- -

New bioreactor for mechanical stimulation of cultured tendon-like constructs: design and validation.

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New bioreactor for mechanical stimulation of cultured tendon-like constructs: design and validation.

Mostrar el registro completo del ítem

Araque Monrós, MC.; Gil-Santos, L.; Monleón Pradas, M.; Más Estellés, J. (2020). New bioreactor for mechanical stimulation of cultured tendon-like constructs: design and validation. Expert Review of Medical Devices. 17(10):1115-1121. https://doi.org/10.1080/17434440.2020.1825072

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165836

Ficheros en el ítem

Metadatos del ítem

Título: New bioreactor for mechanical stimulation of cultured tendon-like constructs: design and validation.
Autor: Araque Monrós, María Carmen Gil-Santos, Luis Monleón Pradas, Manuel Más Estellés, Jorge
Entidad UPV: Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] Objective: Although several different types of bioreactors are currently available with mechanical stimulation of constructs or prostheses for tendon regeneration, they are in many cases expensive and difficult to ...[+]
Palabras clave: Bioreactor , Mechanical stimulation , Construct , Regeneration , Tendon
Derechos de uso: Reserva de todos los derechos
Fuente:
Expert Review of Medical Devices. (issn: 1743-4440 )
DOI: 10.1080/17434440.2020.1825072
Editorial:
Taylor & Francis
Versión del editor: https://doi.org/10.1080/17434440.2020.1825072
Agradecimientos:
This paper was funded through a researching contract with the Researching Association of the Textil Industries (AITEX, Alcoi, Spain).
Tipo: Artículo

References

Murray, G. A. W., & Semple, J. C. (1979). A review of work on artificial tendons. Journal of Biomedical Engineering, 1(3), 177-184. doi:10.1016/0141-5425(79)90040-2

Ricci, J. L., Gona, A. G., Alexander, H., & Parsons, J. R. (1984). Morphological characteristics of tendon cells cultured on synthetic fibers. Journal of Biomedical Materials Research, 18(9), 1073-1087. doi:10.1002/jbm.820180910

HUNTER, J. M., & SALISBURY, R. E. (1971). Flexor-Tendon Reconstruction in Severely Damaged Hands. The Journal of Bone & Joint Surgery, 53(5), 829-858. doi:10.2106/00004623-197153050-00001 [+]
Murray, G. A. W., & Semple, J. C. (1979). A review of work on artificial tendons. Journal of Biomedical Engineering, 1(3), 177-184. doi:10.1016/0141-5425(79)90040-2

Ricci, J. L., Gona, A. G., Alexander, H., & Parsons, J. R. (1984). Morphological characteristics of tendon cells cultured on synthetic fibers. Journal of Biomedical Materials Research, 18(9), 1073-1087. doi:10.1002/jbm.820180910

HUNTER, J. M., & SALISBURY, R. E. (1971). Flexor-Tendon Reconstruction in Severely Damaged Hands. The Journal of Bone & Joint Surgery, 53(5), 829-858. doi:10.2106/00004623-197153050-00001

Hunter, J. M., Singer, D. I., Jaeger, S. H., & Mackin, E. J. (1988). Active tendon implants in flexor tendon reconstruction. The Journal of Hand Surgery, 13(6), 849-859. doi:10.1016/0363-5023(88)90259-6

Walden, G., Liao, X., Donell, S., Raxworthy, M. J., Riley, G. P., & Saeed, A. (2017). A Clinical, Biological, and Biomaterials Perspective into Tendon Injuries and Regeneration. Tissue Engineering Part B: Reviews, 23(1), 44-58. doi:10.1089/ten.teb.2016.0181

Araque Monrós C, Gil Santos L, Gironés Bernabé S, et al. Universitat Politècnica de València. Procedimiento de obtención de una prótesis biodegradable. Patent of invention nº P201130919. 2011.

Freeman, J. W., Woods, M. D., & Laurencin, C. T. (2007). Tissue engineering of the anterior cruciate ligament using a braid–twist scaffold design. Journal of Biomechanics, 40(9), 2029-2036. doi:10.1016/j.jbiomech.2006.09.025

Laurencin, C. T., & Freeman, J. W. (2005). Ligament tissue engineering: An evolutionary materials science approach. Biomaterials, 26(36), 7530-7536. doi:10.1016/j.biomaterials.2005.05.073

Merolli, A., & Joyce, T. J. (Eds.). (2009). Biomaterials in Hand Surgery. doi:10.1007/978-88-470-1195-3

Moreau, J. E., Bramono, D. S., Horan, R. L., Kaplan, D. L., & Altman, G. H. (2008). Sequential Biochemical and Mechanical Stimulation in the Development of Tissue-Engineered Ligaments. Tissue Engineering Part A, 14(7), 1161-1172. doi:10.1089/ten.tea.2007.0147

Nirmalanandhan, V. S., Rao, M., Shearn, J. T., Juncosa-Melvin, N., Gooch, C., & Butler, D. L. (2008). Effect of scaffold material, construct length and mechanical stimulation on the in vitro stiffness of the engineered tendon construct. Journal of Biomechanics, 41(4), 822-828. doi:10.1016/j.jbiomech.2007.11.009

Sumanasinghe, R. D., Osborne, J. A., & Loboa, E. G. (2008). Mesenchymal stem cell‐seeded collagen matrices for bone repair: Effects of cyclic tensile strain, cell density, and media conditions on matrix contraction in vitro. Journal of Biomedical Materials Research Part A, 88A(3), 778-786. doi:10.1002/jbm.a.31913

Saber, S., Zhang, A. Y., Ki, S. H., Lindsey, D. P., Smith, R. L., Riboh, J., … Chang, J. (2010). Flexor Tendon Tissue Engineering: Bioreactor Cyclic Strain Increases Construct Strength. Tissue Engineering Part A, 16(6), 2085-2090. doi:10.1089/ten.tea.2010.0032

Tohyama, H., & Yasuda, K. (2000). The effects of stress enhancement on the extracellular matrix and fibroblasts in the patellar tendon. Journal of Biomechanics, 33(5), 559-565. doi:10.1016/s0021-9290(99)00217-1

Wang, T., Lin, Z., Day, R. E., Gardiner, B., Landao-Bassonga, E., Rubenson, J., … Zheng, M. H. (2013). Programmable mechanical stimulation influences tendon homeostasis in a bioreactor system. Biotechnology and Bioengineering, 110(5), 1495-1507. doi:10.1002/bit.24809

Wang, T., Gardiner, B. S., Lin, Z., Rubenson, J., Kirk, T. B., Wang, A., … Zheng, M. H. (2013). Bioreactor Design for Tendon/Ligament Engineering. Tissue Engineering Part B: Reviews, 19(2), 133-146. doi:10.1089/ten.teb.2012.0295

Abousleiman, R. I., Reyes, Y., McFetridge, P., & Sikavitsas, V. (2009). Tendon Tissue Engineering Using Cell-Seeded Umbilical Veins Cultured in a Mechanical Stimulator. Tissue Engineering Part A, 15(4), 787-795. doi:10.1089/ten.tea.2008.0102

Masuda, T., Takahashi, I., Anada, T., Arai, F., Fukuda, T., Takano-Yamamoto, T., & Suzuki, O. (2008). Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells. Journal of Biotechnology, 133(2), 231-238. doi:10.1016/j.jbiotec.2007.08.007

Xu, Z. C., Zhang, W. J., Li, H., Cui, L., Cen, L., Zhou, G. D., … Cao, Y. (2008). Engineering of an elastic large muscular vessel wall with pulsatile stimulation in bioreactor. Biomaterials, 29(10), 1464-1472. doi:10.1016/j.biomaterials.2007.11.037

TC-3F Ebers Medical Technology, S.L. [cited 2019 May 15]. Available from: https://ebersmedical.com/tissue-engineering/bioreactors/load-culture/tc-3f-bioreactor.

CellScale biomaterials testing. [cited 2020 Mar 16]. Available from: https://cellscale.com/https://www.cellscale.com/products/mct6

Lim, W. L., Liau, L. L., Ng, M. H., Chowdhury, S. R., & Law, J. X. (2019). Current Progress in Tendon and Ligament Tissue Engineering. Tissue Engineering and Regenerative Medicine, 16(6), 549-571. doi:10.1007/s13770-019-00196-w

Oftadeh, R., Connizzo, B. K., Nia, H. T., Ortiz, C., & Grodzinsky, A. J. (2018). Biological connective tissues exhibit viscoelastic and poroelastic behavior at different frequency regimes: Application to tendon and skin biophysics. Acta Biomaterialia, 70, 249-259. doi:10.1016/j.actbio.2018.01.041

Vashaghian, M., Diedrich, C. M., Zandieh-Doulabi, B., Werner, A., Smit, T. H., & Roovers, J. P. (2019). Gentle cyclic straining of human fibroblasts on electrospun scaffolds enhances their regenerative potential. Acta Biomaterialia, 84, 159-168. doi:10.1016/j.actbio.2018.11.034

Helms, F., Lau, S., Klingenberg, M., Aper, T., Haverich, A., Wilhelmi, M., & Böer, U. (2019). Complete Myogenic Differentiation of Adipogenic Stem Cells Requires Both Biochemical and Mechanical Stimulation. Annals of Biomedical Engineering, 48(3), 913-926. doi:10.1007/s10439-019-02234-z

Araque-Monrós, M. C., García-Cruz, D. M., Escobar-Ivirico, J. L., Gil-Santos, L., Monleón-Pradas, M., & Más-Estellés, J. (2019). Regenerative and Resorbable PLA/HA Hybrid Construct for Tendon/Ligament Tissue Engineering. Annals of Biomedical Engineering, 48(2), 757-767. doi:10.1007/s10439-019-02403-0

Yang, G., Crawford, R. C., & Wang, J. H.-C. (2004). Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. Journal of Biomechanics, 37(10), 1543-1550. doi:10.1016/j.jbiomech.2004.01.005

Surrao, D. C., Fan, J. C. Y., Waldman, S. D., & Amsden, B. G. (2012). A crimp-like microarchitecture improves tissue production in fibrous ligament scaffolds in response to mechanical stimuli. Acta Biomaterialia, 8(10), 3704-3713. doi:10.1016/j.actbio.2012.06.016

Wang, J. H.-C. (2006). Mechanobiology of tendon. Journal of Biomechanics, 39(9), 1563-1582. doi:10.1016/j.jbiomech.2005.05.011

Zhang, C., Zhu, J., Zhou, Y., Thampatty, B. P., & Wang, J. H.-C. (2019). Tendon Stem/Progenitor Cells and Their Interactions with Extracellular Matrix and Mechanical Loading. Stem Cells International, 2019, 1-10. doi:10.1155/2019/3674647

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem