- -

Synthesis and Characterization of Oxidized Polysaccharides for In Situ Forming Hydrogels

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Synthesis and Characterization of Oxidized Polysaccharides for In Situ Forming Hydrogels

Show full item record

Muhammad, M.; Willems, C.; Rodríguez-Fernández, J.; Gallego Ferrer, G.; Groth, T. (2020). Synthesis and Characterization of Oxidized Polysaccharides for In Situ Forming Hydrogels. Biomolecules. 10(8):1-18. https://doi.org/10.3390/biom10081185

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165837

Files in this item

Item Metadata

Title: Synthesis and Characterization of Oxidized Polysaccharides for In Situ Forming Hydrogels
Author: Muhammad, Muhammad Willems, Christian Rodríguez-Fernández, Julio Gallego Ferrer, Gloria Groth, Thomas
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Abstract:
[EN] Polysaccharides are widely used as building blocks of scaffolds and hydrogels in tissue engineering, which may require their chemical modification to permit crosslinking. The goal of this study was to generate a library ...[+]
Subjects: Alginate , Hyaluronic acid , Oxidation , In situ gelling , Hydrogels , Fibroblasts , Cytotoxicity
Copyrigths: Reconocimiento (by)
Source:
Biomolecules. (eissn: 2218-273X )
DOI: 10.3390/biom10081185
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/biom10081185
Project ID:
DAAD/91605199
DFG/Gr1290/11-1
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106000RB-C21/ES/HIDROGELES BIOMIMETICOS IMPRIMIBLES CON PRESENTACION DE FACTORES DE CRECIMIENTO EFICIENTE PARA ESTUDIOS DE HEPATOTOXICIDAD DE ALTO RENDIMIENTO/
Thanks:
This work was supported by the Deutscher Akademischer Austauschdienst DAAD (grant No. 91605199 to MM) and Deutsche Forschungsgemeinschaft (grant Gr1290/11-1 to TG). The kind support by Spanish State Research Agency (AEI) ...[+]
Type: Artículo

References

Ratner, B. D. (2019). Biomaterials: Been There, Done That, and Evolving into the Future. Annual Review of Biomedical Engineering, 21(1), 171-191. doi:10.1146/annurev-bioeng-062117-120940

Morais, J. M., Papadimitrakopoulos, F., & Burgess, D. J. (2010). Biomaterials/Tissue Interactions: Possible Solutions to Overcome Foreign Body Response. The AAPS Journal, 12(2), 188-196. doi:10.1208/s12248-010-9175-3

Domingues, R. M. A., Silva, M., Gershovich, P., Betta, S., Babo, P., Caridade, S. G., … Gomes, M. E. (2015). Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications. Bioconjugate Chemistry, 26(8), 1571-1581. doi:10.1021/acs.bioconjchem.5b00209 [+]
Ratner, B. D. (2019). Biomaterials: Been There, Done That, and Evolving into the Future. Annual Review of Biomedical Engineering, 21(1), 171-191. doi:10.1146/annurev-bioeng-062117-120940

Morais, J. M., Papadimitrakopoulos, F., & Burgess, D. J. (2010). Biomaterials/Tissue Interactions: Possible Solutions to Overcome Foreign Body Response. The AAPS Journal, 12(2), 188-196. doi:10.1208/s12248-010-9175-3

Domingues, R. M. A., Silva, M., Gershovich, P., Betta, S., Babo, P., Caridade, S. G., … Gomes, M. E. (2015). Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications. Bioconjugate Chemistry, 26(8), 1571-1581. doi:10.1021/acs.bioconjchem.5b00209

Pop-Georgievski, O., Zimmermann, R., Kotelnikov, I., Proks, V., Romeis, D., Kučka, J., … Werner, C. (2018). Impact of Bioactive Peptide Motifs on Molecular Structure, Charging, and Nonfouling Properties of Poly(ethylene oxide) Brushes. Langmuir, 34(21), 6010-6020. doi:10.1021/acs.langmuir.8b00441

Wen, Q., Mithieux, S. M., & Weiss, A. S. (2020). Elastin Biomaterials in Dermal Repair. Trends in Biotechnology, 38(3), 280-291. doi:10.1016/j.tibtech.2019.08.005

Trujillo, S., Gonzalez-Garcia, C., Rico, P., Reid, A., Windmill, J., Dalby, M. J., & Salmeron-Sanchez, M. (2020). Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors. Biomaterials, 252, 120104. doi:10.1016/j.biomaterials.2020.120104

Xu, M., Pradhan, S., Agostinacchio, F., Pal, R. K., Greco, G., Mazzolai, B., … Yadavalli, V. K. (2019). Easy, Scalable, Robust, Micropatterned Silk Fibroin Cell Substrates. Advanced Materials Interfaces, 6(8), 1801822. doi:10.1002/admi.201801822

Köwitsch, A., Zhou, G., & Groth, T. (2017). Medical application of glycosaminoglycans: a review. Journal of Tissue Engineering and Regenerative Medicine, 12(1), e23-e41. doi:10.1002/term.2398

Yang, Y., Lu, Y., Zeng, K., Heinze, T., Groth, T., & Zhang, K. (2020). Recent Progress on Cellulose‐Based Ionic Compounds for Biomaterials. Advanced Materials, 33(28), 2000717. doi:10.1002/adma.202000717

Yu, Y., Shen, M., Song, Q., & Xie, J. (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate Polymers, 183, 91-101. doi:10.1016/j.carbpol.2017.12.009

Grasdalen, H. (1983). High-field, 1H-n.m.r. spectroscopy of alginate: sequential structure and linkage conformations. Carbohydrate Research, 118, 255-260. doi:10.1016/0008-6215(83)88053-7

Criado-Gonzalez, M., Fernandez-Gutierrez, M., San Roman, J., Mijangos, C., & Hernández, R. (2019). Local and controlled release of tamoxifen from multi (layer-by-layer) alginate/chitosan complex systems. Carbohydrate Polymers, 206, 428-434. doi:10.1016/j.carbpol.2018.11.007

Kirdponpattara, S., Khamkeaw, A., Sanchavanakit, N., Pavasant, P., & Phisalaphong, M. (2015). Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydrate Polymers, 132, 146-155. doi:10.1016/j.carbpol.2015.06.059

Price, R. D., Berry, M. G., & Navsaria, H. A. (2007). Hyaluronic acid: the scientific and clinical evidence. Journal of Plastic, Reconstructive & Aesthetic Surgery, 60(10), 1110-1119. doi:10.1016/j.bjps.2007.03.005

Kristiansen, K. A., Potthast, A., & Christensen, B. E. (2010). Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydrate Research, 345(10), 1264-1271. doi:10.1016/j.carres.2010.02.011

Millan, C., Cavalli, E., Groth, T., Maniura-Weber, K., & Zenobi-Wong, M. (2015). Engineered Microtissues Formed by Schiff Base Crosslinking Restore the Chondrogenic Potential of Aged Mesenchymal Stem Cells. Advanced Healthcare Materials, 4(9), 1348-1358. doi:10.1002/adhm.201500102

Reyes, J. M. G., Herretes, S., Pirouzmanesh, A., Wang, D.-A., Elisseeff, J. H., Jun, A., … Behrens, A. (2005). A Modified Chondroitin Sulfate Aldehyde Adhesive for Sealing Corneal Incisions. Investigative Opthalmology & Visual Science, 46(4), 1247. doi:10.1167/iovs.04-1192

Peppas, N. A., Hilt, J. Z., Khademhosseini, A., & Langer, R. (2006). Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Advanced Materials, 18(11), 1345-1360. doi:10.1002/adma.200501612

Van Tomme, S. R., Storm, G., & Hennink, W. E. (2008). In situ gelling hydrogels for pharmaceutical and biomedical applications. International Journal of Pharmaceutics, 355(1-2), 1-18. doi:10.1016/j.ijpharm.2008.01.057

Mota, C., Camarero-Espinosa, S., Baker, M. B., Wieringa, P., & Moroni, L. (2020). Bioprinting: From Tissue and Organ Development to in Vitro Models. Chemical Reviews, 120(19), 10547-10607. doi:10.1021/acs.chemrev.9b00789

Matyash, M., Despang, F., Ikonomidou, C., & Gelinsky, M. (2014). Swelling and Mechanical Properties of Alginate Hydrogels with Respect to Promotion of Neural Growth. Tissue Engineering Part C: Methods, 20(5), 401-411. doi:10.1089/ten.tec.2013.0252

Berger, J., Reist, M., Mayer, J. M., Felt, O., Peppas, N. A., & Gurny, R. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 19-34. doi:10.1016/s0939-6411(03)00161-9

Segura, T., Anderson, B. C., Chung, P. H., Webber, R. E., Shull, K. R., & Shea, L. D. (2005). Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials, 26(4), 359-371. doi:10.1016/j.biomaterials.2004.02.067

De la Riva, B., Nowak, C., Sánchez, E., Hernández, A., Schulz-Siegmund, M., Pec, M. K., … Évora, C. (2009). VEGF-controlled release within a bone defect from alginate/chitosan/PLA-H scaffolds. European Journal of Pharmaceutics and Biopharmaceutics, 73(1), 50-58. doi:10.1016/j.ejpb.2009.04.014

Yang, Y., Köwitsch, A., Ma, N., Mäder, K., Pashkuleva, I., Reis, R. L., & Groth, T. (2015). Functionality of surface-coupled oxidised glycosaminoglycans towards fibroblast adhesion. Journal of Bioactive and Compatible Polymers, 31(2), 191-207. doi:10.1177/0883911515599999

Köwitsch, A., Yang, Y., Ma, N., Kuntsche, J., Mäder, K., & Groth, T. (2011). Bioactivity of immobilized hyaluronic acid derivatives regarding protein adsorption and cell adhesion. Biotechnology and Applied Biochemistry, 58(5), 376-389. doi:10.1002/bab.41

Korzhikov, V., Roeker, S., Vlakh, E., Kasper, C., & Tennikova, T. (2008). Synthesis of Multifunctional Polyvinylsaccharide Containing Controllable Amounts of Biospecific Ligands. Bioconjugate Chemistry, 19(3), 617-625. doi:10.1021/bc700383w

Zhao, M., Li, L., Zhou, C., Heyroth, F., Fuhrmann, B., Maeder, K., & Groth, T. (2014). Improved Stability and Cell Response by Intrinsic Cross-Linking of Multilayers from Collagen I and Oxidized Glycosaminoglycans. Biomacromolecules, 15(11), 4272-4280. doi:10.1021/bm501286f

Tang, Q.-Q., Otto, T. C., & Lane, M. D. (2004). Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proceedings of the National Academy of Sciences, 101(26), 9607-9611. doi:10.1073/pnas.0403100101

Alarake, N. Z., Frohberg, P., Groth, T., & Pietzsch, M. (2017). Mechanical Properties and Biocompatibility of in Situ Enzymatically Cross-Linked Gelatin Hydrogels. The International Journal of Artificial Organs, 40(4), 159-168. doi:10.5301/ijao.5000553

Morra, M. (2005). Engineering of Biomaterials Surfaces by Hyaluronan. Biomacromolecules, 6(3), 1205-1223. doi:10.1021/bm049346i

Zhang, R., Xue, M., Yang, J., & Tan, T. (2011). A novel injectable and in situ crosslinked hydrogel based on hyaluronic acid and α,β-polyaspartylhydrazide. Journal of Applied Polymer Science, 125(2), 1116-1126. doi:10.1002/app.34828

Jejurikar, A., Seow, X. T., Lawrie, G., Martin, D., Jayakrishnan, A., & Grøndahl, L. (2012). Degradable alginate hydrogels crosslinked by the macromolecular crosslinker alginate dialdehyde. Journal of Materials Chemistry, 22(19), 9751. doi:10.1039/c2jm30564j

Emami, Z., Ehsani, M., Zandi, M., & Foudazi, R. (2018). Controlling alginate oxidation conditions for making alginate-gelatin hydrogels. Carbohydrate Polymers, 198, 509-517. doi:10.1016/j.carbpol.2018.06.080

Yegappan, R., Selvaprithiviraj, V., Mohandas, A., & Jayakumar, R. (2019). Nano polydopamine crosslinked thiol-functionalized hyaluronic acid hydrogel for angiogenic drug delivery. Colloids and Surfaces B: Biointerfaces, 177, 41-49. doi:10.1016/j.colsurfb.2019.01.035

Bouhadir, K. H., Lee, K. Y., Alsberg, E., Damm, K. L., Anderson, K. W., & Mooney, D. J. (2001). Degradation of Partially Oxidized Alginate and Its Potential Application for Tissue Engineering. Biotechnology Progress, 17(5), 945-950. doi:10.1021/bp010070p

Strätz, J., Liedmann, A., Heinze, T., Fischer, S., & Groth, T. (2019). Effect of Sulfation Route and Subsequent Oxidation on Derivatization Degree and Biocompatibility of Cellulose Sulfates. Macromolecular Bioscience, 20(2), 1900403. doi:10.1002/mabi.201900403

Elahipanah, S., O’Brien, P. J., Rogozhnikov, D., & Yousaf, M. N. (2017). General Dialdehyde Click Chemistry for Amine Bioconjugation. Bioconjugate Chemistry, 28(5), 1422-1433. doi:10.1021/acs.bioconjchem.7b00106

Huang, G., & Huang, H. (2018). Application of hyaluronic acid as carriers in drug delivery. Drug Delivery, 25(1), 766-772. doi:10.1080/10717544.2018.1450910

Qhattal, H. S. S., & Liu, X. (2011). Characterization of CD44-Mediated Cancer Cell Uptake and Intracellular Distribution of Hyaluronan-Grafted Liposomes. Molecular Pharmaceutics, 8(4), 1233-1246. doi:10.1021/mp2000428

Andersen, T., Auk-Emblem, P., & Dornish, M. (2015). 3D Cell Culture in Alginate Hydrogels. Microarrays, 4(2), 133-161. doi:10.3390/microarrays4020133

Poveda-Reyes, S., Moulisova, V., Sanmartín-Masiá, E., Quintanilla-Sierra, L., Salmerón-Sánchez, M., & Ferrer, G. G. (2016). Gelatin-Hyaluronic Acid Hydrogels with Tuned Stiffness to Counterbalance Cellular Forces and Promote Cell Differentiation. Macromolecular Bioscience, 16(9), 1311-1324. doi:10.1002/mabi.201500469

Poveda-Reyes, S., Rodrigo-Navarro, A., Gamboa-Martínez, T. C., Rodíguez-Cabello, J. C., Quintanilla-Sierra, L., Edlund, U., & Ferrer, G. G. (2015). Injectable composites of loose microfibers and gelatin with improved interfacial interaction for soft tissue engineering. Polymer, 74, 224-234. doi:10.1016/j.polymer.2015.08.018

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record