- -

Roadmap of cocoa quality and authenticity control in the industry: a review of conventional and alternative methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Roadmap of cocoa quality and authenticity control in the industry: a review of conventional and alternative methods

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Quelal-Vásconez, Maribel Alexandra es_ES
dc.contributor.author Lerma-García, María Jesús es_ES
dc.contributor.author Pérez-Esteve, Édgar es_ES
dc.contributor.author Talens Oliag, Pau es_ES
dc.contributor.author Barat Baviera, José Manuel es_ES
dc.date.accessioned 2021-05-01T03:30:57Z
dc.date.available 2021-05-01T03:30:57Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 1541-4337 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165834
dc.description.abstract [EN] Cocoa (Theobroma cacao L.) and its derivatives are appreciated for their aroma, color, and healthy properties, and are commodities of high economic value worldwide. Wide ranges of conventional methods have been used for years to guarantee cocoa quality. Recently, however, demand for global cocoa and the requirements of sensory, functional, and safety cocoa attributes have changed. On the one hand, society and health authorities are increasingly demanding new more accurate quality control tests, including not only the analysis of physicochemical and sensory parameters, but also determinations of functional compounds and contaminants (some of which come in trace quantities). On the other hand, increased production forces industries to seek quality control techniques based on fast, nondestructive online methods. Finally, an increase in global cocoa demand and a consequent rise in prices can lead to future cases of fraud. For this reason, new analytes, technologies, and ways to analyze data are being researched, developed, and implemented into research or quality laboratories to control cocoa quality and authenticity. The main advances made in destructive techniques focus on developing new and more sensitive methods such as chromatographic analysis to detect metabolites and contaminants in trace quantities. These methods are used to assess cocoa quality; study new functional properties; control cocoa authenticity; or detect frequent emerging frauds. Regarding nondestructive methods, spectroscopy is the most explored technique, which is conducted within the near infrared range, and also within the medium infrared range to a lesser extent. It is applied mainly in the postharvest stage of cocoa beans to analyze different biochemical parameters or to assess the authenticity of cocoa and its derivatives. es_ES
dc.description.sponsorship The authors wish to acknowledge the financial assistance provided by the Spanish Government and European Regional Development Fund (Project RTC-2016-5241-2). Maribel Quelal Vásconez thanks the Ministry Higher Education, Science, Technology, and Innovation (SENESCYT) of the Republic of Ecuador for her PhD grant. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Comprehensive Reviews in Food Science and Food Safety es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Authenticity control es_ES
dc.subject Chemometrics es_ES
dc.subject Cocoa quality roadmap es_ES
dc.subject Multivariate analysis es_ES
dc.subject Nondestructive methods es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Roadmap of cocoa quality and authenticity control in the industry: a review of conventional and alternative methods es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/1541-4337.12522 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2016-5241-2/ES/Estudio de la relación entre variables de procesado y cambios en la composición nutricional y perfil funcional del cacao en polvo. Desarrollo de una metodología predictiva aplicada al procesamiento/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Quelal-Vásconez, MA.; Lerma-García, MJ.; Pérez-Esteve, É.; Talens Oliag, P.; Barat Baviera, JM. (2020). Roadmap of cocoa quality and authenticity control in the industry: a review of conventional and alternative methods. Comprehensive Reviews in Food Science and Food Safety. 19(2):448-478. https://doi.org/10.1111/1541-4337.12522 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/1541-4337.12522 es_ES
dc.description.upvformatpinicio 448 es_ES
dc.description.upvformatpfin 478 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 33325183 es_ES
dc.relation.pasarela S\401088 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Abdullahi, G., Muhamad, R., Dzolkhifli, O., & Sinniah, U. R. (2018). Analysis of quality retentions in cocoa beans exposed to solar heat treatment in cardboard solar heater box. Cogent Food & Agriculture, 4(1), 1483061. doi:10.1080/23311932.2018.1483061 es_ES
dc.description.references Abt, E., Fong Sam, J., Gray, P., & Robin, L. P. (2018). Cadmium and lead in cocoa powder and chocolate products in the US Market. Food Additives & Contaminants: Part B, 11(2), 92-102. doi:10.1080/19393210.2017.1420700 es_ES
dc.description.references Acierno, V., Alewijn, M., Zomer, P., & van Ruth, S. M. (2018). Making cocoa origin traceable: Fingerprints of chocolates using Flow Infusion - Electro Spray Ionization - Mass Spectrometry. Food Control, 85, 245-252. doi:10.1016/j.foodcont.2017.10.002 es_ES
dc.description.references Aculey, P. C., Snitkjaer, P., Owusu, M., Bassompiere, M., Takrama, J., Nørgaard, L., … Nielsen, D. S. (2010). Ghanaian Cocoa Bean Fermentation Characterized by Spectroscopic and Chromatographic Methods and Chemometrics. Journal of Food Science, 75(6), S300-S307. doi:10.1111/j.1750-3841.2010.01710.x es_ES
dc.description.references Afoakwa, E. O., Paterson, A., Fowler, M., & Ryan, A. (2009). Matrix effects on flavour volatiles release in dark chocolates varying in particle size distribution and fat content using GC–mass spectrometry and GC–olfactometry. Food Chemistry, 113(1), 208-215. doi:10.1016/j.foodchem.2008.07.088 es_ES
dc.description.references Afoakwa, E. O., Quao, J., Takrama, J., Budu, A. S., & Saalia, F. K. (2011). Chemical composition and physical quality characteristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation. Journal of Food Science and Technology, 50(6), 1097-1105. doi:10.1007/s13197-011-0446-5 es_ES
dc.description.references Alander, J. T., Bochko, V., Martinkauppi, B., Saranwong, S., & Mantere, T. (2013). A Review of Optical Nondestructive Visual and Near-Infrared Methods for Food Quality and Safety. International Journal of Spectroscopy, 2013, 1-36. doi:10.1155/2013/341402 es_ES
dc.description.references Álvarez, C., Pérez, E., Cros, E., Lares, M., Assemat, S., Boulanger, R., & Davrieux, F. (2012). The Use of near Infrared Spectroscopy to Determine the Fat, Caffeine, Theobromine and (−)-Epicatechin Contents in Unfermented and Sun-Dried Beans of Criollo Cocoa. Journal of Near Infrared Spectroscopy, 20(2), 307-315. doi:10.1255/jnirs.990 es_ES
dc.description.references Agricultural and Processed Food Products Export Development Authority (APEDA). (2015).Export statement. Retrieved fromhttp://agriexchange.apeda.gov.in/indexp/exportstatement.aspx es_ES
dc.description.references Aprotosoaie, A. C., Luca, S. V., & Miron, A. (2015). Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Comprehensive Reviews in Food Science and Food Safety, 15(1), 73-91. doi:10.1111/1541-4337.12180 es_ES
dc.description.references Arévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of The Total Environment, 605-606, 792-800. doi:10.1016/j.scitotenv.2017.06.122 es_ES
dc.description.references Assa, A., Noor, A., Yunus, M. R., Misnawi, & Djide, M. N. (2018). Heavy metal concentrations in cocoa beans (Theobroma cacaoL.) originating from EastLuwu, South Sulawesi, Indonesia. Journal of Physics: Conference Series, 979, 012011. doi:10.1088/1742-6596/979/1/012011 es_ES
dc.description.references Barbin, D. F., Maciel, L. F., Bazoni, C. H. V., Ribeiro, M. da S., Carvalho, R. D. S., Bispo, E. da S., … Hirooka, E. Y. (2018). Classification and compositional characterization of different varieties of cocoa beans by near infrared spectroscopy and multivariate statistical analyses. Journal of Food Science and Technology, 55(7), 2457-2466. doi:10.1007/s13197-018-3163-5 es_ES
dc.description.references Belo, R. F. C., Figueiredo, J. P., Nunes, C. M., Pissinatti, R., Souza, S. V. C. de, & Junqueira, R. G. (2017). Accelerated solvent extraction method for the quantification of polycyclic aromatic hydrocarbons in cocoa beans by gas chromatography–mass spectrometry. Journal of Chromatography B, 1053, 87-100. doi:10.1016/j.jchromb.2017.03.017 es_ES
dc.description.references Belščak, A., Komes, D., Horžić, D., Ganić, K. K., & Karlović, D. (2009). Comparative study of commercially available cocoa products in terms of their bioactive composition. Food Research International, 42(5-6), 707-716. doi:10.1016/j.foodres.2009.02.018 es_ES
dc.description.references Berrueta, L. A., Alonso-Salces, R. M., & Héberger, K. (2007). Supervised pattern recognition in food analysis. Journal of Chromatography A, 1158(1-2), 196-214. doi:10.1016/j.chroma.2007.05.024 es_ES
dc.description.references Beulens, A. J. M., Broens, D.-F., Folstar, P., & Hofstede, G. J. (2005). Food safety and transparency in food chains and networks Relationships and challenges. Food Control, 16(6), 481-486. doi:10.1016/j.foodcont.2003.10.010 es_ES
dc.description.references Bolliger, S., Zeng, Y., & Windhab, E. J. (1999). In-line measurement of tempered cocoa butter and chocolate by means of near-infrared spectroscopy. Journal of the American Oil Chemists’ Society, 76(6), 659-667. doi:10.1007/s11746-999-0157-5 es_ES
dc.description.references Bonvehí, J. S. (2005). Investigation of aromatic compounds in roasted cocoa powder. European Food Research and Technology, 221(1-2), 19-29. doi:10.1007/s00217-005-1147-y es_ES
dc.description.references Bratinova S. Karasek L. Buttinger G. &Wenzl T.(2015).Report on the 16th Interlaboratory comparison organnnsed by the European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons EUR 27558 15. EU.https://doi.org/10.2787/279750. es_ES
dc.description.references Brera, C., Grossi, S., & Miraglia, M. (2005). Interlaboratory Study for Ochratoxin A Determination in Cocoa Powder Samples. Journal of Liquid Chromatography & Related Technologies, 28(1), 35-61. doi:10.1081/jlc-200038574 es_ES
dc.description.references Bro, R. (1997). PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 38(2), 149-171. doi:10.1016/s0169-7439(97)00032-4 es_ES
dc.description.references Cádiz-Gurrea, M. L., Lozano-Sanchez, J., Contreras-Gámez, M., Legeai-Mallet, L., Fernández-Arroyo, S., & Segura-Carretero, A. (2014). Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract. Journal of Functional Foods, 10, 485-498. doi:10.1016/j.jff.2014.07.016 es_ES
dc.description.references Cambrai, A., Marcic, C., Morville, S., Sae Houer, P., Bindler, F., & Marchioni, E. (2010). Differentiation of Chocolates According to the Cocoa’s Geographical Origin Using Chemometrics. Journal of Agricultural and Food Chemistry, 58(3), 1478-1483. doi:10.1021/jf903471e es_ES
dc.description.references CAOBISCO‐ECA‐FCC. (2015).Cocoa beans: Chocolate and cocoa industry quality requirements. Retrieved fromhttp://www.cocoaquality.eu/ es_ES
dc.description.references Caporaso, N., Whitworth, M. B., Fowler, M. S., & Fisk, I. D. (2018). Hyperspectral imaging for non-destructive prediction of fermentation index, polyphenol content and antioxidant activity in single cocoa beans. Food Chemistry, 258, 343-351. doi:10.1016/j.foodchem.2018.03.039 es_ES
dc.description.references CBI. (2016).CBI trade statistics: Cocoa in Europe. Retrieved fromhttps://www.cbi.eu/sites/default/files/market_information/researches/trade-statistics-europe-cocoa-2016.pdf es_ES
dc.description.references Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of The Total Environment, 533, 205-214. doi:10.1016/j.scitotenv.2015.06.106 es_ES
dc.description.references Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., & Baligar, V. C. (2016). Chemical speciation of cadmium: An approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production. Chemosphere, 150, 57-62. doi:10.1016/j.chemosphere.2016.02.013 es_ES
dc.description.references Chetschik, I., Kneubühl, M., Chatelain, K., Schlüter, A., Bernath, K., & Hühn, T. (2017). Investigations on the Aroma of Cocoa Pulp (Theobroma cacao L.) and Its Influence on the Odor of Fermented Cocoa Beans. Journal of Agricultural and Food Chemistry, 66(10), 2467-2472. doi:10.1021/acs.jafc.6b05008 es_ES
dc.description.references Codex Alimentarius. (2014).Codex Alimentarius Cocoa‐ Cocoa liquor. es_ES
dc.description.references CODEX STAN 228–2001. (2001).General methods of analysis for contaminants CODEX STAN 228–2001. es_ES
dc.description.references Cordella, M., Torri, C., Adamiano, A., Fabbri, D., Barontini, F., & Cozzani, V. (2012). Bio-oils from biomass slow pyrolysis: A chemical and toxicological screening. Journal of Hazardous Materials, 231-232, 26-35. doi:10.1016/j.jhazmat.2012.06.030 es_ES
dc.description.references Cortés, V., Blasco, J., Aleixos, N., Cubero, S., & Talens, P. (2019). Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends in Food Science & Technology, 85, 138-148. doi:10.1016/j.tifs.2019.01.015 es_ES
dc.description.references Counet, C., Ouwerx, C., Rosoux, D., & Collin, S. (2004). Relationship between Procyanidin and Flavor Contents of Cocoa Liquors from Different Origins. Journal of Agricultural and Food Chemistry, 52(20), 6243-6249. doi:10.1021/jf040105b es_ES
dc.description.references Crafack, M., Keul, H., Eskildsen, C. E., Petersen, M. A., Saerens, S., Blennow, A., … Nielsen, D. S. (2014). Impact of starter cultures and fermentation techniques on the volatile aroma and sensory profile of chocolate. Food Research International, 63, 306-316. doi:10.1016/j.foodres.2014.04.032 es_ES
dc.description.references Crouzillat D. Bellanger L. Rigoreau M. Bucheli P. &Pétiard V.(2000).Genetic structure characterisation and selection of Nacional cocoa compared to other genetic groups. In International Workshop on New Technologies and Cocoa Breeding. es_ES
dc.description.references Cubero-Leon, E., Bouten, K., Senyuva, H., Stroka, J., Adam, M., … Bakalova, D. (2017). Determination of Ochratoxin A in Black and White Pepper, Nutmeg, Spice Mix, Cocoa, and Drinking Chocolate by High-Performance Liquid Chromatography Coupled with Fluorescence Detection: Collaborative Study. Journal of AOAC INTERNATIONAL, 100(5), 1458-1468. doi:10.5740/jaoacint.16-0430 es_ES
dc.description.references D’Souza, R. N., Grimbs, S., Behrends, B., Bernaert, H., Ullrich, M. S., & Kuhnert, N. (2017). Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans. Food Research International, 99, 550-559. doi:10.1016/j.foodres.2017.06.007 es_ES
dc.description.references Di Mattia, C., Martuscelli, M., Sacchetti, G., Beheydt, B., Mastrocola, D., & Pittia, P. (2014). Effect of different conching processes on procyanidin content and antioxidant properties of chocolate. Food Research International, 63, 367-372. doi:10.1016/j.foodres.2014.04.009 es_ES
dc.description.references Dickens, B., & Dickens, S. H. (1999). Estimation of concentration and bonding environment of water dissolved in common solvents using near infrared absorptivity. Journal of Research of the National Institute of Standards and Technology, 104(2), 173. doi:10.6028/jres.104.012 es_ES
dc.description.references Tran, P. D., Van de Walle, D., De Clercq, N., De Winne, A., Kadow, D., Lieberei, R., … Van Durme, J. (2015). Assessing cocoa aroma quality by multiple analytical approaches. Food Research International, 77, 657-669. doi:10.1016/j.foodres.2015.09.019 es_ES
dc.description.references DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017 es_ES
dc.description.references Elwers, S., Zambrano, A., Rohsius, C., & Lieberei, R. (2009). Differences between the content of phenolic compounds in Criollo, Forastero and Trinitario cocoa seed (Theobroma cacao L.). European Food Research and Technology, 229(6), 937-948. doi:10.1007/s00217-009-1132-y es_ES
dc.description.references European Commission (EU). (2011).Commission regulation (EU) No 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Official Journal of the European Union 215 4–8. es_ES
dc.description.references Fayeulle, N., Vallverdu-Queralt, A., Meudec, E., Hue, C., Boulanger, R., Cheynier, V., & Sommerer, N. (2018). Characterization of new flavan-3-ol derivatives in fermented cocoa beans. Food Chemistry, 259, 207-212. doi:10.1016/j.foodchem.2018.03.133 es_ES
dc.description.references FCC. (2018 June 20).Services ‐ Rules | The Federation of Cocoa Commerce. Retrieved fromhttp://www.cocoafederation.com/services/rules es_ES
dc.description.references Forsyth, W. G. C., & Quesnel, V. C. (1957). Cacao polyphenolic substances. 4. The anthocyanin pigments*. Biochemical Journal, 65(1), 177-179. doi:10.1042/bj0650177 es_ES
dc.description.references Franco, R., Oñatibia-Astibia, A., & Martínez-Pinilla, E. (2013). Health Benefits of Methylxanthines in Cacao and Chocolate. Nutrients, 5(10), 4159-4173. doi:10.3390/nu5104159 es_ES
dc.description.references García-Alamilla, P., Salgado-Cervantes, M. A., Barel, M., Berthomieu, G., Rodríguez-Jimenes, G. C., & García-Alvarado, M. A. (2007). Moisture, acidity and temperature evolution during cacao drying. Journal of Food Engineering, 79(4), 1159-1165. doi:10.1016/j.jfoodeng.2006.04.005 es_ES
dc.description.references Gianfredi, V., Salvatori, T., Nucci, D., Villarini, M., & Moretti, M. (2018). Can chocolate consumption reduce cardio-cerebrovascular risk? A systematic review and meta-analysis. Nutrition, 46, 103-114. doi:10.1016/j.nut.2017.09.006 es_ES
dc.description.references Goodacre, R., & Anklam, E. (2001). Fourier transform infrared spectroscopy and chemometrics as a tool for the rapid detection of other vegetable fats mixed in cocoa butter. Journal of the American Oil Chemists’ Society, 78(10), 993-1000. doi:10.1007/s11746-001-0377-x es_ES
dc.description.references Hashimoto, J. C., Lima, J. C., Celeghini, R. M. S., Nogueira, A. B., Efraim, P., Poppi, R. J., & Pallone, J. A. L. (2018). Quality Control of Commercial Cocoa Beans (Theobroma cacao L.) by Near-infrared Spectroscopy. Food Analytical Methods, 11(5), 1510-1517. doi:10.1007/s12161-017-1137-2 es_ES
dc.description.references Hinneh, M., Semanhyia, E., Van de Walle, D., De Winne, A., Tzompa-Sosa, D. A., Scalone, G. L. L., … Dewettinck, K. (2018). Assessing the influence of pod storage on sugar and free amino acid profiles and the implications on some Maillard reaction related flavor volatiles in Forastero cocoa beans. Food Research International, 111, 607-620. doi:10.1016/j.foodres.2018.05.064 es_ES
dc.description.references Huang, X., Teye, E., Sam-Amoah, L. K., Han, F., Yao, L., & Tchabo, W. (2014). Rapid measurement of total polyphenols content in cocoa beans by data fusion of NIR spectroscopy and electronic tongue. Anal. Methods, 6(14), 5008-5015. doi:10.1039/c4ay00223g es_ES
dc.description.references Hue, C., Gunata, Z., Bergounhou, A., Assemat, S., Boulanger, R., Sauvage, F. X., & Davrieux, F. (2014). Near infrared spectroscopy as a new tool to determine cocoa fermentation levels through ammonia nitrogen quantification. Food Chemistry, 148, 240-245. doi:10.1016/j.foodchem.2013.10.005 es_ES
dc.description.references Hue, C., Gunata, Z., Breysse, A., Davrieux, F., Boulanger, R., & Sauvage, F. X. (2016). Impact of fermentation on nitrogenous compounds of cocoa beans (Theobroma cacao L.) from various origins. Food Chemistry, 192, 958-964. doi:10.1016/j.foodchem.2015.07.115 es_ES
dc.description.references Humston, E. M., Knowles, J. D., McShea, A., & Synovec, R. E. (2010). Quantitative assessment of moisture damage for cacao bean quality using two-dimensional gas chromatography combined with time-of-flight mass spectrometry and chemometrics. Journal of Chromatography A, 1217(12), 1963-1970. doi:10.1016/j.chroma.2010.01.069 es_ES
dc.description.references ICCO. (2012).Physical and chemical information on cocoa beans butter mass and powder. Retrieved fromhttps://www.icco.org/faq/61-physical-and-chemical-information-on-cocoa/106-physical-and-chemical-information-on-cocoa-beans-butter-mass-and-powder.html es_ES
dc.description.references ICCO. (2018).How is the quality of cocoa checked—by hand by machine?Retrieved fromhttps://www.icco.org/faq/59-fermentation-a-drying/108-how-is-the-quality-of-cocoa-checked-by-hand-by-machine.html es_ES
dc.description.references ICCO. (2019).Leading countries of cocoa bean processing worldwide 2018/2019 | Statista. Retrieved fromhttps://www.statista.com/statistics/238242/leading-countries-of-global-cocoa-bean-processing/ es_ES
dc.description.references Ioannone, F., Di Mattia, C. D., De Gregorio, M., Sergi, M., Serafini, M., & Sacchetti, G. (2015). Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chemistry, 174, 256-262. doi:10.1016/j.foodchem.2014.11.019 es_ES
dc.description.references Ishaq, S., & Jafri, L. (2017). Biomedical Importance of Cocoa (Theobroma cacao): Significance and Potential for the Maintenance of Human Health. Matrix Science Pharma, 1(1), 1-5. doi:10.26480/msp.01.2017.01.05 es_ES
dc.description.references Jackson E. Farrington D. S. &Henderson K.(1986).The analysis of agricultural materials: A manual of the analytical methods used by the Agricultural Development and Advisory Service. The Analysis of Agricultural Materials: A Manual of the Analytical Methods Used by the Agricultural Development and Advisory Service (No. 427 (Ed. 3)). es_ES
dc.description.references Jahurul, M. H. A., Soon, Y., Shaarani Sharifudin, M., Hasmadi, M., Mansoor, A. H., Zaidul, I. S. M., … Jinap, S. (2018). Bambangan (Mangifera pajang ) kernel fat: a potential new source of cocoa butter alternative. International Journal of Food Science & Technology, 53(7), 1689-1697. doi:10.1111/ijfs.13753 es_ES
dc.description.references Jinap, S., Thien, J., & Yap, T. N. (1994). Effect of drying on acidity and volatile fatty acids content of cocoa beans. Journal of the Science of Food and Agriculture, 65(1), 67-75. doi:10.1002/jsfa.2740650111 es_ES
dc.description.references Kongor, J. E., Hinneh, M., de Walle, D. V., Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review. Food Research International, 82, 44-52. doi:10.1016/j.foodres.2016.01.012 es_ES
dc.description.references Krähmer, A., Engel, A., Kadow, D., Ali, N., Umaharan, P., Kroh, L. W., & Schulz, H. (2015). Fast and neat – Determination of biochemical quality parameters in cocoa using near infrared spectroscopy. Food Chemistry, 181, 152-159. doi:10.1016/j.foodchem.2015.02.084 es_ES
dc.description.references Krähmer, A., Gudi, G., Weiher, N., Gierus, M., Schütze, W., & Schulz, H. (2013). Characterization and quantification of secondary metabolite profiles in leaves of red and white clover species by NIR and ATR-IR spectroscopy. Vibrational Spectroscopy, 68, 96-103. doi:10.1016/j.vibspec.2013.05.012 es_ES
dc.description.references Kruszewski, B., Obiedziński, M. W., & Kowalska, J. (2018). Nickel, cadmium and lead levels in raw cocoa and processed chocolate mass materials from three different manufacturers. Journal of Food Composition and Analysis, 66, 127-135. doi:10.1016/j.jfca.2017.12.012 es_ES
dc.description.references Kubíc̆ková, A., Kubíc̆ek, V., & Coufal, P. (2011). UV-VIS detection of amino acids in liquid chromatography: Online post-column solid-state derivatization with Cu(II) ions. Journal of Separation Science, 34(22), 3131-3135. doi:10.1002/jssc.201100561 es_ES
dc.description.references Kucha, C., Liu, L., & Ngadi, M. (2018). Non-Destructive Spectroscopic Techniques and Multivariate Analysis for Assessment of Fat Quality in Pork and Pork Products: A Review. Sensors, 18(2), 377. doi:10.3390/s18020377 es_ES
dc.description.references Kumari, N., Grimbs, A., D’Souza, R. N., Verma, S. K., Corno, M., Kuhnert, N., & Ullrich, M. S. (2018). Origin and varietal based proteomic and peptidomic fingerprinting of Theobroma cacao in non-fermented and fermented cocoa beans. Food Research International, 111, 137-147. doi:10.1016/j.foodres.2018.05.010 es_ES
dc.description.references Kutsanedzie, F. Y. H., Chen, Q., Hassan, M. M., Yang, M., Sun, H., & Rahman, M. H. (2018). Near infrared system coupled chemometric algorithms for enumeration of total fungi count in cocoa beans neat solution. Food Chemistry, 240, 231-238. doi:10.1016/j.foodchem.2017.07.117 es_ES
dc.description.references Andres-Lacueva, C., Monagas, M., Khan, N., Izquierdo-Pulido, M., Urpi-Sarda, M., Permanyer, J., & Lamuela-Raventós, R. M. (2008). Flavanol and Flavonol Contents of Cocoa Powder Products: Influence of the Manufacturing Process. Journal of Agricultural and Food Chemistry, 56(9), 3111-3117. doi:10.1021/jf0728754 es_ES
dc.description.references Langer, S., Marshall, L. J., Day, A. J., & Morgan, M. R. A. (2011). Flavanols and Methylxanthines in Commercially Available Dark Chocolate: A Study of the Correlation with Nonfat Cocoa Solids. Journal of Agricultural and Food Chemistry, 59(15), 8435-8441. doi:10.1021/jf201398t es_ES
dc.description.references Levasseur-Garcia, C. (2018). Updated Overview of Infrared Spectroscopy Methods for Detecting Mycotoxins on Cereals (Corn, Wheat, and Barley). Toxins, 10(1), 38. doi:10.3390/toxins10010038 es_ES
dc.description.references Li, Y., Feng, Y., Zhu, S., Luo, C., Ma, J., & Zhong, F. (2012). The effect of alkalization on the bioactive and flavor related components in commercial cocoa powder. Journal of Food Composition and Analysis, 25(1), 17-23. doi:10.1016/j.jfca.2011.04.010 es_ES
dc.description.references Li, Y., Zhu, S., Feng, Y., Xu, F., Ma, J., & Zhong, F. (2013). Influence of alkalization treatment on the color quality and the total phenolic and anthocyanin contents in cocoa powder. Food Science and Biotechnology, 23(1), 59-63. doi:10.1007/s10068-014-0008-5 es_ES
dc.description.references Li, H., Yao, W., Liu, Q., Xu, J., Bao, B., Shan, M., … Zhang, L. (2017). Application of UHPLC-ESI-Q-TOF-MS to Identify Multiple Constituents in Processed Products of the Herbal Medicine Ligustri Lucidi Fructus. Molecules, 22(5), 689. doi:10.3390/molecules22050689 es_ES
dc.description.references Liu, M., Liu, J., He, C., Song, H., Liu, Y., Zhang, Y., … Su, X. (2017). Characterization and comparison of key aroma-active compounds of cocoa liquors from five different areas. International Journal of Food Properties, 20(10), 2396-2408. doi:10.1080/10942912.2016.1238929 es_ES
dc.description.references Lo Dico, G. M., Galvano, F., Dugo, G., D’ascenzi, C., Macaluso, A., Vella, A., … Ferrantelli, V. (2018). Toxic metal levels in cocoa powder and chocolate by ICP-MS method after microwave-assisted digestion. Food Chemistry, 245, 1163-1168. doi:10.1016/j.foodchem.2017.11.052 es_ES
dc.description.references Loullis, A., & Pinakoulaki, E. (2017). Carob as cocoa substitute: a review on composition, health benefits and food applications. European Food Research and Technology, 244(6), 959-977. doi:10.1007/s00217-017-3018-8 es_ES
dc.description.references Luna, F., Crouzillat, D., Cirou, L., & Bucheli, P. (2002). Chemical Composition and Flavor of Ecuadorian Cocoa Liquor. Journal of Agricultural and Food Chemistry, 50(12), 3527-3532. doi:10.1021/jf0116597 es_ES
dc.description.references Machonis, P., Jones, M., Schaneberg, B., Kwik-Uribe, C., & Dowell, D. (2014). Method for the Determination of Catechin and Epicatechin Enantiomers in Cocoa-Based Ingredients and Products by High-Performance Liquid Chromatography: First Action 2013.04. Journal of AOAC International, 97(2), 506-509. doi:10.5740/jaoacint.13-351 es_ES
dc.description.references Magagna, F., Guglielmetti, A., Liberto, E., Reichenbach, S. E., Allegrucci, E., Gobino, G., … Cordero, C. (2017). Comprehensive Chemical Fingerprinting of High-Quality Cocoa at Early Stages of Processing: Effectiveness of Combined Untargeted and Targeted Approaches for Classification and Discrimination. Journal of Agricultural and Food Chemistry, 65(30), 6329-6341. doi:10.1021/acs.jafc.7b02167 es_ES
dc.description.references Manning, L. (2016). Food fraud: policy and food chain. Current Opinion in Food Science, 10, 16-21. doi:10.1016/j.cofs.2016.07.001 es_ES
dc.description.references Manzano, P., Quijano, M., Barragn, A., Viteri, R., Chez, I., Hernndez, J., & Valle, O. (2017). Polyphenols extracted from Theobroma cacao waste and its utility as antioxidant for food-grade vegetal oil. Emirates Journal of Food and Agriculture, 29(1), 45. doi:10.9755/ejfa.2016-04-388 es_ES
dc.description.references Martens, H., Nielsen, J. P., & Engelsen, S. B. (2003). Light Scattering and Light Absorbance Separated by Extended Multiplicative Signal Correction. Application to Near-Infrared Transmission Analysis of Powder Mixtures. Analytical Chemistry, 75(3), 394-404. doi:10.1021/ac020194w es_ES
dc.description.references Martín, M. Á., & Ramos, S. (2017). Health beneficial effects of cocoa phenolic compounds: a mini-review. Current Opinion in Food Science, 14, 20-25. doi:10.1016/j.cofs.2016.12.002 es_ES
dc.description.references Mendes F. A. T. &Lima E. L.(2007).Perfil Agroindustrial do Processamento de Amêndoas de Cacau em Pequena Escala no Estado do Pará. Belém. SEMBRAE/PA. es_ES
dc.description.references Miller, K. B., Hurst, W. J., Payne, M. J., Stuart, D. A., Apgar, J., Sweigart, D. S., & Ou, B. (2008). Impact of Alkalization on the Antioxidant and Flavanol Content of Commercial Cocoa Powders. Journal of Agricultural and Food Chemistry, 56(18), 8527-8533. doi:10.1021/jf801670p es_ES
dc.description.references Miller, K. B., Stuart, D. A., Smith, N. L., Lee, C. Y., McHale, N. L., Flanagan, J. A., … Hurst, W. J. (2006). Antioxidant Activity and Polyphenol and Procyanidin Contents of Selected Commercially Available Cocoa-Containing and Chocolate Products in the United States. Journal of Agricultural and Food Chemistry, 54(11), 4062-4068. doi:10.1021/jf060290o es_ES
dc.description.references Moros, J., Iñón, F. A., Garrigues, S., & de la Guardia, M. (2007). Near-infrared diffuse reflectance spectroscopy and neural networks for measuring nutritional parameters in chocolate samples. Analytica Chimica Acta, 584(1), 215-222. doi:10.1016/j.aca.2006.11.020 es_ES
dc.description.references Nielsen, D. S., Snitkjaer, P., & van den Berg, F. (2008). Investigating the fermentation of cocoa by correlating Denaturing Gradient Gel Electrophoresis profiles and Near Infrared spectra. International Journal of Food Microbiology, 125(2), 133-140. doi:10.1016/j.ijfoodmicro.2008.03.040 es_ES
dc.description.references Niemenak, N., Rohsius, C., Elwers, S., Omokolo Ndoumou, D., & Lieberei, R. (2006). Comparative study of different cocoa (Theobroma cacao L.) clones in terms of their phenolics and anthocyanins contents. Journal of Food Composition and Analysis, 19(6-7), 612-619. doi:10.1016/j.jfca.2005.02.006 es_ES
dc.description.references Okiyama, D. C. G., Navarro, S. L. B., & Rodrigues, C. E. C. (2017). Cocoa shell and its compounds: Applications in the food industry. Trends in Food Science & Technology, 63, 103-112. doi:10.1016/j.tifs.2017.03.007 es_ES
dc.description.references Oliviero, T., Capuano, E., Cämmerer, B., & Fogliano, V. (2008). Influence of Roasting on the Antioxidant Activity and HMF Formation of a Cocoa Bean Model Systems. Journal of Agricultural and Food Chemistry, 57(1), 147-152. doi:10.1021/jf802250j es_ES
dc.description.references Oracz, J., Nebesny, E., & Żyżelewicz, D. (2015). Changes in the flavan-3-ols, anthocyanins, and flavanols composition of cocoa beans of different Theobroma cacao L. groups affected by roasting conditions. European Food Research and Technology, 241(5), 663-681. doi:10.1007/s00217-015-2494-y es_ES
dc.description.references Osborne, B. G. (2000). Near-Infrared Spectroscopy in Food Analysis. Encyclopedia of Analytical Chemistry. doi:10.1002/9780470027318.a1018 es_ES
dc.description.references Payne, M. J., Hurst, W. J., Miller, K. B., Rank, C., & Stuart, D. A. (2010). Impact of Fermentation, Drying, Roasting, and Dutch Processing on Epicatechin and Catechin Content of Cacao Beans and Cocoa Ingredients. Journal of Agricultural and Food Chemistry, 58(19), 10518-10527. doi:10.1021/jf102391q es_ES
dc.description.references Pedan, V., Fischer, N., Bernath, K., Hühn, T., & Rohn, S. (2017). Determination of oligomeric proanthocyanidins and their antioxidant capacity from different chocolate manufacturing stages using the NP-HPLC-online-DPPH methodology. Food Chemistry, 214, 523-532. doi:10.1016/j.foodchem.2016.07.094 es_ES
dc.description.references Pedan, V., Fischer, N., & Rohn, S. (2016). Extraction of cocoa proanthocyanidins and their fractionation by sequential centrifugal partition chromatography and gel permeation chromatography. Analytical and Bioanalytical Chemistry, 408(21), 5905-5914. doi:10.1007/s00216-016-9705-7 es_ES
dc.description.references Pérez-Esteve, É., Lerma-García, M. J., Fuentes, A., Palomares, C., & Barat, J. M. (2016). Control of undeclared flavoring of cocoa powders by the determination of vanillin and ethyl vanillin by HPLC. Food Control, 67, 171-176. doi:10.1016/j.foodcont.2016.02.048 es_ES
dc.description.references PERMANYER, J. J., & PEREZ, M. L. (1989). Compositional Analysis of Powdered Cocoa Products by Near Infrared Reflectance Spectroscopy. Journal of Food Science, 54(3), 768-769. doi:10.1111/j.1365-2621.1989.tb04706.x es_ES
dc.description.references Vargas Jentzsch, P., Ciobotă, V., Salinas, W., Kampe, B., Aponte, P. M., Rösch, P., … Ramos, L. A. (2016). Distinction of Ecuadorian varieties of fermented cocoa beans using Raman spectroscopy. Food Chemistry, 211, 274-280. doi:10.1016/j.foodchem.2016.05.017 es_ES
dc.description.references Quelal-Vásconez, M. A., Pérez-Esteve, É., Arnau-Bonachera, A., Barat, J. M., & Talens, P. (2018). Rapid fraud detection of cocoa powder with carob flour using near infrared spectroscopy. Food Control, 92, 183-189. doi:10.1016/j.foodcont.2018.05.001 es_ES
dc.description.references Quelal-Vásconez, M. A., Lerma-García, M. J., Pérez-Esteve, É., Arnau-Bonachera, A., Barat, J. M., & Talens, P. (2019). Fast detection of cocoa shell in cocoa powders by near infrared spectroscopy and multivariate analysis. Food Control, 99, 68-72. doi:10.1016/j.foodcont.2018.12.028 es_ES
dc.description.references Quelal-Vásconez, M. A., Lerma-García, M. J., Pérez-Esteve, É., Arnau-Bonachera, A., Barat, J. M., & Talens, P. (2020). Changes in methylxanthines and flavanols during cocoa powder processing and their quantification by near-infrared spectroscopy. LWT, 117, 108598. doi:10.1016/j.lwt.2019.108598 es_ES
dc.description.references Quiroz-Reyes, C. N., & Fogliano, V. (2018). Design cocoa processing towards healthy cocoa products: The role of phenolics and melanoidins. Journal of Functional Foods, 45, 480-490. doi:10.1016/j.jff.2018.04.031 es_ES
dc.description.references Reddy, S. Y., & Prabhakar, J. V. (1994). Cocoa butter extenders from Kokum (Garcinia indica ) and Phulwara (Madhuca butyracea ) butter. Journal of the American Oil Chemists’ Society, 71(2), 217-219. doi:10.1007/bf02541559 es_ES
dc.description.references Risner, C. H. (2008). Simultaneous Determination of Theobromine, (+)-Catechin, Caffeine, and (-)-Epicatechin in Standard Reference Material Baking Chocolate 2384, Cocoa, Cocoa Beans, and Cocoa Butter. Journal of Chromatographic Science, 46(10), 892-899. doi:10.1093/chromsci/46.10.892 es_ES
dc.description.references Rodrigues, J. F., Condino, J. P. F., Pinheiro, A. C. M., & Nunes, C. A. (2016). Temporal dominance of sensations of chocolate bars with different cocoa contents: Multivariate approaches to assess TDS profiles. Food Quality and Preference, 47, 91-96. doi:10.1016/j.foodqual.2015.06.020 es_ES
dc.description.references Rodriguez-Campos, J., Escalona-Buendía, H. B., Contreras-Ramos, S. M., Orozco-Avila, I., Jaramillo-Flores, E., & Lugo-Cervantes, E. (2012). Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chemistry, 132(1), 277-288. doi:10.1016/j.foodchem.2011.10.078 es_ES
dc.description.references Rodríguez-Carrasco, Y., Gaspari, A., Graziani, G., Santini, A., & Ritieni, A. (2018). Fast analysis of polyphenols and alkaloids in cocoa-based products by ultra-high performance liquid chromatography and Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap-MS/MS). Food Research International, 111, 229-236. doi:10.1016/j.foodres.2018.05.032 es_ES
dc.description.references Rohsius, C., Matissek, R., & Lieberei, R. (2005). Free amino acid amounts in raw cocoas from different origins. European Food Research and Technology, 222(3-4), 432-438. doi:10.1007/s00217-005-0130-y es_ES
dc.description.references Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639. doi:10.1021/ac60214a047 es_ES
dc.description.references Schwan, R. F. (1998). Cocoa Fermentations Conducted with a Defined Microbial Cocktail Inoculum. Applied and Environmental Microbiology, 64(4), 1477-1483. doi:10.1128/aem.64.4.1477-1483.1998 es_ES
dc.description.references Servent, A., Boulanger, R., Davrieux, F., Pinot, M.-N., Tardan, E., Forestier-Chiron, N., & Hue, C. (2018). Assessment of cocoa ( Theobroma cacao L.) butter content and composition throughout fermentations. Food Research International, 107, 675-682. doi:10.1016/j.foodres.2018.02.070 es_ES
dc.description.references Sess-Tchotch, D.-A., Kedjebo, K. B. D., Faulet, B. M., Fontana-Tachon, A., Alter, P., Durand, N., … Guehi, T. S. (2018). Analytical Method Validation and Rapid Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Cocoa Butter Using HPLC-FLD. Food Analytical Methods, 11(11), 3138-3146. doi:10.1007/s12161-018-1282-2 es_ES
dc.description.references Beg, M. S., Ahmad, S., Jan, K., & Bashir, K. (2017). Status, supply chain and processing of cocoa - A review. Trends in Food Science & Technology, 66, 108-116. doi:10.1016/j.tifs.2017.06.007 es_ES
dc.description.references Soto J. Granda G. Prieto F. Ipanaque W. &Machacuay J.(2015).Cocoa bean quality assessment by using hyperspectral images and fuzzy logic techniques. Twelfth International Conference on Quality Control by Artificial Vision (Vol. 9534 p. 95340M). es_ES
dc.description.references Stark, T., Lang, R., Keller, D., Hensel, A., & Hofmann, T. (2008). Absorption ofN-phenylpropenoyl-L-amino acids in healthy humans by oral administration of cocoa (Theobroma cacao). Molecular Nutrition & Food Research, 52(10), 1201-1214. doi:10.1002/mnfr.200700447 es_ES
dc.description.references Su, W.-H., & Sun, D.-W. (2017). Fourier Transform Infrared and Raman and Hyperspectral Imaging Techniques for Quality Determinations of Powdery Foods: A Review. Comprehensive Reviews in Food Science and Food Safety, 17(1), 104-122. doi:10.1111/1541-4337.12314 es_ES
dc.description.references Suazo, Y., Davidov-Pardo, G., & Arozarena, I. (2014). Effect of Fermentation and Roasting on the Phenolic Concentration and Antioxidant Activity of Cocoa from Nicaragua. Journal of Food Quality, 37(1), 50-56. doi:10.1111/jfq.12070 es_ES
dc.description.references Sunoj, S., Igathinathane, C., & Visvanathan, R. (2016). Nondestructive determination of cocoa bean quality using FT-NIR spectroscopy. Computers and Electronics in Agriculture, 124, 234-242. doi:10.1016/j.compag.2016.04.012 es_ES
dc.description.references Talbot, C. P. J., Mensink, R. P., Smolders, L., Bakeroot, V., & Plat, J. (2018). Theobromine Does Not Affect Fasting and Postprandial HDL Cholesterol Efflux Capacity, While It Decreases Fasting miR-92a Levels in Humans. Molecular Nutrition & Food Research, 62(13), 1800027. doi:10.1002/mnfr.201800027 es_ES
dc.description.references Tan, J., & Kerr, W. L. (2018). Determining degree of roasting in cocoa beans by artificial neural network (ANN)-based electronic nose system and gas chromatography/mass spectrometry (GC/MS). Journal of the Science of Food and Agriculture, 98(10), 3851-3859. doi:10.1002/jsfa.8901 es_ES
dc.description.references Teye, E., & Huang, X. (2014). Novel Prediction of Total Fat Content in Cocoa Beans by FT-NIR Spectroscopy Based on Effective Spectral Selection Multivariate Regression. Food Analytical Methods, 8(4), 945-953. doi:10.1007/s12161-014-9933-4 es_ES
dc.description.references Teye, E., Huang, X., Dai, H., & Chen, Q. (2013). Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classification. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 183-189. doi:10.1016/j.saa.2013.05.063 es_ES
dc.description.references Teye, E., Huang, X., Han, F., & Botchway, F. (2013). Discrimination of Cocoa Beans According to Geographical Origin by Electronic Tongue and Multivariate Algorithms. Food Analytical Methods, 7(2), 360-365. doi:10.1007/s12161-013-9634-4 es_ES
dc.description.references Teye, E., Huang, X., Lei, W., & Dai, H. (2014). Feasibility study on the use of Fourier transform near-infrared spectroscopy together with chemometrics to discriminate and quantify adulteration in cocoa beans. Food Research International, 55, 288-293. doi:10.1016/j.foodres.2013.11.021 es_ES
dc.description.references Teye, E., Huang, X., Sam-Amoah, L. K., Takrama, J., Boison, D., Botchway, F., & Kumi, F. (2015). Estimating cocoa bean parameters by FT-NIRS and chemometrics analysis. Food Chemistry, 176, 403-410. doi:10.1016/j.foodchem.2014.12.042 es_ES
dc.description.references Teye, E., Huang, X., Takrama, J., & Haiyang, G. (2014). Integrating NIR Spectroscopy and Electronic Tongue Together with Chemometric Analysis for Accurate Classification of Cocoa Bean Varieties. Journal of Food Process Engineering, 37(6), 560-566. doi:10.1111/jfpe.12109 es_ES
dc.description.references Teye, E., Uhomoibhi, J., & Wang, H. (2016). Nondestructive Authentication of Cocoa Bean Cultivars by FT-NIR Spectroscopy and Multivariate Techniques. Focus on Sciences, 2(3), 1-10. doi:10.21859/focsci-020347 es_ES
dc.description.references Toro-Uribe, S., Montero, L., López-Giraldo, L., Ibáñez, E., & Herrero, M. (2018). Characterization of secondary metabolites from green cocoa beans using focusing-modulated comprehensive two-dimensional liquid chromatography coupled to tandem mass spectrometry. Analytica Chimica Acta, 1036, 204-213. doi:10.1016/j.aca.2018.06.068 es_ES
dc.description.references Torres-Moreno, M., Tarrega, A., & Blanch, C. (2014). Characterization of Volatile Compounds in Dark Chocolates by HS-SPME and GC-MS. Flavour Science, 283-287. doi:10.1016/b978-0-12-398549-1.00054-4 es_ES
dc.description.references Torres-Moreno, M., Torrescasana, E., Salas-Salvadó, J., & Blanch, C. (2015). Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions. Food Chemistry, 166, 125-132. doi:10.1016/j.foodchem.2014.05.141 es_ES
dc.description.references Trafialek, J., & Kolanowski, W. (2017). Implementation and functioning of HACCP principles in certified and non-certified food businesses. British Food Journal, 119(4), 710-728. doi:10.1108/bfj-07-2016-0313 es_ES
dc.description.references Trilčová, A., Čopíková, J., A Coimbra, M., Barros, A., Egert, L., Synytsya, A., & Křístková, H. (2004). Application of NIR analysis to verify cocoa powder authenticity. Czech Journal of Food Sciences, 22(SI - Chem. Reactions in Foods V), S329-S332. doi:10.17221/10694-cjfs es_ES
dc.description.references Turcotte, A.-M., Scott, P. M., & Tague, B. (2013). Analysis of cocoa products for ochratoxin A and aflatoxins. Mycotoxin Research, 29(3), 193-201. doi:10.1007/s12550-013-0167-x es_ES
dc.description.references Valdez, L., & Gutiérrez, J. (2016). Chocolate Classification by an Electronic Nose with Pressure Controlled Generated Stimulation. Sensors, 16(10), 1745. doi:10.3390/s16101745 es_ES
dc.description.references Van Durme, J., Ingels, I., & De Winne, A. (2016). Inline roasting hyphenated with gas chromatography–mass spectrometry as an innovative approach for assessment of cocoa fermentation quality and aroma formation potential. Food Chemistry, 205, 66-72. doi:10.1016/j.foodchem.2016.03.004 es_ES
dc.description.references Van Ruth, S. M., Luning, P. A., Silvis, I. C. J., Yang, Y., & Huisman, W. (2018). Differences in fraud vulnerability in various food supply chains and their tiers. Food Control, 84, 375-381. doi:10.1016/j.foodcont.2017.08.020 es_ES
dc.description.references Vázquez-Ovando, A., Chacón-Martínez, L., Betancur-Ancona, D., Escalona-Buendía, H., & Salvador-Figueroa, M. (2015). Sensory descriptors of cocoa beans from cultivated trees of Soconusco, Chiapas, Mexico. Food Science and Technology (Campinas), 35(2), 285-290. doi:10.1590/1678-457x.6552 es_ES
dc.description.references Veselá, A., Barros, A. S., Synytsya, A., Delgadillo, I., Čopíková, J., & Coimbra, M. A. (2007). Infrared spectroscopy and outer product analysis for quantification of fat, nitrogen, and moisture of cocoa powder. Analytica Chimica Acta, 601(1), 77-86. doi:10.1016/j.aca.2007.08.039 es_ES
dc.description.references Voigt, J., Janek, K., Textoris-Taube, K., Niewienda, A., & Wöstemeyer, J. (2016). Partial purification and characterisation of the peptide precursors of the cocoa-specific aroma components. Food Chemistry, 192, 706-713. doi:10.1016/j.foodchem.2015.07.068 es_ES
dc.description.references Voigt, J., Textoris-Taube, K., & Wöstemeyer, J. (2018). pH-Dependency of the proteolytic formation of cocoa- and nutty-specific aroma precursors. Food Chemistry, 255, 209-215. doi:10.1016/j.foodchem.2018.02.045 es_ES
dc.description.references Weiller, S., Tanabe, T., & Oyama, Y. (2018). Terahertz Non-Contact Monitoring of Cocoa Butter in Chocolate. World Journal of Engineering and Technology, 06(02), 268-274. doi:10.4236/wjet.2018.62015 es_ES
dc.description.references Wold, S., Antti, H., Lindgren, F., & Öhman, J. (1998). Orthogonal signal correction of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems, 44(1-2), 175-185. doi:10.1016/s0169-7439(98)00109-9 es_ES
dc.description.references Wollgast, J., & Anklam, E. (2000). Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33(6), 423-447. doi:10.1016/s0963-9969(00)00068-5 es_ES
dc.description.references Yang, W., Hu, M., Chen, S., Wang, Q., Zhu, S., Dai, J., & Li, X. (2015). Identification of Adulterated Cocoa Powder Using Chromatographic Fingerprints of Polysaccharides Coupled with Principal Component Analysis. Food Analytical Methods, 8(9), 2360-2367. doi:10.1007/s12161-015-0126-6 es_ES
dc.description.references Yılmaz, C., & Gökmen, V. (2018). Determination of tryptophan derivatives in kynurenine pathway in fermented foods using liquid chromatography tandem mass spectrometry. Food Chemistry, 243, 420-427. doi:10.1016/j.foodchem.2017.10.004 es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem