- -

An evaluation of the environmental factors for supply chain strategy decisions using grey systems and composite indicators

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

An evaluation of the environmental factors for supply chain strategy decisions using grey systems and composite indicators

Show simple item record

Files in this item

dc.contributor.author Alfaro Saiz, Juan José es_ES
dc.contributor.author Bas, M.C. es_ES
dc.contributor.author Giner-Bosch, Vicent es_ES
dc.contributor.author Rodríguez Rodríguez, Raúl es_ES
dc.contributor.author Verdecho Sáez, María José es_ES
dc.date.accessioned 2021-04-30T03:31:52Z
dc.date.available 2021-04-30T03:31:52Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 0307-904X es_ES
dc.identifier.uri http://hdl.handle.net/10251/165808
dc.description.abstract [EN] The purpose of this work is to assess the importance of environmental factors in a supply chain with four partners as a preliminary step to select the competitive strategies and objectives. To achieve this purpose, a real case study was carried out in a footwear supply chain, in which two approaches were used: the grey system theory and uncertainty analysis tools for composite indicators. In order to validate both approaches, a seven-phase research methodology was developed and applied to our case study. In addition, the priorization of environmental factors was calculated individually for each partner. The results allow managers to establish the competitive strategy that best suits the prioritization of the most relevant factors and to define the most appropriate objectives where the supply chain should invest its efforts and resources. es_ES
dc.description.sponsorship The research was conducted with the support of the R&D Support Program (PAID-00-15) of the Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Mathematical Modelling es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Grey system theory es_ES
dc.subject Composite indicator es_ES
dc.subject Supply chain es_ES
dc.subject Environmental factors es_ES
dc.subject Environmental uncertainty es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title An evaluation of the environmental factors for supply chain strategy decisions using grey systems and composite indicators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.apm.2019.10.048 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-00-15/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Alfaro Saiz, JJ.; Bas, M.; Giner-Bosch, V.; Rodríguez Rodríguez, R.; Verdecho Sáez, MJ. (2020). An evaluation of the environmental factors for supply chain strategy decisions using grey systems and composite indicators. Applied Mathematical Modelling. 79:490-505. https://doi.org/10.1016/j.apm.2019.10.048 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.apm.2019.10.048 es_ES
dc.description.upvformatpinicio 490 es_ES
dc.description.upvformatpfin 505 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 79 es_ES
dc.relation.pasarela S\397885 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Lambert, D. M., & Cooper, M. C. (2000). Issues in Supply Chain Management. Industrial Marketing Management, 29(1), 65-83. doi:10.1016/s0019-8501(99)00113-3 es_ES
dc.description.references Stonebraker, P. W., & Liao, J. (2004). Environmental turbulence, strategic orientation. International Journal of Operations & Production Management, 24(10), 1037-1054. doi:10.1108/01443570410558067 es_ES
dc.description.references Simangunsong, E., Hendry, L. C., & Stevenson, M. (2016). Managing supply chain uncertainty with emerging ethical issues. International Journal of Operations & Production Management, 36(10), 1272-1307. doi:10.1108/ijopm-12-2014-0599 es_ES
dc.description.references Otley, D. (2012). Performance management under conditions of uncertainty: some valedictory reflections. Pacific Accounting Review, 24(3), 247-261. doi:10.1108/01140581211283869 es_ES
dc.description.references MacCarthy, B. L., Blome, C., Olhager, J., Srai, J. S., & Zhao, X. (2016). Supply chain evolution – theory, concepts and science. International Journal of Operations & Production Management, 36(12), 1696-1718. doi:10.1108/ijopm-02-2016-0080 es_ES
dc.description.references Simangunsong, E., Hendry, L. C., & Stevenson, M. (2012). Supply-chain uncertainty: a review and theoretical foundation for future research. International Journal of Production Research, 50(16), 4493-4523. doi:10.1080/00207543.2011.613864 es_ES
dc.description.references Vecchiato, R. (2012). Environmental uncertainty, foresight and strategic decision making: An integrated study. Technological Forecasting and Social Change, 79(3), 436-447. doi:10.1016/j.techfore.2011.07.010 es_ES
dc.description.references Vasconcelos Gomes, L. A. de, Salerno, M. S., Phaal, R., & Probert, D. R. (2018). How entrepreneurs manage collective uncertainties in innovation ecosystems. Technological Forecasting and Social Change, 128, 164-185. doi:10.1016/j.techfore.2017.11.016 es_ES
dc.description.references Flynn, B. B., Koufteros, X., & Lu, G. (2016). On Theory in Supply Chain Uncertainty and its Implications for Supply Chain Integration. Journal of Supply Chain Management, 52(3), 3-27. doi:10.1111/jscm.12106 es_ES
dc.description.references Gordon, L. A., & Narayanan, V. K. (1984). Management accounting systems, perceived environmental uncertainty and organization structure: An empirical investigation. Accounting, Organizations and Society, 9(1), 33-47. doi:10.1016/0361-3682(84)90028-x es_ES
dc.description.references Huo, B., Ye, Y., Zhao, X., Wei, J., & Hua, Z. (2018). Environmental uncertainty, specific assets, and opportunism in 3PL relationships: A transaction cost economics perspective. International Journal of Production Economics, 203, 154-163. doi:10.1016/j.ijpe.2018.01.031 es_ES
dc.description.references Hoque, Z. (2004). A contingency model of the association between strategy, environmental uncertainty and performance measurement: impact on organizational performance. International Business Review, 13(4), 485-502. doi:10.1016/j.ibusrev.2004.04.003 es_ES
dc.description.references Lonbani, M., Sofian, S., & Baroto, M. B. (2016). Balanced Scorecard Implementation in SMEs: Addressing the Moderating Role of Environmental Uncertainty. Global Business and Organizational Excellence, 35(3), 58-66. doi:10.1002/joe.21671 es_ES
dc.description.references Yi, C. Y., Ngai, E. W. T., & Moon, K. (2011). Supply chain flexibility in an uncertain environment: exploratory findings from five case studies. Supply Chain Management: An International Journal, 16(4), 271-283. doi:10.1108/13598541111139080 es_ES
dc.description.references Boyle, E., Humphreys, P., & McIvor, R. (2008). Reducing supply chain environmental uncertainty through e-intermediation: An organisation theory perspective. International Journal of Production Economics, 114(1), 347-362. doi:10.1016/j.ijpe.2008.01.010 es_ES
dc.description.references Agami, N., Saleh, M., & Rasmy, M. (2014). An Innovative Fuzzy Logic Based Approach for Supply Chain Performance Management. IEEE Systems Journal, 8(2), 336-342. doi:10.1109/jsyst.2012.2219913 es_ES
dc.description.references Arrive, J. T., & Feng, M. (2018). The complexity of the environment, management control and firm performance. Business Strategy and the Environment, 27(8), 1347-1354. doi:10.1002/bse.2183 es_ES
dc.description.references Huang, M.-C., Yen, G.-F., & Liu, T.-C. (2014). Reexamining supply chain integration and the supplier’s performance relationships under uncertainty. Supply Chain Management: An International Journal, 19(1), 64-78. doi:10.1108/scm-04-2013-0114 es_ES
dc.description.references Ansoff, H. I. (1991). Critique of Henry Mintzberg’s ‘The design school: Reconsidering the basic premises of strategic management’. Strategic Management Journal, 12(6), 449-461. doi:10.1002/smj.4250120605 es_ES
dc.description.references Nummela, N., Saarenketo, S., Jokela, P., & Loane, S. (2014). Strategic Decision-Making of a Born Global: A Comparative Study From Three Small Open Economies. Management International Review, 54(4), 527-550. doi:10.1007/s11575-014-0211-x es_ES
dc.description.references Yu, X., Tao, Y., Tao, X., Xia, F., & Li, Y. (2018). Managing uncertainty in emerging economies: The interaction effects between causation and effectuation on firm performance. Technological Forecasting and Social Change, 135, 121-131. doi:10.1016/j.techfore.2017.11.017 es_ES
dc.description.references Durbach, I. N., & Stewart, T. J. (2012). Modeling uncertainty in multi-criteria decision analysis. European Journal of Operational Research, 223(1), 1-14. doi:10.1016/j.ejor.2012.04.038 es_ES
dc.description.references Jahantigh, F. F., Malmir, B., & Avilaq, B. A. (2016). An integrated approach for prioritizing the strategic objectives of balanced scorecard under uncertainty. Neural Computing and Applications, 29(6), 227-236. doi:10.1007/s00521-016-2509-z es_ES
dc.description.references Chen, M.-F., & Tzeng, G.-H. (2004). Combining grey relation and TOPSIS concepts for selecting an expatriate host country. Mathematical and Computer Modelling, 40(13), 1473-1490. doi:10.1016/j.mcm.2005.01.006 es_ES
dc.description.references Tseng, M.-L. (2009). A causal and effect decision making model of service quality expectation using grey-fuzzy DEMATEL approach. Expert Systems with Applications, 36(4), 7738-7748. doi:10.1016/j.eswa.2008.09.011 es_ES
dc.description.references Vinodh, S., Prasanna, M., & Hari Prakash, N. (2014). Integrated Fuzzy AHP–TOPSIS for selecting the best plastic recycling method: A case study. Applied Mathematical Modelling, 38(19-20), 4662-4672. doi:10.1016/j.apm.2014.03.007 es_ES
dc.description.references Lima Junior, F. R., Osiro, L., & Carpinetti, L. C. R. (2014). A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Applied Soft Computing, 21, 194-209. doi:10.1016/j.asoc.2014.03.014 es_ES
dc.description.references Ju-Long, D. (1982). Control problems of grey systems. Systems & Control Letters, 1(5), 288-294. doi:10.1016/s0167-6911(82)80025-x es_ES
dc.description.references Yin, M.-S. (2013). Fifteen years of grey system theory research: A historical review and bibliometric analysis. Expert Systems with Applications, 40(7), 2767-2775. doi:10.1016/j.eswa.2012.11.002 es_ES
dc.description.references Wei, J., Zhou, L., Wang, F., & Wu, D. (2015). Work safety evaluation in Mainland China using grey theory. Applied Mathematical Modelling, 39(2), 924-933. doi:10.1016/j.apm.2014.06.017 es_ES
dc.description.references Rajesh, R., Ravi, V., & Venkata Rao, R. (2014). Selection of risk mitigation strategy in electronic supply chains using grey theory and digraph-matrix approaches. International Journal of Production Research, 53(1), 238-257. doi:10.1080/00207543.2014.948579 es_ES
dc.description.references Huang, B., Bai, L., Roy, A., & Ma, N. (2018). A multi-criterion partner selection problem for virtual manufacturing enterprises under uncertainty. International Journal of Production Economics, 196, 68-81. doi:10.1016/j.ijpe.2017.08.024 es_ES
dc.description.references Saisana, M., Saltelli, A., & Tarantola, S. (2005). Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators. Journal of the Royal Statistical Society: Series A (Statistics in Society), 168(2), 307-323. doi:10.1111/j.1467-985x.2005.00350.x es_ES
dc.description.references Sellitto, M. A., Pereira, G. M., Borchardt, M., da Silva, R. I., & Viegas, C. V. (2015). A SCOR-based model for supply chain performance measurement: application in the footwear industry. International Journal of Production Research, 53(16), 4917-4926. doi:10.1080/00207543.2015.1005251 es_ES
dc.description.references Marketwatch. Footwear market: global industry size, share, trends, growth, demand and forecast 2018-2026. https://www.marketwatch.com/press-release/footwear-market-global-industry-size-share-trends-growth-demand-and-forecast-2018-2026 (2018). es_ES
dc.description.references CBI. Which trends present opportunities on the european footwear market? ministry of foreign affairs, netherlands enterprise agency (2016). https://www.cbi.eu/market-information/footwear/trends. es_ES
dc.description.references CESCE. Informe sectorial de la economía española (2018). https://www.cesce.com. es_ES
dc.description.references R.Rocamora. The challenges of footwear by 2020: flexibility, sustainable innovation and renewable materials. (2017). https://valenciaplaza.com/Losdesafosdelcalzadohacia2020. es_ES
dc.description.references AVECAL. Valencian association of footwear entrepreneurs. (2019) https://www.avecal.es/. es_ES


This item appears in the following Collection(s)

Show simple item record