents , Microfiber , Microplastic , Wastewater treatment plant
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Chemical Engineering Journal. (issn: 1385-8947 )
DOI: 10.1016/j.cej.2020.126293
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.cej.2020.126293
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096916-B-I00/ES/ELIMINACION E INFLUENCIA DE LOS MICROPLASTICOS Y NANOPLASTICOS EN BIORREACTORES DE MEMBRANA Y EN PROCESOS DE REGENERACION DE AGUAS RESIDUALES CON MEMBRANAS/
Agradecimientos:
Authors thank the Spanish Ministry of Science, Innovation and Universities for the financial support (Reference of the project: RTI2018-096916-B-I00).
Tipo: Artículo

References

PlasticsEurope, Plastics – the Facts, Plast. – Facts 2018. (2018) 38. https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf (accessed 02 Septiembre 2019).

Auta, H. S., Emenike, C. ., & Fauziah, S. . (2017). Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environment International, 102, 165-176. doi:10.1016/j.envint.2017.02.013

Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174-182. doi:10.1016/j.watres.2016.01.002 [+]
PlasticsEurope, Plastics – the Facts, Plast. – Facts 2018. (2018) 38. https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf (accessed 02 Septiembre 2019).

Auta, H. S., Emenike, C. ., & Fauziah, S. . (2017). Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environment International, 102, 165-176. doi:10.1016/j.envint.2017.02.013

Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174-182. doi:10.1016/j.watres.2016.01.002

Li, J., Liu, H., & Paul Chen, J. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362-374. doi:10.1016/j.watres.2017.12.056

Fendall, L. S., & Sewell, M. A. (2009). Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine Pollution Bulletin, 58(8), 1225-1228. doi:10.1016/j.marpolbul.2009.04.025

Guerranti, C., Martellini, T., Perra, G., Scopetani, C., & Cincinelli, A. (2019). Microplastics in cosmetics: Environmental issues and needs for global bans. Environmental Toxicology and Pharmacology, 68, 75-79. doi:10.1016/j.etap.2019.03.007

Napper, I. E., Bakir, A., Rowland, S. J., & Thompson, R. C. (2015). Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Marine Pollution Bulletin, 99(1-2), 178-185. doi:10.1016/j.marpolbul.2015.07.029

Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553-561. doi:10.1016/j.marpolbul.2018.06.006

Michielssen, M. R., Michielssen, E. R., Ni, J., & Duhaime, M. B. (2016). Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed. Environmental Science: Water Research & Technology, 2(6), 1064-1073. doi:10.1039/c6ew00207b

Gündoğdu, S., Çevik, C., Güzel, E., & Kilercioğlu, S. (2018). Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environmental Monitoring and Assessment, 190(11). doi:10.1007/s10661-018-7010-y

Mason, S. A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., … Rogers, D. L. (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environmental Pollution, 218, 1045-1054. doi:10.1016/j.envpol.2016.08.056

Ziajahromi, S., Neale, P. A., Rintoul, L., & Leusch, F. D. L. (2017). Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, 112, 93-99. doi:10.1016/j.watres.2017.01.042

He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163-172. doi:10.1016/j.trac.2018.10.006

Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science & Technology, 50(11), 5800-5808. doi:10.1021/acs.est.5b05416

Plastics - the Facts 2019, (2019). https://www.plasticseurope.org/en/resources/market-data. (accessed 30 January 2020).

Munno, K., Helm, P. A., Jackson, D. A., Rochman, C., & Sims, A. (2017). Impacts of temperature and selected chemical digestion methods on microplastic particles. Environmental Toxicology and Chemistry, 37(1), 91-98. doi:10.1002/etc.3935

Lee, H., & Kim, Y. (2018). Treatment characteristics of microplastics at biological sewage treatment facilities in Korea. Marine Pollution Bulletin, 137, 1-8. doi:10.1016/j.marpolbul.2018.09.050

Lares, M., Ncibi, M. C., Sillanpää, M., & Sillanpää, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research, 133, 236-246. doi:10.1016/j.watres.2018.01.049

Bretas Alvim, C., Mendoza-Roca, J. A., & Bes-Piá, A. (2020). Wastewater treatment plant as microplastics release source – Quantification and identification techniques. Journal of Environmental Management, 255, 109739. doi:10.1016/j.jenvman.2019.109739

Tagg, A. S., Sapp, M., Harrison, J. P., & Ojeda, J. J. (2015). Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging. Analytical Chemistry, 87(12), 6032-6040. doi:10.1021/acs.analchem.5b00495

Tagg, A. S., Harrison, J. P., Ju-Nam, Y., Sapp, M., Bradley, E. L., Sinclair, C. J., & Ojeda, J. J. (2017). Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater. Chemical Communications, 53(2), 372-375. doi:10.1039/c6cc08798a

Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environmental Science & Technology, 46(6), 3060-3075. doi:10.1021/es2031505

Hidayaturrahman, H., & Lee, T.-G. (2019). A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Marine Pollution Bulletin, 146, 696-702. doi:10.1016/j.marpolbul.2019.06.071

Talvitie, J., Heinonen, M., Pääkkönen, J.-P., Vahtera, E., Mikola, A., Setälä, O., & Vahala, R. (2015). Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Science and Technology, 72(9), 1495-1504. doi:10.2166/wst.2015.360

Peets, P., Leito, I., Pelt, J., & Vahur, S. (2017). Identification and classification of textile fibres using ATR-FT-IR spectroscopy with chemometric methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173, 175-181. doi:10.1016/j.saa.2016.09.007

E. Andreassen, Infrared and Raman spectroscopy of polypropylene, (1999) 320–328. DOI:10.1007/978-94-011-4421-6_46.

Tang, C.-C., Chen, H.-I., Brimblecombe, P., & Lee, C.-L. (2019). Morphology and chemical properties of polypropylene pellets degraded in simulated terrestrial and marine environments. Marine Pollution Bulletin, 149, 110626. doi:10.1016/j.marpolbul.2019.110626

Xiong, J., Liao, X., Zhu, J., An, Z., Yang, Q., Huang, Y., & Li, G. (2017). Natural weathering mechanism of isotatic polypropylene under different outdoor climates in China. Polymer Degradation and Stability, 146, 212-222. doi:10.1016/j.polymdegradstab.2017.10.012

Hurley, R. R., Lusher, A. L., Olsen, M., & Nizzetto, L. (2018). Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environmental Science & Technology, 52(13), 7409-7417. doi:10.1021/acs.est.8b01517

Zhang, M., Dong, H., Zhao, L., Wang, D., & Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of The Total Environment, 670, 110-121. doi:10.1016/j.scitotenv.2019.03.180

BADAWY, M., & ALI, M. (2006). Fenton’s peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater. Journal of Hazardous Materials, 136(3), 961-966. doi:10.1016/j.jhazmat.2006.01.042

Kang, S.-F., Liao, C.-H., & Chen, M.-C. (2002). Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere, 46(6), 923-928. doi:10.1016/s0045-6535(01)00159-x

Amudha, V., Kavitha, S., Fernandez, C., Adishkumar, S., & Banu, J. R. (2016). Effect of deflocculation on the efficiency of sludge reduction by Fenton process. Environmental Science and Pollution Research, 23(19), 19281-19291. doi:10.1007/s11356-016-7118-y

Edo, C., González-Pleiter, M., Leganés, F., Fernández-Piñas, F., & Rosal, R. (2020). Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environmental Pollution, 259, 113837. doi:10.1016/j.envpol.2019.113837

Magni, S., Binelli, A., Pittura, L., Avio, C. G., Della Torre, C., Parenti, C. C., … Regoli, F. (2019). The fate of microplastics in an Italian Wastewater Treatment Plant. Science of The Total Environment, 652, 602-610. doi:10.1016/j.scitotenv.2018.10.269

Liu, X., Yuan, W., Di, M., Li, Z., & Wang, J. (2019). Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chemical Engineering Journal, 362, 176-182. doi:10.1016/j.cej.2019.01.033

Kalčíková, G., Alič, B., Skalar, T., Bundschuh, M., & Gotvajn, A. Ž. (2017). Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater. Chemosphere, 188, 25-31. doi:10.1016/j.chemosphere.2017.08.131

Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596-1605. doi:10.1016/j.marpolbul.2011.05.030

Zettler, E. R., Mincer, T. J., & Amaral-Zettler, L. A. (2013). Life in the «Plastisphere»: Microbial Communities on Plastic Marine Debris. Environmental Science & Technology, 47(13), 7137-7146. doi:10.1021/es401288x

Liu, M., Lu, S., Song, Y., Lei, L., Hu, J., Lv, W., … He, D. (2018). Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, 242, 855-862. doi:10.1016/j.envpol.2018.07.051

Bouwmeester, H., Hollman, P. C. H., & Peters, R. J. B. (2015). Potential Health Impact of Environmentally Released Micro- and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. Environmental Science & Technology, 49(15), 8932-8947. doi:10.1021/acs.est.5b01090

Leslie, H. A., Brandsma, S. H., van Velzen, M. J. M., & Vethaak, A. D. (2017). Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environment International, 101, 133-142. doi:10.1016/j.envint.2017.01.018

Sutton, R., Mason, S. A., Stanek, S. K., Willis-Norton, E., Wren, I. F., & Box, C. (2016). Microplastic contamination in the San Francisco Bay, California, USA. Marine Pollution Bulletin, 109(1), 230-235. doi:10.1016/j.marpolbul.2016.05.077

Yang, L., Li, K., Cui, S., Kang, Y., An, L., & Lei, K. (2019). Removal of microplastics in municipal sewage from China’s largest water reclamation plant. Water Research, 155, 175-181. doi:10.1016/j.watres.2019.02.046

Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environmental Science & Technology, 45(21), 9175-9179. doi:10.1021/es201811s

Carney Almroth, B. M., Åström, L., Roslund, S., Petersson, H., Johansson, M., & Persson, N.-K. (2017). Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environmental Science and Pollution Research, 25(2), 1191-1199. doi:10.1007/s11356-017-0528-7

Remy, F., Collard, F., Gilbert, B., Compère, P., Eppe, G., & Lepoint, G. (2015). When Microplastic Is Not Plastic: The Ingestion of Artificial Cellulose Fibers by Macrofauna Living in Seagrass Macrophytodetritus. Environmental Science & Technology, 49(18), 11158-11166. doi:10.1021/acs.est.5b02005

Ladewig, S. M., Bao, S., & Chow, A. T. (2015). Natural Fibers: A Missing Link to Chemical Pollution Dispersion in Aquatic Environments. Environmental Science & Technology, 49(21), 12609-12610. doi:10.1021/acs.est.5b04754

Talvitie, J., Mikola, A., Setälä, O., Heinonen, M., & Koistinen, A. (2017). How well is microlitter purified from wastewater? – A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Research, 109, 164-172. doi:10.1016/j.watres.2016.11.046

Bayo, J., Olmos, S., & López-Castellanos, J. (2020). Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors. Chemosphere, 238, 124593. doi:10.1016/j.chemosphere.2019.124593

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem