- -

Design and characterization of microspheres for a 3D mesenchymal stem cell culture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design and characterization of microspheres for a 3D mesenchymal stem cell culture

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lastra, María Laura es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Cortizo, Ana María es_ES
dc.date.accessioned 2021-04-30T03:31:45Z
dc.date.available 2021-04-30T03:31:45Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 0927-7765 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165805
dc.description.abstract [EN] Recent studies have shown the relevance of growing mesenchymal stem cells (MSCs) in three-dimensional environments with respect to the monolayer cell culture on an adherent substrate. In this sense, macroporous scaffolds and hydrogels have been used as three-dimensional (3D) supports. In this work, we explored the culture of MSCs in a 3D environment created by microspheres, prepared with a fumarate-vinyl acetate copolymer and chitosan. In this system, the environment that the cells feel has similarities to that found by the cells encapsulated in a hydrogel, but the cells have the ability to reorganize their environment since the microspheres are mobile. We evaluated their biocompatibility in vitro using RAW 264.7 macrophages and bone marrow mesenchymal stem cells (BMSCs). The results with RAW 264.7 cells showed good cell viability, without evident signs of cytotoxicity. BMSCs not only proliferate, but also rearrange to grow in clusters, thus highlighting the advantages of microspheres as 3D environments. es_ES
dc.description.sponsorship This work supported by Universidad Nacional de La Plata (11/X 768 and subsidio Jovenes Investigadores 2017), Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. In addition, financial support from the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID2019-106099RB-C41/AEI/10.13039/501100011033 is acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. MLL is a Posdoctoral Fellow of CONICET, AMC is a member of Carrera del Investigador Cientifico de la CICPBA. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Colloids and Surfaces B Biointerfaces es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Microspheres es_ES
dc.subject Chitosan es_ES
dc.subject 3D culture environment es_ES
dc.subject Mesenchymal stem cells es_ES
dc.subject Regenerative medicine es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Design and characterization of microspheres for a 3D mesenchymal stem cell culture es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.colsurfb.2020.111322 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNLP//11%2FX768/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106099RB-C41/ES/MICROGELES BIOMIMETICOS PARA EL ESTUDIO DE LA GENERACION DE RESISTENCIAS A FARMACOS EN EL MIELOMA MULTIPLE./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Lastra, ML.; Gómez Ribelles, JL.; Cortizo, AM. (2020). Design and characterization of microspheres for a 3D mesenchymal stem cell culture. Colloids and Surfaces B Biointerfaces. 196:1-8. https://doi.org/10.1016/j.colsurfb.2020.111322 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.colsurfb.2020.111322 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 196 es_ES
dc.identifier.pmid 32841788 es_ES
dc.relation.pasarela S\433286 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universidad Nacional de La Plata, Argentina es_ES
dc.contributor.funder Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.description.references Satija, N. K., Singh, V. K., Verma, Y. K., Gupta, P., Sharma, S., Afrin, F., … Gurudutta, G. U. (2009). Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. Journal of Cellular and Molecular Medicine, 13(11-12), 4385-4402. doi:10.1111/j.1582-4934.2009.00857.x es_ES
dc.description.references Shojaei, F., Rahmati, S., & Banitalebi Dehkordi, M. (2019). A review on different methods to increase the efficiency of mesenchymal stem cell‐based wound therapy. Wound Repair and Regeneration, 27(6), 661-671. doi:10.1111/wrr.12749 es_ES
dc.description.references Khademi-Shirvan, M., Ghorbaninejad, M., Hosseini, S., & Baghaban Eslaminejad, M. (2020). The Importance of Stem Cell Senescence in Regenerative Medicine. Cell Biology and Translational Medicine, Volume 9, 87-102. doi:10.1007/5584_2020_489 es_ES
dc.description.references Zhang, S., Ma, B., Wang, S., Duan, J., Qiu, J., Li, D., … Liu, H. (2018). Mass-production of fluorescent chitosan/graphene oxide hybrid microspheres for in vitro 3D expansion of human umbilical cord mesenchymal stem cells. Chemical Engineering Journal, 331, 675-684. doi:10.1016/j.cej.2017.09.014 es_ES
dc.description.references Huang, L., Abdalla, A. M. E., Xiao, L., & Yang, G. (2020). Biopolymer-Based Microcarriers for Three-Dimensional Cell Culture and Engineered Tissue Formation. International Journal of Molecular Sciences, 21(5), 1895. doi:10.3390/ijms21051895 es_ES
dc.description.references Li, F., Truong, V. X., Fisch, P., Levinson, C., Glattauer, V., Zenobi-Wong, M., … Frith, J. E. (2018). Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomaterialia, 77, 48-62. doi:10.1016/j.actbio.2018.07.015 es_ES
dc.description.references Petrenko, Y., Syková, E., & Kubinová, Š. (2017). The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Research & Therapy, 8(1). doi:10.1186/s13287-017-0558-6 es_ES
dc.description.references Ferreira, L. P., Gaspar, V. M., & Mano, J. F. (2018). Design of spherically structured 3D in vitro tumor models -Advances and prospects. Acta Biomaterialia, 75, 11-34. doi:10.1016/j.actbio.2018.05.034 es_ES
dc.description.references McMurray, R. J., Gadegaard, N., Tsimbouri, P. M., Burgess, K. V., McNamara, L. E., Tare, R., … Dalby, M. J. (2011). Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nature Materials, 10(8), 637-644. doi:10.1038/nmat3058 es_ES
dc.description.references Leong, W., & Wang, D.-A. (2015). Cell-laden Polymeric Microspheres for Biomedical Applications. Trends in Biotechnology, 33(11), 653-666. doi:10.1016/j.tibtech.2015.09.003 es_ES
dc.description.references Newsom, J. P., Payne, K. A., & Krebs, M. D. (2019). Microgels: Modular, tunable constructs for tissue regeneration. Acta Biomaterialia, 88, 32-41. doi:10.1016/j.actbio.2019.02.011 es_ES
dc.description.references Guan, X., Avci-Adali, M., Alarçin, E., Cheng, H., Kashaf, S. S., Li, Y., … Khademhosseini, A. (2017). Development of hydrogels for regenerative engineering. Biotechnology Journal, 12(5), 1600394. doi:10.1002/biot.201600394 es_ES
dc.description.references Croisier, F., & Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 49(4), 780-792. doi:10.1016/j.eurpolymj.2012.12.009 es_ES
dc.description.references Pasqualone, M., Oberti, T. G., Andreetta, H. A., & Cortizo, M. S. (2013). Fumarate copolymers-based membranes overlooking future transdermal delivery devices: synthesis and properties. Journal of Materials Science: Materials in Medicine, 24(7), 1683-1692. doi:10.1007/s10856-013-4925-2 es_ES
dc.description.references Lastra, M. L., Molinuevo, M. S., Cortizo, A. M., & Cortizo, M. S. (2016). Fumarate Copolymer-Chitosan Cross-Linked Scaffold Directed to Osteochondrogenic Tissue Engineering. Macromolecular Bioscience, 17(5). doi:10.1002/mabi.201600219 es_ES
dc.description.references García Cruz, D. M., Escobar Ivirico, J. L., Gomes, M. M., Gómez Ribelles, J. L., Sánchez, M. S., Reis, R. L., & Mano, J. F. (2008). Chitosan microparticles as injectable scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2(6), 378-380. doi:10.1002/term.106 es_ES
dc.description.references Huang, L., Xiao, L., Jung Poudel, A., Li, J., Zhou, P., Gauthier, M., … Yang, G. (2018). Porous chitosan microspheres as microcarriers for 3D cell culture. Carbohydrate Polymers, 202, 611-620. doi:10.1016/j.carbpol.2018.09.021 es_ES
dc.description.references Wang, D., Wang, M., Wang, A., Li, J., Li, X., Jian, H., … Yin, J. (2019). Preparation of collagen/chitosan microspheres for 3D macrophage proliferation in vitro. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 572, 266-273. doi:10.1016/j.colsurfa.2019.04.007 es_ES
dc.description.references Baraniak, P. R., Cooke, M. T., Saeed, R., Kinney, M. A., Fridley, K. M., & McDevitt, T. C. (2012). Stiffening of human mesenchymal stem cell spheroid microenvironments induced by incorporation of gelatin microparticles. Journal of the Mechanical Behavior of Biomedical Materials, 11, 63-71. doi:10.1016/j.jmbbm.2012.02.018 es_ES
dc.description.references García Cruz, D. M., Sardinha, V., Escobar Ivirico, J. L., Mano, J. F., & Gómez Ribelles, J. L. (2012). Gelatin microparticles aggregates as three-dimensional scaffolding system in cartilage engineering. Journal of Materials Science: Materials in Medicine, 24(2), 503-513. doi:10.1007/s10856-012-4818-9 es_ES
dc.description.references Lastra, M. L., Molinuevo, M. S., Blaszczyk-Lezak, I., Mijangos, C., & Cortizo, M. S. (2017). Nanostructured fumarate copolymer-chitosan crosslinked scaffold: An in vitro osteochondrogenesis regeneration study. Journal of Biomedical Materials Research Part A, 106(2), 570-579. doi:10.1002/jbm.a.36260 es_ES
dc.description.references Susana Cortizo, M. (2006). Polymerization of diisopropyl fumarate under microwave irradiation. Journal of Applied Polymer Science, 103(6), 3785-3791. doi:10.1002/app.24653 es_ES
dc.description.references Raschke, W. C., Baird, S., Ralph, P., & Nakoinz, I. (1978). Functional macrophage cell lines transformed by abelson leukemia virus. Cell, 15(1), 261-267. doi:10.1016/0092-8674(78)90101-0 es_ES
dc.description.references Denlinger, L. C., Fisette, P. L., Garis, K. A., Kwon, G., Vazquez-Torres, A., Simon, A. D., … Corbett, J. A. (1996). Regulation of Inducible Nitric Oxide Synthase Expression by Macrophage Purinoreceptors and Calcium. Journal of Biological Chemistry, 271(1), 337-342. doi:10.1074/jbc.271.1.337 es_ES
dc.description.references Torres, M. L., Fernandez, J. M., Dellatorre, F. G., Cortizo, A. M., & Oberti, T. G. (2019). Purification of alginate improves its biocompatibility and eliminates cytotoxicity in matrix for bone tissue engineering. Algal Research, 40, 101499. doi:10.1016/j.algal.2019.101499 es_ES
dc.description.references Clara-Trujillo, S., Marín-Payá, J. C., Cordón, L., Sempere, A., Gallego Ferrer, G., & Gómez Ribelles, J. L. (2019). Biomimetic microspheres for 3D mesenchymal stem cell culture and characterization. Colloids and Surfaces B: Biointerfaces, 177, 68-76. doi:10.1016/j.colsurfb.2019.01.050 es_ES
dc.description.references Bravi Costantino, M. L., Cortizo, M. S., Cortizo, A. M., & Oberti, T. G. (2020). Osteogenic scaffolds based on fumaric/N-isopropylacrylamide copolymers: Designed, properties and biocompatibility studies. European Polymer Journal, 122, 109348. doi:10.1016/j.eurpolymj.2019.109348 es_ES
dc.description.references Padmanabhan, J., & Kyriakides, T. R. (2014). Nanomaterials, Inflammation, and Tissue Engineering. WIREs Nanomedicine and Nanobiotechnology, 7(3), 355-370. doi:10.1002/wnan.1320 es_ES
dc.description.references Levato, R., Planell, J. A., Mateos-Timoneda, M. A., & Engel, E. (2015). Role of ECM/peptide coatings on SDF-1α triggered mesenchymal stromal cell migration from microcarriers for cell therapy. Acta Biomaterialia, 18, 59-67. doi:10.1016/j.actbio.2015.02.008 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem