Murray, G. A. W., & Semple, J. C. (1979). A review of work on artificial tendons. Journal of Biomedical Engineering, 1(3), 177-184. doi:10.1016/0141-5425(79)90040-2
Ricci, J. L., Gona, A. G., Alexander, H., & Parsons, J. R. (1984). Morphological characteristics of tendon cells cultured on synthetic fibers. Journal of Biomedical Materials Research, 18(9), 1073-1087. doi:10.1002/jbm.820180910
HUNTER, J. M., & SALISBURY, R. E. (1971). Flexor-Tendon Reconstruction in Severely Damaged Hands. The Journal of Bone & Joint Surgery, 53(5), 829-858. doi:10.2106/00004623-197153050-00001
[+]
Murray, G. A. W., & Semple, J. C. (1979). A review of work on artificial tendons. Journal of Biomedical Engineering, 1(3), 177-184. doi:10.1016/0141-5425(79)90040-2
Ricci, J. L., Gona, A. G., Alexander, H., & Parsons, J. R. (1984). Morphological characteristics of tendon cells cultured on synthetic fibers. Journal of Biomedical Materials Research, 18(9), 1073-1087. doi:10.1002/jbm.820180910
HUNTER, J. M., & SALISBURY, R. E. (1971). Flexor-Tendon Reconstruction in Severely Damaged Hands. The Journal of Bone & Joint Surgery, 53(5), 829-858. doi:10.2106/00004623-197153050-00001
Hunter, J. M., Singer, D. I., Jaeger, S. H., & Mackin, E. J. (1988). Active tendon implants in flexor tendon reconstruction. The Journal of Hand Surgery, 13(6), 849-859. doi:10.1016/0363-5023(88)90259-6
Walden, G., Liao, X., Donell, S., Raxworthy, M. J., Riley, G. P., & Saeed, A. (2017). A Clinical, Biological, and Biomaterials Perspective into Tendon Injuries and Regeneration. Tissue Engineering Part B: Reviews, 23(1), 44-58. doi:10.1089/ten.teb.2016.0181
Araque Monrós C, Gil Santos L, Gironés Bernabé S, et al. Universitat Politècnica de València. Procedimiento de obtención de una prótesis biodegradable. Patent of invention nº P201130919. 2011.
Freeman, J. W., Woods, M. D., & Laurencin, C. T. (2007). Tissue engineering of the anterior cruciate ligament using a braid–twist scaffold design. Journal of Biomechanics, 40(9), 2029-2036. doi:10.1016/j.jbiomech.2006.09.025
Laurencin, C. T., & Freeman, J. W. (2005). Ligament tissue engineering: An evolutionary materials science approach. Biomaterials, 26(36), 7530-7536. doi:10.1016/j.biomaterials.2005.05.073
Merolli, A., & Joyce, T. J. (Eds.). (2009). Biomaterials in Hand Surgery. doi:10.1007/978-88-470-1195-3
Moreau, J. E., Bramono, D. S., Horan, R. L., Kaplan, D. L., & Altman, G. H. (2008). Sequential Biochemical and Mechanical Stimulation in the Development of Tissue-Engineered Ligaments. Tissue Engineering Part A, 14(7), 1161-1172. doi:10.1089/ten.tea.2007.0147
Nirmalanandhan, V. S., Rao, M., Shearn, J. T., Juncosa-Melvin, N., Gooch, C., & Butler, D. L. (2008). Effect of scaffold material, construct length and mechanical stimulation on the in vitro stiffness of the engineered tendon construct. Journal of Biomechanics, 41(4), 822-828. doi:10.1016/j.jbiomech.2007.11.009
Sumanasinghe, R. D., Osborne, J. A., & Loboa, E. G. (2008). Mesenchymal stem cell‐seeded collagen matrices for bone repair: Effects of cyclic tensile strain, cell density, and media conditions on matrix contraction
in vitro. Journal of Biomedical Materials Research Part A, 88A(3), 778-786. doi:10.1002/jbm.a.31913
Saber, S., Zhang, A. Y., Ki, S. H., Lindsey, D. P., Smith, R. L., Riboh, J., … Chang, J. (2010). Flexor Tendon Tissue Engineering: Bioreactor Cyclic Strain Increases Construct Strength. Tissue Engineering Part A, 16(6), 2085-2090. doi:10.1089/ten.tea.2010.0032
Tohyama, H., & Yasuda, K. (2000). The effects of stress enhancement on the extracellular matrix and fibroblasts in the patellar tendon. Journal of Biomechanics, 33(5), 559-565. doi:10.1016/s0021-9290(99)00217-1
Wang, T., Lin, Z., Day, R. E., Gardiner, B., Landao-Bassonga, E., Rubenson, J., … Zheng, M. H. (2013). Programmable mechanical stimulation influences tendon homeostasis in a bioreactor system. Biotechnology and Bioengineering, 110(5), 1495-1507. doi:10.1002/bit.24809
Wang, T., Gardiner, B. S., Lin, Z., Rubenson, J., Kirk, T. B., Wang, A., … Zheng, M. H. (2013). Bioreactor Design for Tendon/Ligament Engineering. Tissue Engineering Part B: Reviews, 19(2), 133-146. doi:10.1089/ten.teb.2012.0295
Abousleiman, R. I., Reyes, Y., McFetridge, P., & Sikavitsas, V. (2009). Tendon Tissue Engineering Using Cell-Seeded Umbilical Veins Cultured in a Mechanical Stimulator. Tissue Engineering Part A, 15(4), 787-795. doi:10.1089/ten.tea.2008.0102
Masuda, T., Takahashi, I., Anada, T., Arai, F., Fukuda, T., Takano-Yamamoto, T., & Suzuki, O. (2008). Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells. Journal of Biotechnology, 133(2), 231-238. doi:10.1016/j.jbiotec.2007.08.007
Xu, Z. C., Zhang, W. J., Li, H., Cui, L., Cen, L., Zhou, G. D., … Cao, Y. (2008). Engineering of an elastic large muscular vessel wall with pulsatile stimulation in bioreactor. Biomaterials, 29(10), 1464-1472. doi:10.1016/j.biomaterials.2007.11.037
TC-3F Ebers Medical Technology, S.L. [cited 2019 May 15]. Available from: https://ebersmedical.com/tissue-engineering/bioreactors/load-culture/tc-3f-bioreactor.
CellScale biomaterials testing. [cited 2020 Mar 16]. Available from: https://cellscale.com/https://www.cellscale.com/products/mct6
Lim, W. L., Liau, L. L., Ng, M. H., Chowdhury, S. R., & Law, J. X. (2019). Current Progress in Tendon and Ligament Tissue Engineering. Tissue Engineering and Regenerative Medicine, 16(6), 549-571. doi:10.1007/s13770-019-00196-w
Oftadeh, R., Connizzo, B. K., Nia, H. T., Ortiz, C., & Grodzinsky, A. J. (2018). Biological connective tissues exhibit viscoelastic and poroelastic behavior at different frequency regimes: Application to tendon and skin biophysics. Acta Biomaterialia, 70, 249-259. doi:10.1016/j.actbio.2018.01.041
Vashaghian, M., Diedrich, C. M., Zandieh-Doulabi, B., Werner, A., Smit, T. H., & Roovers, J. P. (2019). Gentle cyclic straining of human fibroblasts on electrospun scaffolds enhances their regenerative potential. Acta Biomaterialia, 84, 159-168. doi:10.1016/j.actbio.2018.11.034
Helms, F., Lau, S., Klingenberg, M., Aper, T., Haverich, A., Wilhelmi, M., & Böer, U. (2019). Complete Myogenic Differentiation of Adipogenic Stem Cells Requires Both Biochemical and Mechanical Stimulation. Annals of Biomedical Engineering, 48(3), 913-926. doi:10.1007/s10439-019-02234-z
Araque-Monrós, M. C., García-Cruz, D. M., Escobar-Ivirico, J. L., Gil-Santos, L., Monleón-Pradas, M., & Más-Estellés, J. (2019). Regenerative and Resorbable PLA/HA Hybrid Construct for Tendon/Ligament Tissue Engineering. Annals of Biomedical Engineering, 48(2), 757-767. doi:10.1007/s10439-019-02403-0
Yang, G., Crawford, R. C., & Wang, J. H.-C. (2004). Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. Journal of Biomechanics, 37(10), 1543-1550. doi:10.1016/j.jbiomech.2004.01.005
Surrao, D. C., Fan, J. C. Y., Waldman, S. D., & Amsden, B. G. (2012). A crimp-like microarchitecture improves tissue production in fibrous ligament scaffolds in response to mechanical stimuli. Acta Biomaterialia, 8(10), 3704-3713. doi:10.1016/j.actbio.2012.06.016
Wang, J. H.-C. (2006). Mechanobiology of tendon. Journal of Biomechanics, 39(9), 1563-1582. doi:10.1016/j.jbiomech.2005.05.011
Zhang, C., Zhu, J., Zhou, Y., Thampatty, B. P., & Wang, J. H.-C. (2019). Tendon Stem/Progenitor Cells and Their Interactions with Extracellular Matrix and Mechanical Loading. Stem Cells International, 2019, 1-10. doi:10.1155/2019/3674647
[-]