- -

Design and characterization of microspheres for a 3D mesenchymal stem cell culture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design and characterization of microspheres for a 3D mesenchymal stem cell culture

Mostrar el registro completo del ítem

Lastra, ML.; Gómez Ribelles, JL.; Cortizo, AM. (2020). Design and characterization of microspheres for a 3D mesenchymal stem cell culture. Colloids and Surfaces B Biointerfaces. 196:1-8. https://doi.org/10.1016/j.colsurfb.2020.111322

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165805

Ficheros en el ítem

Metadatos del ítem

Título: Design and characterization of microspheres for a 3D mesenchymal stem cell culture
Autor: Lastra, María Laura Gómez Ribelles, José Luís Cortizo, Ana María
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Recent studies have shown the relevance of growing mesenchymal stem cells (MSCs) in three-dimensional environments with respect to the monolayer cell culture on an adherent substrate. In this sense, macroporous scaffolds ...[+]
Palabras clave: Microspheres , Chitosan , 3D culture environment , Mesenchymal stem cells , Regenerative medicine
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Colloids and Surfaces B Biointerfaces. (issn: 0927-7765 )
DOI: 10.1016/j.colsurfb.2020.111322
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.colsurfb.2020.111322
Código del Proyecto:
info:eu-repo/grantAgreement/UNLP//11%2FX768/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106099RB-C41/ES/MICROGELES BIOMIMETICOS PARA EL ESTUDIO DE LA GENERACION DE RESISTENCIAS A FARMACOS EN EL MIELOMA MULTIPLE./
info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/
Agradecimientos:
This work supported by Universidad Nacional de La Plata (11/X 768 and subsidio Jovenes Investigadores 2017), Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. In addition, financial support from the ...[+]
Tipo: Artículo

References

Satija, N. K., Singh, V. K., Verma, Y. K., Gupta, P., Sharma, S., Afrin, F., … Gurudutta, G. U. (2009). Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. Journal of Cellular and Molecular Medicine, 13(11-12), 4385-4402. doi:10.1111/j.1582-4934.2009.00857.x

Shojaei, F., Rahmati, S., & Banitalebi Dehkordi, M. (2019). A review on different methods to increase the efficiency of mesenchymal stem cell‐based wound therapy. Wound Repair and Regeneration, 27(6), 661-671. doi:10.1111/wrr.12749

Khademi-Shirvan, M., Ghorbaninejad, M., Hosseini, S., & Baghaban Eslaminejad, M. (2020). The Importance of Stem Cell Senescence in Regenerative Medicine. Cell Biology and Translational Medicine, Volume 9, 87-102. doi:10.1007/5584_2020_489 [+]
Satija, N. K., Singh, V. K., Verma, Y. K., Gupta, P., Sharma, S., Afrin, F., … Gurudutta, G. U. (2009). Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. Journal of Cellular and Molecular Medicine, 13(11-12), 4385-4402. doi:10.1111/j.1582-4934.2009.00857.x

Shojaei, F., Rahmati, S., & Banitalebi Dehkordi, M. (2019). A review on different methods to increase the efficiency of mesenchymal stem cell‐based wound therapy. Wound Repair and Regeneration, 27(6), 661-671. doi:10.1111/wrr.12749

Khademi-Shirvan, M., Ghorbaninejad, M., Hosseini, S., & Baghaban Eslaminejad, M. (2020). The Importance of Stem Cell Senescence in Regenerative Medicine. Cell Biology and Translational Medicine, Volume 9, 87-102. doi:10.1007/5584_2020_489

Zhang, S., Ma, B., Wang, S., Duan, J., Qiu, J., Li, D., … Liu, H. (2018). Mass-production of fluorescent chitosan/graphene oxide hybrid microspheres for in vitro 3D expansion of human umbilical cord mesenchymal stem cells. Chemical Engineering Journal, 331, 675-684. doi:10.1016/j.cej.2017.09.014

Huang, L., Abdalla, A. M. E., Xiao, L., & Yang, G. (2020). Biopolymer-Based Microcarriers for Three-Dimensional Cell Culture and Engineered Tissue Formation. International Journal of Molecular Sciences, 21(5), 1895. doi:10.3390/ijms21051895

Li, F., Truong, V. X., Fisch, P., Levinson, C., Glattauer, V., Zenobi-Wong, M., … Frith, J. E. (2018). Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomaterialia, 77, 48-62. doi:10.1016/j.actbio.2018.07.015

Petrenko, Y., Syková, E., & Kubinová, Š. (2017). The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Research & Therapy, 8(1). doi:10.1186/s13287-017-0558-6

Ferreira, L. P., Gaspar, V. M., & Mano, J. F. (2018). Design of spherically structured 3D in vitro tumor models -Advances and prospects. Acta Biomaterialia, 75, 11-34. doi:10.1016/j.actbio.2018.05.034

McMurray, R. J., Gadegaard, N., Tsimbouri, P. M., Burgess, K. V., McNamara, L. E., Tare, R., … Dalby, M. J. (2011). Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nature Materials, 10(8), 637-644. doi:10.1038/nmat3058

Leong, W., & Wang, D.-A. (2015). Cell-laden Polymeric Microspheres for Biomedical Applications. Trends in Biotechnology, 33(11), 653-666. doi:10.1016/j.tibtech.2015.09.003

Newsom, J. P., Payne, K. A., & Krebs, M. D. (2019). Microgels: Modular, tunable constructs for tissue regeneration. Acta Biomaterialia, 88, 32-41. doi:10.1016/j.actbio.2019.02.011

Guan, X., Avci-Adali, M., Alarçin, E., Cheng, H., Kashaf, S. S., Li, Y., … Khademhosseini, A. (2017). Development of hydrogels for regenerative engineering. Biotechnology Journal, 12(5), 1600394. doi:10.1002/biot.201600394

Croisier, F., & Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 49(4), 780-792. doi:10.1016/j.eurpolymj.2012.12.009

Pasqualone, M., Oberti, T. G., Andreetta, H. A., & Cortizo, M. S. (2013). Fumarate copolymers-based membranes overlooking future transdermal delivery devices: synthesis and properties. Journal of Materials Science: Materials in Medicine, 24(7), 1683-1692. doi:10.1007/s10856-013-4925-2

Lastra, M. L., Molinuevo, M. S., Cortizo, A. M., & Cortizo, M. S. (2016). Fumarate Copolymer-Chitosan Cross-Linked Scaffold Directed to Osteochondrogenic Tissue Engineering. Macromolecular Bioscience, 17(5). doi:10.1002/mabi.201600219

García Cruz, D. M., Escobar Ivirico, J. L., Gomes, M. M., Gómez Ribelles, J. L., Sánchez, M. S., Reis, R. L., & Mano, J. F. (2008). Chitosan microparticles as injectable scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2(6), 378-380. doi:10.1002/term.106

Huang, L., Xiao, L., Jung Poudel, A., Li, J., Zhou, P., Gauthier, M., … Yang, G. (2018). Porous chitosan microspheres as microcarriers for 3D cell culture. Carbohydrate Polymers, 202, 611-620. doi:10.1016/j.carbpol.2018.09.021

Wang, D., Wang, M., Wang, A., Li, J., Li, X., Jian, H., … Yin, J. (2019). Preparation of collagen/chitosan microspheres for 3D macrophage proliferation in vitro. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 572, 266-273. doi:10.1016/j.colsurfa.2019.04.007

Baraniak, P. R., Cooke, M. T., Saeed, R., Kinney, M. A., Fridley, K. M., & McDevitt, T. C. (2012). Stiffening of human mesenchymal stem cell spheroid microenvironments induced by incorporation of gelatin microparticles. Journal of the Mechanical Behavior of Biomedical Materials, 11, 63-71. doi:10.1016/j.jmbbm.2012.02.018

García Cruz, D. M., Sardinha, V., Escobar Ivirico, J. L., Mano, J. F., & Gómez Ribelles, J. L. (2012). Gelatin microparticles aggregates as three-dimensional scaffolding system in cartilage engineering. Journal of Materials Science: Materials in Medicine, 24(2), 503-513. doi:10.1007/s10856-012-4818-9

Lastra, M. L., Molinuevo, M. S., Blaszczyk-Lezak, I., Mijangos, C., & Cortizo, M. S. (2017). Nanostructured fumarate copolymer-chitosan crosslinked scaffold: An in vitro osteochondrogenesis regeneration study. Journal of Biomedical Materials Research Part A, 106(2), 570-579. doi:10.1002/jbm.a.36260

Susana Cortizo, M. (2006). Polymerization of diisopropyl fumarate under microwave irradiation. Journal of Applied Polymer Science, 103(6), 3785-3791. doi:10.1002/app.24653

Raschke, W. C., Baird, S., Ralph, P., & Nakoinz, I. (1978). Functional macrophage cell lines transformed by abelson leukemia virus. Cell, 15(1), 261-267. doi:10.1016/0092-8674(78)90101-0

Denlinger, L. C., Fisette, P. L., Garis, K. A., Kwon, G., Vazquez-Torres, A., Simon, A. D., … Corbett, J. A. (1996). Regulation of Inducible Nitric Oxide Synthase Expression by Macrophage Purinoreceptors and Calcium. Journal of Biological Chemistry, 271(1), 337-342. doi:10.1074/jbc.271.1.337

Torres, M. L., Fernandez, J. M., Dellatorre, F. G., Cortizo, A. M., & Oberti, T. G. (2019). Purification of alginate improves its biocompatibility and eliminates cytotoxicity in matrix for bone tissue engineering. Algal Research, 40, 101499. doi:10.1016/j.algal.2019.101499

Clara-Trujillo, S., Marín-Payá, J. C., Cordón, L., Sempere, A., Gallego Ferrer, G., & Gómez Ribelles, J. L. (2019). Biomimetic microspheres for 3D mesenchymal stem cell culture and characterization. Colloids and Surfaces B: Biointerfaces, 177, 68-76. doi:10.1016/j.colsurfb.2019.01.050

Bravi Costantino, M. L., Cortizo, M. S., Cortizo, A. M., & Oberti, T. G. (2020). Osteogenic scaffolds based on fumaric/N-isopropylacrylamide copolymers: Designed, properties and biocompatibility studies. European Polymer Journal, 122, 109348. doi:10.1016/j.eurpolymj.2019.109348

Padmanabhan, J., & Kyriakides, T. R. (2014). Nanomaterials, Inflammation, and Tissue Engineering. WIREs Nanomedicine and Nanobiotechnology, 7(3), 355-370. doi:10.1002/wnan.1320

Levato, R., Planell, J. A., Mateos-Timoneda, M. A., & Engel, E. (2015). Role of ECM/peptide coatings on SDF-1α triggered mesenchymal stromal cell migration from microcarriers for cell therapy. Acta Biomaterialia, 18, 59-67. doi:10.1016/j.actbio.2015.02.008

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem