- -

Roadmap of cocoa quality and authenticity control in the industry: a review of conventional and alternative methods

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Roadmap of cocoa quality and authenticity control in the industry: a review of conventional and alternative methods

Show full item record

Quelal-Vásconez, MA.; Lerma-García, MJ.; Pérez-Esteve, É.; Talens Oliag, P.; Barat Baviera, JM. (2020). Roadmap of cocoa quality and authenticity control in the industry: a review of conventional and alternative methods. Comprehensive Reviews in Food Science and Food Safety. 19(2):448-478. https://doi.org/10.1111/1541-4337.12522

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165834

Files in this item

Item Metadata

Title: Roadmap of cocoa quality and authenticity control in the industry: a review of conventional and alternative methods
Author: Quelal-Vásconez, Maribel Alexandra Lerma-García, María Jesús Pérez-Esteve, Édgar Talens Oliag, Pau Barat Baviera, José Manuel
UPV Unit: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Issued date:
Abstract:
[EN] Cocoa (Theobroma cacao L.) and its derivatives are appreciated for their aroma, color, and healthy properties, and are commodities of high economic value worldwide. Wide ranges of conventional methods have been used ...[+]
Subjects: Authenticity control , Chemometrics , Cocoa quality roadmap , Multivariate analysis , Nondestructive methods
Copyrigths: Reserva de todos los derechos
Source:
Comprehensive Reviews in Food Science and Food Safety. (issn: 1541-4337 )
DOI: 10.1111/1541-4337.12522
Publisher:
Blackwell Publishing
Publisher version: https://doi.org/10.1111/1541-4337.12522
Project ID:
info:eu-repo/grantAgreement/MINECO//RTC-2016-5241-2/ES/Estudio de la relación entre variables de procesado y cambios en la composición nutricional y perfil funcional del cacao en polvo. Desarrollo de una metodología predictiva aplicada al procesamiento/
Thanks:
The authors wish to acknowledge the financial assistance provided by the Spanish Government and European Regional Development Fund (Project RTC-2016-5241-2). Maribel Quelal Vásconez thanks the Ministry Higher ...[+]
Type: Artículo

References

Abdullahi, G., Muhamad, R., Dzolkhifli, O., & Sinniah, U. R. (2018). Analysis of quality retentions in cocoa beans exposed to solar heat treatment in cardboard solar heater box. Cogent Food & Agriculture, 4(1), 1483061. doi:10.1080/23311932.2018.1483061

Abt, E., Fong Sam, J., Gray, P., & Robin, L. P. (2018). Cadmium and lead in cocoa powder and chocolate products in the US Market. Food Additives & Contaminants: Part B, 11(2), 92-102. doi:10.1080/19393210.2017.1420700

Acierno, V., Alewijn, M., Zomer, P., & van Ruth, S. M. (2018). Making cocoa origin traceable: Fingerprints of chocolates using Flow Infusion - Electro Spray Ionization - Mass Spectrometry. Food Control, 85, 245-252. doi:10.1016/j.foodcont.2017.10.002 [+]
Abdullahi, G., Muhamad, R., Dzolkhifli, O., & Sinniah, U. R. (2018). Analysis of quality retentions in cocoa beans exposed to solar heat treatment in cardboard solar heater box. Cogent Food & Agriculture, 4(1), 1483061. doi:10.1080/23311932.2018.1483061

Abt, E., Fong Sam, J., Gray, P., & Robin, L. P. (2018). Cadmium and lead in cocoa powder and chocolate products in the US Market. Food Additives & Contaminants: Part B, 11(2), 92-102. doi:10.1080/19393210.2017.1420700

Acierno, V., Alewijn, M., Zomer, P., & van Ruth, S. M. (2018). Making cocoa origin traceable: Fingerprints of chocolates using Flow Infusion - Electro Spray Ionization - Mass Spectrometry. Food Control, 85, 245-252. doi:10.1016/j.foodcont.2017.10.002

Aculey, P. C., Snitkjaer, P., Owusu, M., Bassompiere, M., Takrama, J., Nørgaard, L., … Nielsen, D. S. (2010). Ghanaian Cocoa Bean Fermentation Characterized by Spectroscopic and Chromatographic Methods and Chemometrics. Journal of Food Science, 75(6), S300-S307. doi:10.1111/j.1750-3841.2010.01710.x

Afoakwa, E. O., Paterson, A., Fowler, M., & Ryan, A. (2009). Matrix effects on flavour volatiles release in dark chocolates varying in particle size distribution and fat content using GC–mass spectrometry and GC–olfactometry. Food Chemistry, 113(1), 208-215. doi:10.1016/j.foodchem.2008.07.088

Afoakwa, E. O., Quao, J., Takrama, J., Budu, A. S., & Saalia, F. K. (2011). Chemical composition and physical quality characteristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation. Journal of Food Science and Technology, 50(6), 1097-1105. doi:10.1007/s13197-011-0446-5

Alander, J. T., Bochko, V., Martinkauppi, B., Saranwong, S., & Mantere, T. (2013). A Review of Optical Nondestructive Visual and Near-Infrared Methods for Food Quality and Safety. International Journal of Spectroscopy, 2013, 1-36. doi:10.1155/2013/341402

Álvarez, C., Pérez, E., Cros, E., Lares, M., Assemat, S., Boulanger, R., & Davrieux, F. (2012). The Use of near Infrared Spectroscopy to Determine the Fat, Caffeine, Theobromine and (−)-Epicatechin Contents in Unfermented and Sun-Dried Beans of Criollo Cocoa. Journal of Near Infrared Spectroscopy, 20(2), 307-315. doi:10.1255/jnirs.990

Agricultural and Processed Food Products Export Development Authority (APEDA). (2015).Export statement. Retrieved fromhttp://agriexchange.apeda.gov.in/indexp/exportstatement.aspx

Aprotosoaie, A. C., Luca, S. V., & Miron, A. (2015). Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Comprehensive Reviews in Food Science and Food Safety, 15(1), 73-91. doi:10.1111/1541-4337.12180

Arévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of The Total Environment, 605-606, 792-800. doi:10.1016/j.scitotenv.2017.06.122

Assa, A., Noor, A., Yunus, M. R., Misnawi, & Djide, M. N. (2018). Heavy metal concentrations in cocoa beans (Theobroma cacaoL.) originating from EastLuwu, South Sulawesi, Indonesia. Journal of Physics: Conference Series, 979, 012011. doi:10.1088/1742-6596/979/1/012011

Barbin, D. F., Maciel, L. F., Bazoni, C. H. V., Ribeiro, M. da S., Carvalho, R. D. S., Bispo, E. da S., … Hirooka, E. Y. (2018). Classification and compositional characterization of different varieties of cocoa beans by near infrared spectroscopy and multivariate statistical analyses. Journal of Food Science and Technology, 55(7), 2457-2466. doi:10.1007/s13197-018-3163-5

Belo, R. F. C., Figueiredo, J. P., Nunes, C. M., Pissinatti, R., Souza, S. V. C. de, & Junqueira, R. G. (2017). Accelerated solvent extraction method for the quantification of polycyclic aromatic hydrocarbons in cocoa beans by gas chromatography–mass spectrometry. Journal of Chromatography B, 1053, 87-100. doi:10.1016/j.jchromb.2017.03.017

Belščak, A., Komes, D., Horžić, D., Ganić, K. K., & Karlović, D. (2009). Comparative study of commercially available cocoa products in terms of their bioactive composition. Food Research International, 42(5-6), 707-716. doi:10.1016/j.foodres.2009.02.018

Berrueta, L. A., Alonso-Salces, R. M., & Héberger, K. (2007). Supervised pattern recognition in food analysis. Journal of Chromatography A, 1158(1-2), 196-214. doi:10.1016/j.chroma.2007.05.024

Beulens, A. J. M., Broens, D.-F., Folstar, P., & Hofstede, G. J. (2005). Food safety and transparency in food chains and networks Relationships and challenges. Food Control, 16(6), 481-486. doi:10.1016/j.foodcont.2003.10.010

Bolliger, S., Zeng, Y., & Windhab, E. J. (1999). In-line measurement of tempered cocoa butter and chocolate by means of near-infrared spectroscopy. Journal of the American Oil Chemists’ Society, 76(6), 659-667. doi:10.1007/s11746-999-0157-5

Bonvehí, J. S. (2005). Investigation of aromatic compounds in roasted cocoa powder. European Food Research and Technology, 221(1-2), 19-29. doi:10.1007/s00217-005-1147-y

Bratinova S. Karasek L. Buttinger G. &Wenzl T.(2015).Report on the 16th Interlaboratory comparison organnnsed by the European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons EUR 27558 15. EU.https://doi.org/10.2787/279750.

Brera, C., Grossi, S., & Miraglia, M. (2005). Interlaboratory Study for Ochratoxin A Determination in Cocoa Powder Samples. Journal of Liquid Chromatography & Related Technologies, 28(1), 35-61. doi:10.1081/jlc-200038574

Bro, R. (1997). PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 38(2), 149-171. doi:10.1016/s0169-7439(97)00032-4

Cádiz-Gurrea, M. L., Lozano-Sanchez, J., Contreras-Gámez, M., Legeai-Mallet, L., Fernández-Arroyo, S., & Segura-Carretero, A. (2014). Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract. Journal of Functional Foods, 10, 485-498. doi:10.1016/j.jff.2014.07.016

Cambrai, A., Marcic, C., Morville, S., Sae Houer, P., Bindler, F., & Marchioni, E. (2010). Differentiation of Chocolates According to the Cocoa’s Geographical Origin Using Chemometrics. Journal of Agricultural and Food Chemistry, 58(3), 1478-1483. doi:10.1021/jf903471e

CAOBISCO‐ECA‐FCC. (2015).Cocoa beans: Chocolate and cocoa industry quality requirements. Retrieved fromhttp://www.cocoaquality.eu/

Caporaso, N., Whitworth, M. B., Fowler, M. S., & Fisk, I. D. (2018). Hyperspectral imaging for non-destructive prediction of fermentation index, polyphenol content and antioxidant activity in single cocoa beans. Food Chemistry, 258, 343-351. doi:10.1016/j.foodchem.2018.03.039

CBI. (2016).CBI trade statistics: Cocoa in Europe. Retrieved fromhttps://www.cbi.eu/sites/default/files/market_information/researches/trade-statistics-europe-cocoa-2016.pdf

Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of The Total Environment, 533, 205-214. doi:10.1016/j.scitotenv.2015.06.106

Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., & Baligar, V. C. (2016). Chemical speciation of cadmium: An approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production. Chemosphere, 150, 57-62. doi:10.1016/j.chemosphere.2016.02.013

Chetschik, I., Kneubühl, M., Chatelain, K., Schlüter, A., Bernath, K., & Hühn, T. (2017). Investigations on the Aroma of Cocoa Pulp (Theobroma cacao L.) and Its Influence on the Odor of Fermented Cocoa Beans. Journal of Agricultural and Food Chemistry, 66(10), 2467-2472. doi:10.1021/acs.jafc.6b05008

Codex Alimentarius. (2014).Codex Alimentarius Cocoa‐ Cocoa liquor.

CODEX STAN 228–2001. (2001).General methods of analysis for contaminants CODEX STAN 228–2001.

Cordella, M., Torri, C., Adamiano, A., Fabbri, D., Barontini, F., & Cozzani, V. (2012). Bio-oils from biomass slow pyrolysis: A chemical and toxicological screening. Journal of Hazardous Materials, 231-232, 26-35. doi:10.1016/j.jhazmat.2012.06.030

Cortés, V., Blasco, J., Aleixos, N., Cubero, S., & Talens, P. (2019). Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends in Food Science & Technology, 85, 138-148. doi:10.1016/j.tifs.2019.01.015

Counet, C., Ouwerx, C., Rosoux, D., & Collin, S. (2004). Relationship between Procyanidin and Flavor Contents of Cocoa Liquors from Different Origins. Journal of Agricultural and Food Chemistry, 52(20), 6243-6249. doi:10.1021/jf040105b

Crafack, M., Keul, H., Eskildsen, C. E., Petersen, M. A., Saerens, S., Blennow, A., … Nielsen, D. S. (2014). Impact of starter cultures and fermentation techniques on the volatile aroma and sensory profile of chocolate. Food Research International, 63, 306-316. doi:10.1016/j.foodres.2014.04.032

Crouzillat D. Bellanger L. Rigoreau M. Bucheli P. &Pétiard V.(2000).Genetic structure characterisation and selection of Nacional cocoa compared to other genetic groups. In International Workshop on New Technologies and Cocoa Breeding.

Cubero-Leon, E., Bouten, K., Senyuva, H., Stroka, J., Adam, M., … Bakalova, D. (2017). Determination of Ochratoxin A in Black and White Pepper, Nutmeg, Spice Mix, Cocoa, and Drinking Chocolate by High-Performance Liquid Chromatography Coupled with Fluorescence Detection: Collaborative Study. Journal of AOAC INTERNATIONAL, 100(5), 1458-1468. doi:10.5740/jaoacint.16-0430

D’Souza, R. N., Grimbs, S., Behrends, B., Bernaert, H., Ullrich, M. S., & Kuhnert, N. (2017). Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans. Food Research International, 99, 550-559. doi:10.1016/j.foodres.2017.06.007

Di Mattia, C., Martuscelli, M., Sacchetti, G., Beheydt, B., Mastrocola, D., & Pittia, P. (2014). Effect of different conching processes on procyanidin content and antioxidant properties of chocolate. Food Research International, 63, 367-372. doi:10.1016/j.foodres.2014.04.009

Dickens, B., & Dickens, S. H. (1999). Estimation of concentration and bonding environment of water dissolved in common solvents using near infrared absorptivity. Journal of Research of the National Institute of Standards and Technology, 104(2), 173. doi:10.6028/jres.104.012

Tran, P. D., Van de Walle, D., De Clercq, N., De Winne, A., Kadow, D., Lieberei, R., … Van Durme, J. (2015). Assessing cocoa aroma quality by multiple analytical approaches. Food Research International, 77, 657-669. doi:10.1016/j.foodres.2015.09.019

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017

Elwers, S., Zambrano, A., Rohsius, C., & Lieberei, R. (2009). Differences between the content of phenolic compounds in Criollo, Forastero and Trinitario cocoa seed (Theobroma cacao L.). European Food Research and Technology, 229(6), 937-948. doi:10.1007/s00217-009-1132-y

European Commission (EU). (2011).Commission regulation (EU) No 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Official Journal of the European Union 215 4–8.

Fayeulle, N., Vallverdu-Queralt, A., Meudec, E., Hue, C., Boulanger, R., Cheynier, V., & Sommerer, N. (2018). Characterization of new flavan-3-ol derivatives in fermented cocoa beans. Food Chemistry, 259, 207-212. doi:10.1016/j.foodchem.2018.03.133

FCC. (2018 June 20).Services ‐ Rules | The Federation of Cocoa Commerce. Retrieved fromhttp://www.cocoafederation.com/services/rules

Forsyth, W. G. C., & Quesnel, V. C. (1957). Cacao polyphenolic substances. 4. The anthocyanin pigments*. Biochemical Journal, 65(1), 177-179. doi:10.1042/bj0650177

Franco, R., Oñatibia-Astibia, A., & Martínez-Pinilla, E. (2013). Health Benefits of Methylxanthines in Cacao and Chocolate. Nutrients, 5(10), 4159-4173. doi:10.3390/nu5104159

García-Alamilla, P., Salgado-Cervantes, M. A., Barel, M., Berthomieu, G., Rodríguez-Jimenes, G. C., & García-Alvarado, M. A. (2007). Moisture, acidity and temperature evolution during cacao drying. Journal of Food Engineering, 79(4), 1159-1165. doi:10.1016/j.jfoodeng.2006.04.005

Gianfredi, V., Salvatori, T., Nucci, D., Villarini, M., & Moretti, M. (2018). Can chocolate consumption reduce cardio-cerebrovascular risk? A systematic review and meta-analysis. Nutrition, 46, 103-114. doi:10.1016/j.nut.2017.09.006

Goodacre, R., & Anklam, E. (2001). Fourier transform infrared spectroscopy and chemometrics as a tool for the rapid detection of other vegetable fats mixed in cocoa butter. Journal of the American Oil Chemists’ Society, 78(10), 993-1000. doi:10.1007/s11746-001-0377-x

Hashimoto, J. C., Lima, J. C., Celeghini, R. M. S., Nogueira, A. B., Efraim, P., Poppi, R. J., & Pallone, J. A. L. (2018). Quality Control of Commercial Cocoa Beans (Theobroma cacao L.) by Near-infrared Spectroscopy. Food Analytical Methods, 11(5), 1510-1517. doi:10.1007/s12161-017-1137-2

Hinneh, M., Semanhyia, E., Van de Walle, D., De Winne, A., Tzompa-Sosa, D. A., Scalone, G. L. L., … Dewettinck, K. (2018). Assessing the influence of pod storage on sugar and free amino acid profiles and the implications on some Maillard reaction related flavor volatiles in Forastero cocoa beans. Food Research International, 111, 607-620. doi:10.1016/j.foodres.2018.05.064

Huang, X., Teye, E., Sam-Amoah, L. K., Han, F., Yao, L., & Tchabo, W. (2014). Rapid measurement of total polyphenols content in cocoa beans by data fusion of NIR spectroscopy and electronic tongue. Anal. Methods, 6(14), 5008-5015. doi:10.1039/c4ay00223g

Hue, C., Gunata, Z., Bergounhou, A., Assemat, S., Boulanger, R., Sauvage, F. X., & Davrieux, F. (2014). Near infrared spectroscopy as a new tool to determine cocoa fermentation levels through ammonia nitrogen quantification. Food Chemistry, 148, 240-245. doi:10.1016/j.foodchem.2013.10.005

Hue, C., Gunata, Z., Breysse, A., Davrieux, F., Boulanger, R., & Sauvage, F. X. (2016). Impact of fermentation on nitrogenous compounds of cocoa beans (Theobroma cacao L.) from various origins. Food Chemistry, 192, 958-964. doi:10.1016/j.foodchem.2015.07.115

Humston, E. M., Knowles, J. D., McShea, A., & Synovec, R. E. (2010). Quantitative assessment of moisture damage for cacao bean quality using two-dimensional gas chromatography combined with time-of-flight mass spectrometry and chemometrics. Journal of Chromatography A, 1217(12), 1963-1970. doi:10.1016/j.chroma.2010.01.069

ICCO. (2012).Physical and chemical information on cocoa beans butter mass and powder. Retrieved fromhttps://www.icco.org/faq/61-physical-and-chemical-information-on-cocoa/106-physical-and-chemical-information-on-cocoa-beans-butter-mass-and-powder.html

ICCO. (2018).How is the quality of cocoa checked—by hand by machine?Retrieved fromhttps://www.icco.org/faq/59-fermentation-a-drying/108-how-is-the-quality-of-cocoa-checked-by-hand-by-machine.html

ICCO. (2019).Leading countries of cocoa bean processing worldwide 2018/2019 | Statista. Retrieved fromhttps://www.statista.com/statistics/238242/leading-countries-of-global-cocoa-bean-processing/

Ioannone, F., Di Mattia, C. D., De Gregorio, M., Sergi, M., Serafini, M., & Sacchetti, G. (2015). Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chemistry, 174, 256-262. doi:10.1016/j.foodchem.2014.11.019

Ishaq, S., & Jafri, L. (2017). Biomedical Importance of Cocoa (Theobroma cacao): Significance and Potential for the Maintenance of Human Health. Matrix Science Pharma, 1(1), 1-5. doi:10.26480/msp.01.2017.01.05

Jackson E. Farrington D. S. &Henderson K.(1986).The analysis of agricultural materials: A manual of the analytical methods used by the Agricultural Development and Advisory Service. The Analysis of Agricultural Materials: A Manual of the Analytical Methods Used by the Agricultural Development and Advisory Service (No. 427 (Ed. 3)).

Jahurul, M. H. A., Soon, Y., Shaarani Sharifudin, M., Hasmadi, M., Mansoor, A. H., Zaidul, I. S. M., … Jinap, S. (2018). Bambangan (Mangifera pajang ) kernel fat: a potential new source of cocoa butter alternative. International Journal of Food Science & Technology, 53(7), 1689-1697. doi:10.1111/ijfs.13753

Jinap, S., Thien, J., & Yap, T. N. (1994). Effect of drying on acidity and volatile fatty acids content of cocoa beans. Journal of the Science of Food and Agriculture, 65(1), 67-75. doi:10.1002/jsfa.2740650111

Kongor, J. E., Hinneh, M., de Walle, D. V., Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review. Food Research International, 82, 44-52. doi:10.1016/j.foodres.2016.01.012

Krähmer, A., Engel, A., Kadow, D., Ali, N., Umaharan, P., Kroh, L. W., & Schulz, H. (2015). Fast and neat – Determination of biochemical quality parameters in cocoa using near infrared spectroscopy. Food Chemistry, 181, 152-159. doi:10.1016/j.foodchem.2015.02.084

Krähmer, A., Gudi, G., Weiher, N., Gierus, M., Schütze, W., & Schulz, H. (2013). Characterization and quantification of secondary metabolite profiles in leaves of red and white clover species by NIR and ATR-IR spectroscopy. Vibrational Spectroscopy, 68, 96-103. doi:10.1016/j.vibspec.2013.05.012

Kruszewski, B., Obiedziński, M. W., & Kowalska, J. (2018). Nickel, cadmium and lead levels in raw cocoa and processed chocolate mass materials from three different manufacturers. Journal of Food Composition and Analysis, 66, 127-135. doi:10.1016/j.jfca.2017.12.012

Kubíc̆ková, A., Kubíc̆ek, V., & Coufal, P. (2011). UV-VIS detection of amino acids in liquid chromatography: Online post-column solid-state derivatization with Cu(II) ions. Journal of Separation Science, 34(22), 3131-3135. doi:10.1002/jssc.201100561

Kucha, C., Liu, L., & Ngadi, M. (2018). Non-Destructive Spectroscopic Techniques and Multivariate Analysis for Assessment of Fat Quality in Pork and Pork Products: A Review. Sensors, 18(2), 377. doi:10.3390/s18020377

Kumari, N., Grimbs, A., D’Souza, R. N., Verma, S. K., Corno, M., Kuhnert, N., & Ullrich, M. S. (2018). Origin and varietal based proteomic and peptidomic fingerprinting of Theobroma cacao in non-fermented and fermented cocoa beans. Food Research International, 111, 137-147. doi:10.1016/j.foodres.2018.05.010

Kutsanedzie, F. Y. H., Chen, Q., Hassan, M. M., Yang, M., Sun, H., & Rahman, M. H. (2018). Near infrared system coupled chemometric algorithms for enumeration of total fungi count in cocoa beans neat solution. Food Chemistry, 240, 231-238. doi:10.1016/j.foodchem.2017.07.117

Andres-Lacueva, C., Monagas, M., Khan, N., Izquierdo-Pulido, M., Urpi-Sarda, M., Permanyer, J., & Lamuela-Raventós, R. M. (2008). Flavanol and Flavonol Contents of Cocoa Powder Products: Influence of the Manufacturing Process. Journal of Agricultural and Food Chemistry, 56(9), 3111-3117. doi:10.1021/jf0728754

Langer, S., Marshall, L. J., Day, A. J., & Morgan, M. R. A. (2011). Flavanols and Methylxanthines in Commercially Available Dark Chocolate: A Study of the Correlation with Nonfat Cocoa Solids. Journal of Agricultural and Food Chemistry, 59(15), 8435-8441. doi:10.1021/jf201398t

Levasseur-Garcia, C. (2018). Updated Overview of Infrared Spectroscopy Methods for Detecting Mycotoxins on Cereals (Corn, Wheat, and Barley). Toxins, 10(1), 38. doi:10.3390/toxins10010038

Li, Y., Feng, Y., Zhu, S., Luo, C., Ma, J., & Zhong, F. (2012). The effect of alkalization on the bioactive and flavor related components in commercial cocoa powder. Journal of Food Composition and Analysis, 25(1), 17-23. doi:10.1016/j.jfca.2011.04.010

Li, Y., Zhu, S., Feng, Y., Xu, F., Ma, J., & Zhong, F. (2013). Influence of alkalization treatment on the color quality and the total phenolic and anthocyanin contents in cocoa powder. Food Science and Biotechnology, 23(1), 59-63. doi:10.1007/s10068-014-0008-5

Li, H., Yao, W., Liu, Q., Xu, J., Bao, B., Shan, M., … Zhang, L. (2017). Application of UHPLC-ESI-Q-TOF-MS to Identify Multiple Constituents in Processed Products of the Herbal Medicine Ligustri Lucidi Fructus. Molecules, 22(5), 689. doi:10.3390/molecules22050689

Liu, M., Liu, J., He, C., Song, H., Liu, Y., Zhang, Y., … Su, X. (2017). Characterization and comparison of key aroma-active compounds of cocoa liquors from five different areas. International Journal of Food Properties, 20(10), 2396-2408. doi:10.1080/10942912.2016.1238929

Lo Dico, G. M., Galvano, F., Dugo, G., D’ascenzi, C., Macaluso, A., Vella, A., … Ferrantelli, V. (2018). Toxic metal levels in cocoa powder and chocolate by ICP-MS method after microwave-assisted digestion. Food Chemistry, 245, 1163-1168. doi:10.1016/j.foodchem.2017.11.052

Loullis, A., & Pinakoulaki, E. (2017). Carob as cocoa substitute: a review on composition, health benefits and food applications. European Food Research and Technology, 244(6), 959-977. doi:10.1007/s00217-017-3018-8

Luna, F., Crouzillat, D., Cirou, L., & Bucheli, P. (2002). Chemical Composition and Flavor of Ecuadorian Cocoa Liquor. Journal of Agricultural and Food Chemistry, 50(12), 3527-3532. doi:10.1021/jf0116597

Machonis, P., Jones, M., Schaneberg, B., Kwik-Uribe, C., & Dowell, D. (2014). Method for the Determination of Catechin and Epicatechin Enantiomers in Cocoa-Based Ingredients and Products by High-Performance Liquid Chromatography: First Action 2013.04. Journal of AOAC International, 97(2), 506-509. doi:10.5740/jaoacint.13-351

Magagna, F., Guglielmetti, A., Liberto, E., Reichenbach, S. E., Allegrucci, E., Gobino, G., … Cordero, C. (2017). Comprehensive Chemical Fingerprinting of High-Quality Cocoa at Early Stages of Processing: Effectiveness of Combined Untargeted and Targeted Approaches for Classification and Discrimination. Journal of Agricultural and Food Chemistry, 65(30), 6329-6341. doi:10.1021/acs.jafc.7b02167

Manning, L. (2016). Food fraud: policy and food chain. Current Opinion in Food Science, 10, 16-21. doi:10.1016/j.cofs.2016.07.001

Manzano, P., Quijano, M., Barragn, A., Viteri, R., Chez, I., Hernndez, J., & Valle, O. (2017). Polyphenols extracted from Theobroma cacao waste and its utility as antioxidant for food-grade vegetal oil. Emirates Journal of Food and Agriculture, 29(1), 45. doi:10.9755/ejfa.2016-04-388

Martens, H., Nielsen, J. P., & Engelsen, S. B. (2003). Light Scattering and Light Absorbance Separated by Extended Multiplicative Signal Correction. Application to Near-Infrared Transmission Analysis of Powder Mixtures. Analytical Chemistry, 75(3), 394-404. doi:10.1021/ac020194w

Martín, M. Á., & Ramos, S. (2017). Health beneficial effects of cocoa phenolic compounds: a mini-review. Current Opinion in Food Science, 14, 20-25. doi:10.1016/j.cofs.2016.12.002

Mendes F. A. T. &Lima E. L.(2007).Perfil Agroindustrial do Processamento de Amêndoas de Cacau em Pequena Escala no Estado do Pará. Belém. SEMBRAE/PA.

Miller, K. B., Hurst, W. J., Payne, M. J., Stuart, D. A., Apgar, J., Sweigart, D. S., & Ou, B. (2008). Impact of Alkalization on the Antioxidant and Flavanol Content of Commercial Cocoa Powders. Journal of Agricultural and Food Chemistry, 56(18), 8527-8533. doi:10.1021/jf801670p

Miller, K. B., Stuart, D. A., Smith, N. L., Lee, C. Y., McHale, N. L., Flanagan, J. A., … Hurst, W. J. (2006). Antioxidant Activity and Polyphenol and Procyanidin Contents of Selected Commercially Available Cocoa-Containing and Chocolate Products in the United States. Journal of Agricultural and Food Chemistry, 54(11), 4062-4068. doi:10.1021/jf060290o

Moros, J., Iñón, F. A., Garrigues, S., & de la Guardia, M. (2007). Near-infrared diffuse reflectance spectroscopy and neural networks for measuring nutritional parameters in chocolate samples. Analytica Chimica Acta, 584(1), 215-222. doi:10.1016/j.aca.2006.11.020

Nielsen, D. S., Snitkjaer, P., & van den Berg, F. (2008). Investigating the fermentation of cocoa by correlating Denaturing Gradient Gel Electrophoresis profiles and Near Infrared spectra. International Journal of Food Microbiology, 125(2), 133-140. doi:10.1016/j.ijfoodmicro.2008.03.040

Niemenak, N., Rohsius, C., Elwers, S., Omokolo Ndoumou, D., & Lieberei, R. (2006). Comparative study of different cocoa (Theobroma cacao L.) clones in terms of their phenolics and anthocyanins contents. Journal of Food Composition and Analysis, 19(6-7), 612-619. doi:10.1016/j.jfca.2005.02.006

Okiyama, D. C. G., Navarro, S. L. B., & Rodrigues, C. E. C. (2017). Cocoa shell and its compounds: Applications in the food industry. Trends in Food Science & Technology, 63, 103-112. doi:10.1016/j.tifs.2017.03.007

Oliviero, T., Capuano, E., Cämmerer, B., & Fogliano, V. (2008). Influence of Roasting on the Antioxidant Activity and HMF Formation of a Cocoa Bean Model Systems. Journal of Agricultural and Food Chemistry, 57(1), 147-152. doi:10.1021/jf802250j

Oracz, J., Nebesny, E., & Żyżelewicz, D. (2015). Changes in the flavan-3-ols, anthocyanins, and flavanols composition of cocoa beans of different Theobroma cacao L. groups affected by roasting conditions. European Food Research and Technology, 241(5), 663-681. doi:10.1007/s00217-015-2494-y

Osborne, B. G. (2000). Near-Infrared Spectroscopy in Food Analysis. Encyclopedia of Analytical Chemistry. doi:10.1002/9780470027318.a1018

Payne, M. J., Hurst, W. J., Miller, K. B., Rank, C., & Stuart, D. A. (2010). Impact of Fermentation, Drying, Roasting, and Dutch Processing on Epicatechin and Catechin Content of Cacao Beans and Cocoa Ingredients. Journal of Agricultural and Food Chemistry, 58(19), 10518-10527. doi:10.1021/jf102391q

Pedan, V., Fischer, N., Bernath, K., Hühn, T., & Rohn, S. (2017). Determination of oligomeric proanthocyanidins and their antioxidant capacity from different chocolate manufacturing stages using the NP-HPLC-online-DPPH methodology. Food Chemistry, 214, 523-532. doi:10.1016/j.foodchem.2016.07.094

Pedan, V., Fischer, N., & Rohn, S. (2016). Extraction of cocoa proanthocyanidins and their fractionation by sequential centrifugal partition chromatography and gel permeation chromatography. Analytical and Bioanalytical Chemistry, 408(21), 5905-5914. doi:10.1007/s00216-016-9705-7

Pérez-Esteve, É., Lerma-García, M. J., Fuentes, A., Palomares, C., & Barat, J. M. (2016). Control of undeclared flavoring of cocoa powders by the determination of vanillin and ethyl vanillin by HPLC. Food Control, 67, 171-176. doi:10.1016/j.foodcont.2016.02.048

PERMANYER, J. J., & PEREZ, M. L. (1989). Compositional Analysis of Powdered Cocoa Products by Near Infrared Reflectance Spectroscopy. Journal of Food Science, 54(3), 768-769. doi:10.1111/j.1365-2621.1989.tb04706.x

Vargas Jentzsch, P., Ciobotă, V., Salinas, W., Kampe, B., Aponte, P. M., Rösch, P., … Ramos, L. A. (2016). Distinction of Ecuadorian varieties of fermented cocoa beans using Raman spectroscopy. Food Chemistry, 211, 274-280. doi:10.1016/j.foodchem.2016.05.017

Quelal-Vásconez, M. A., Pérez-Esteve, É., Arnau-Bonachera, A., Barat, J. M., & Talens, P. (2018). Rapid fraud detection of cocoa powder with carob flour using near infrared spectroscopy. Food Control, 92, 183-189. doi:10.1016/j.foodcont.2018.05.001

Quelal-Vásconez, M. A., Lerma-García, M. J., Pérez-Esteve, É., Arnau-Bonachera, A., Barat, J. M., & Talens, P. (2019). Fast detection of cocoa shell in cocoa powders by near infrared spectroscopy and multivariate analysis. Food Control, 99, 68-72. doi:10.1016/j.foodcont.2018.12.028

Quelal-Vásconez, M. A., Lerma-García, M. J., Pérez-Esteve, É., Arnau-Bonachera, A., Barat, J. M., & Talens, P. (2020). Changes in methylxanthines and flavanols during cocoa powder processing and their quantification by near-infrared spectroscopy. LWT, 117, 108598. doi:10.1016/j.lwt.2019.108598

Quiroz-Reyes, C. N., & Fogliano, V. (2018). Design cocoa processing towards healthy cocoa products: The role of phenolics and melanoidins. Journal of Functional Foods, 45, 480-490. doi:10.1016/j.jff.2018.04.031

Reddy, S. Y., & Prabhakar, J. V. (1994). Cocoa butter extenders from Kokum (Garcinia indica ) and Phulwara (Madhuca butyracea ) butter. Journal of the American Oil Chemists’ Society, 71(2), 217-219. doi:10.1007/bf02541559

Risner, C. H. (2008). Simultaneous Determination of Theobromine, (+)-Catechin, Caffeine, and (-)-Epicatechin in Standard Reference Material Baking Chocolate 2384, Cocoa, Cocoa Beans, and Cocoa Butter. Journal of Chromatographic Science, 46(10), 892-899. doi:10.1093/chromsci/46.10.892

Rodrigues, J. F., Condino, J. P. F., Pinheiro, A. C. M., & Nunes, C. A. (2016). Temporal dominance of sensations of chocolate bars with different cocoa contents: Multivariate approaches to assess TDS profiles. Food Quality and Preference, 47, 91-96. doi:10.1016/j.foodqual.2015.06.020

Rodriguez-Campos, J., Escalona-Buendía, H. B., Contreras-Ramos, S. M., Orozco-Avila, I., Jaramillo-Flores, E., & Lugo-Cervantes, E. (2012). Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chemistry, 132(1), 277-288. doi:10.1016/j.foodchem.2011.10.078

Rodríguez-Carrasco, Y., Gaspari, A., Graziani, G., Santini, A., & Ritieni, A. (2018). Fast analysis of polyphenols and alkaloids in cocoa-based products by ultra-high performance liquid chromatography and Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap-MS/MS). Food Research International, 111, 229-236. doi:10.1016/j.foodres.2018.05.032

Rohsius, C., Matissek, R., & Lieberei, R. (2005). Free amino acid amounts in raw cocoas from different origins. European Food Research and Technology, 222(3-4), 432-438. doi:10.1007/s00217-005-0130-y

Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639. doi:10.1021/ac60214a047

Schwan, R. F. (1998). Cocoa Fermentations Conducted with a Defined Microbial Cocktail Inoculum. Applied and Environmental Microbiology, 64(4), 1477-1483. doi:10.1128/aem.64.4.1477-1483.1998

Servent, A., Boulanger, R., Davrieux, F., Pinot, M.-N., Tardan, E., Forestier-Chiron, N., & Hue, C. (2018). Assessment of cocoa ( Theobroma cacao L.) butter content and composition throughout fermentations. Food Research International, 107, 675-682. doi:10.1016/j.foodres.2018.02.070

Sess-Tchotch, D.-A., Kedjebo, K. B. D., Faulet, B. M., Fontana-Tachon, A., Alter, P., Durand, N., … Guehi, T. S. (2018). Analytical Method Validation and Rapid Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Cocoa Butter Using HPLC-FLD. Food Analytical Methods, 11(11), 3138-3146. doi:10.1007/s12161-018-1282-2

Beg, M. S., Ahmad, S., Jan, K., & Bashir, K. (2017). Status, supply chain and processing of cocoa - A review. Trends in Food Science & Technology, 66, 108-116. doi:10.1016/j.tifs.2017.06.007

Soto J. Granda G. Prieto F. Ipanaque W. &Machacuay J.(2015).Cocoa bean quality assessment by using hyperspectral images and fuzzy logic techniques. Twelfth International Conference on Quality Control by Artificial Vision (Vol. 9534 p. 95340M).

Stark, T., Lang, R., Keller, D., Hensel, A., & Hofmann, T. (2008). Absorption ofN-phenylpropenoyl-L-amino acids in healthy humans by oral administration of cocoa (Theobroma cacao). Molecular Nutrition & Food Research, 52(10), 1201-1214. doi:10.1002/mnfr.200700447

Su, W.-H., & Sun, D.-W. (2017). Fourier Transform Infrared and Raman and Hyperspectral Imaging Techniques for Quality Determinations of Powdery Foods: A Review. Comprehensive Reviews in Food Science and Food Safety, 17(1), 104-122. doi:10.1111/1541-4337.12314

Suazo, Y., Davidov-Pardo, G., & Arozarena, I. (2014). Effect of Fermentation and Roasting on the Phenolic Concentration and Antioxidant Activity of Cocoa from Nicaragua. Journal of Food Quality, 37(1), 50-56. doi:10.1111/jfq.12070

Sunoj, S., Igathinathane, C., & Visvanathan, R. (2016). Nondestructive determination of cocoa bean quality using FT-NIR spectroscopy. Computers and Electronics in Agriculture, 124, 234-242. doi:10.1016/j.compag.2016.04.012

Talbot, C. P. J., Mensink, R. P., Smolders, L., Bakeroot, V., & Plat, J. (2018). Theobromine Does Not Affect Fasting and Postprandial HDL Cholesterol Efflux Capacity, While It Decreases Fasting miR-92a Levels in Humans. Molecular Nutrition & Food Research, 62(13), 1800027. doi:10.1002/mnfr.201800027

Tan, J., & Kerr, W. L. (2018). Determining degree of roasting in cocoa beans by artificial neural network (ANN)-based electronic nose system and gas chromatography/mass spectrometry (GC/MS). Journal of the Science of Food and Agriculture, 98(10), 3851-3859. doi:10.1002/jsfa.8901

Teye, E., & Huang, X. (2014). Novel Prediction of Total Fat Content in Cocoa Beans by FT-NIR Spectroscopy Based on Effective Spectral Selection Multivariate Regression. Food Analytical Methods, 8(4), 945-953. doi:10.1007/s12161-014-9933-4

Teye, E., Huang, X., Dai, H., & Chen, Q. (2013). Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classification. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 183-189. doi:10.1016/j.saa.2013.05.063

Teye, E., Huang, X., Han, F., & Botchway, F. (2013). Discrimination of Cocoa Beans According to Geographical Origin by Electronic Tongue and Multivariate Algorithms. Food Analytical Methods, 7(2), 360-365. doi:10.1007/s12161-013-9634-4

Teye, E., Huang, X., Lei, W., & Dai, H. (2014). Feasibility study on the use of Fourier transform near-infrared spectroscopy together with chemometrics to discriminate and quantify adulteration in cocoa beans. Food Research International, 55, 288-293. doi:10.1016/j.foodres.2013.11.021

Teye, E., Huang, X., Sam-Amoah, L. K., Takrama, J., Boison, D., Botchway, F., & Kumi, F. (2015). Estimating cocoa bean parameters by FT-NIRS and chemometrics analysis. Food Chemistry, 176, 403-410. doi:10.1016/j.foodchem.2014.12.042

Teye, E., Huang, X., Takrama, J., & Haiyang, G. (2014). Integrating NIR Spectroscopy and Electronic Tongue Together with Chemometric Analysis for Accurate Classification of Cocoa Bean Varieties. Journal of Food Process Engineering, 37(6), 560-566. doi:10.1111/jfpe.12109

Teye, E., Uhomoibhi, J., & Wang, H. (2016). Nondestructive Authentication of Cocoa Bean Cultivars by FT-NIR Spectroscopy and Multivariate Techniques. Focus on Sciences, 2(3), 1-10. doi:10.21859/focsci-020347

Toro-Uribe, S., Montero, L., López-Giraldo, L., Ibáñez, E., & Herrero, M. (2018). Characterization of secondary metabolites from green cocoa beans using focusing-modulated comprehensive two-dimensional liquid chromatography coupled to tandem mass spectrometry. Analytica Chimica Acta, 1036, 204-213. doi:10.1016/j.aca.2018.06.068

Torres-Moreno, M., Tarrega, A., & Blanch, C. (2014). Characterization of Volatile Compounds in Dark Chocolates by HS-SPME and GC-MS. Flavour Science, 283-287. doi:10.1016/b978-0-12-398549-1.00054-4

Torres-Moreno, M., Torrescasana, E., Salas-Salvadó, J., & Blanch, C. (2015). Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions. Food Chemistry, 166, 125-132. doi:10.1016/j.foodchem.2014.05.141

Trafialek, J., & Kolanowski, W. (2017). Implementation and functioning of HACCP principles in certified and non-certified food businesses. British Food Journal, 119(4), 710-728. doi:10.1108/bfj-07-2016-0313

Trilčová, A., Čopíková, J., A Coimbra, M., Barros, A., Egert, L., Synytsya, A., & Křístková, H. (2004). Application of NIR analysis to verify cocoa powder authenticity. Czech Journal of Food Sciences, 22(SI - Chem. Reactions in Foods V), S329-S332. doi:10.17221/10694-cjfs

Turcotte, A.-M., Scott, P. M., & Tague, B. (2013). Analysis of cocoa products for ochratoxin A and aflatoxins. Mycotoxin Research, 29(3), 193-201. doi:10.1007/s12550-013-0167-x

Valdez, L., & Gutiérrez, J. (2016). Chocolate Classification by an Electronic Nose with Pressure Controlled Generated Stimulation. Sensors, 16(10), 1745. doi:10.3390/s16101745

Van Durme, J., Ingels, I., & De Winne, A. (2016). Inline roasting hyphenated with gas chromatography–mass spectrometry as an innovative approach for assessment of cocoa fermentation quality and aroma formation potential. Food Chemistry, 205, 66-72. doi:10.1016/j.foodchem.2016.03.004

Van Ruth, S. M., Luning, P. A., Silvis, I. C. J., Yang, Y., & Huisman, W. (2018). Differences in fraud vulnerability in various food supply chains and their tiers. Food Control, 84, 375-381. doi:10.1016/j.foodcont.2017.08.020

Vázquez-Ovando, A., Chacón-Martínez, L., Betancur-Ancona, D., Escalona-Buendía, H., & Salvador-Figueroa, M. (2015). Sensory descriptors of cocoa beans from cultivated trees of Soconusco, Chiapas, Mexico. Food Science and Technology (Campinas), 35(2), 285-290. doi:10.1590/1678-457x.6552

Veselá, A., Barros, A. S., Synytsya, A., Delgadillo, I., Čopíková, J., & Coimbra, M. A. (2007). Infrared spectroscopy and outer product analysis for quantification of fat, nitrogen, and moisture of cocoa powder. Analytica Chimica Acta, 601(1), 77-86. doi:10.1016/j.aca.2007.08.039

Voigt, J., Janek, K., Textoris-Taube, K., Niewienda, A., & Wöstemeyer, J. (2016). Partial purification and characterisation of the peptide precursors of the cocoa-specific aroma components. Food Chemistry, 192, 706-713. doi:10.1016/j.foodchem.2015.07.068

Voigt, J., Textoris-Taube, K., & Wöstemeyer, J. (2018). pH-Dependency of the proteolytic formation of cocoa- and nutty-specific aroma precursors. Food Chemistry, 255, 209-215. doi:10.1016/j.foodchem.2018.02.045

Weiller, S., Tanabe, T., & Oyama, Y. (2018). Terahertz Non-Contact Monitoring of Cocoa Butter in Chocolate. World Journal of Engineering and Technology, 06(02), 268-274. doi:10.4236/wjet.2018.62015

Wold, S., Antti, H., Lindgren, F., & Öhman, J. (1998). Orthogonal signal correction of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems, 44(1-2), 175-185. doi:10.1016/s0169-7439(98)00109-9

Wollgast, J., & Anklam, E. (2000). Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33(6), 423-447. doi:10.1016/s0963-9969(00)00068-5

Yang, W., Hu, M., Chen, S., Wang, Q., Zhu, S., Dai, J., & Li, X. (2015). Identification of Adulterated Cocoa Powder Using Chromatographic Fingerprints of Polysaccharides Coupled with Principal Component Analysis. Food Analytical Methods, 8(9), 2360-2367. doi:10.1007/s12161-015-0126-6

Yılmaz, C., & Gökmen, V. (2018). Determination of tryptophan derivatives in kynurenine pathway in fermented foods using liquid chromatography tandem mass spectrometry. Food Chemistry, 243, 420-427. doi:10.1016/j.foodchem.2017.10.004

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record