- -

Synthesis and Characterization of Oxidized Polysaccharides for In Situ Forming Hydrogels

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Synthesis and Characterization of Oxidized Polysaccharides for In Situ Forming Hydrogels

Show simple item record

Files in this item

dc.contributor.author Muhammad, Muhammad es_ES
dc.contributor.author Willems, Christian es_ES
dc.contributor.author Rodríguez-Fernández, Julio es_ES
dc.contributor.author Gallego Ferrer, Gloria es_ES
dc.contributor.author Groth, Thomas es_ES
dc.date.accessioned 2021-05-01T03:31:13Z
dc.date.available 2021-05-01T03:31:13Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165837
dc.description.abstract [EN] Polysaccharides are widely used as building blocks of scaffolds and hydrogels in tissue engineering, which may require their chemical modification to permit crosslinking. The goal of this study was to generate a library of oxidized alginate (oALG) and oxidized hyaluronic acid (oHA) that can be used for in situ gelling hydrogels by covalent reaction between aldehyde groups of the oxidized polysaccharides (oPS) and amino groups of carboxymethyl chitosan (CMC) through imine bond formation. Here, we studied the effect of sodium periodate concentration and reaction time on aldehyde content, molecular weight of derivatives and cytotoxicity of oPS towards 3T3-L1 fibroblasts. It was found that the molecular weights of all oPs decreased with oxidation and that the degree of oxidation was generally higher in oHA than in oALG. Studies showed that only oPs with an oxidation degree above 25% were cytotoxic. Initial studies were also done on the crosslinking of oPs with CMC showing with rheometry that rather soft gels were formed from higher oxidized oPs possessing a moderate cytotoxicity. The results of this study indicate the potential of oALG and oHA for use as in situ gelling hydrogels or inks in bioprinting for application in tissue engineering and controlled release. es_ES
dc.description.sponsorship This work was supported by the Deutscher Akademischer Austauschdienst DAAD (grant No. 91605199 to MM) and Deutsche Forschungsgemeinschaft (grant Gr1290/11-1 to TG). The kind support by Spanish State Research Agency (AEI) through the PID2019-106000RB-C21/AEI/10.13039/501100011033 project (including the FEDER financial support) to GGF is acknowledged. We acknowledge the financial support within the funding programme "Open Access Publishing" by the German Research Foundation (DFG).We are very thankful to Andrea Liedmann for her guidance during the cell experiments and Alexandros Repanas for his help during the synthesis and characterization of oPs and data analyses. Furthermore, Marie-Luise Trutschel is acknowledged for her guidance during the rheological measurements. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation DAAD/91605199 es_ES
dc.relation DFG/Gr1290/11-1 es_ES
dc.relation info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106000RB-C21/ES/HIDROGELES BIOMIMETICOS IMPRIMIBLES CON PRESENTACION DE FACTORES DE CRECIMIENTO EFICIENTE PARA ESTUDIOS DE HEPATOTOXICIDAD DE ALTO RENDIMIENTO/ es_ES
dc.relation.ispartof Biomolecules es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Alginate es_ES
dc.subject Hyaluronic acid es_ES
dc.subject Oxidation es_ES
dc.subject In situ gelling es_ES
dc.subject Hydrogels es_ES
dc.subject Fibroblasts es_ES
dc.subject Cytotoxicity es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Synthesis and Characterization of Oxidized Polysaccharides for In Situ Forming Hydrogels es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/biom10081185 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Muhammad, M.; Willems, C.; Rodríguez-Fernández, J.; Gallego Ferrer, G.; Groth, T. (2020). Synthesis and Characterization of Oxidized Polysaccharides for In Situ Forming Hydrogels. Biomolecules. 10(8):1-18. https://doi.org/10.3390/biom10081185 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/biom10081185 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2218-273X es_ES
dc.identifier.pmid 32824101 es_ES
dc.identifier.pmcid PMC7464976 es_ES
dc.relation.pasarela S\430793 es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Deutscher Akademischer Austauschdienst es_ES
dc.description.references Ratner, B. D. (2019). Biomaterials: Been There, Done That, and Evolving into the Future. Annual Review of Biomedical Engineering, 21(1), 171-191. doi:10.1146/annurev-bioeng-062117-120940 es_ES
dc.description.references Morais, J. M., Papadimitrakopoulos, F., & Burgess, D. J. (2010). Biomaterials/Tissue Interactions: Possible Solutions to Overcome Foreign Body Response. The AAPS Journal, 12(2), 188-196. doi:10.1208/s12248-010-9175-3 es_ES
dc.description.references Domingues, R. M. A., Silva, M., Gershovich, P., Betta, S., Babo, P., Caridade, S. G., … Gomes, M. E. (2015). Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications. Bioconjugate Chemistry, 26(8), 1571-1581. doi:10.1021/acs.bioconjchem.5b00209 es_ES
dc.description.references Pop-Georgievski, O., Zimmermann, R., Kotelnikov, I., Proks, V., Romeis, D., Kučka, J., … Werner, C. (2018). Impact of Bioactive Peptide Motifs on Molecular Structure, Charging, and Nonfouling Properties of Poly(ethylene oxide) Brushes. Langmuir, 34(21), 6010-6020. doi:10.1021/acs.langmuir.8b00441 es_ES
dc.description.references Wen, Q., Mithieux, S. M., & Weiss, A. S. (2020). Elastin Biomaterials in Dermal Repair. Trends in Biotechnology, 38(3), 280-291. doi:10.1016/j.tibtech.2019.08.005 es_ES
dc.description.references Trujillo, S., Gonzalez-Garcia, C., Rico, P., Reid, A., Windmill, J., Dalby, M. J., & Salmeron-Sanchez, M. (2020). Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors. Biomaterials, 252, 120104. doi:10.1016/j.biomaterials.2020.120104 es_ES
dc.description.references Xu, M., Pradhan, S., Agostinacchio, F., Pal, R. K., Greco, G., Mazzolai, B., … Yadavalli, V. K. (2019). Easy, Scalable, Robust, Micropatterned Silk Fibroin Cell Substrates. Advanced Materials Interfaces, 6(8), 1801822. doi:10.1002/admi.201801822 es_ES
dc.description.references Köwitsch, A., Zhou, G., & Groth, T. (2017). Medical application of glycosaminoglycans: a review. Journal of Tissue Engineering and Regenerative Medicine, 12(1), e23-e41. doi:10.1002/term.2398 es_ES
dc.description.references Yang, Y., Lu, Y., Zeng, K., Heinze, T., Groth, T., & Zhang, K. (2020). Recent Progress on Cellulose‐Based Ionic Compounds for Biomaterials. Advanced Materials, 33(28), 2000717. doi:10.1002/adma.202000717 es_ES
dc.description.references Yu, Y., Shen, M., Song, Q., & Xie, J. (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate Polymers, 183, 91-101. doi:10.1016/j.carbpol.2017.12.009 es_ES
dc.description.references Grasdalen, H. (1983). High-field, 1H-n.m.r. spectroscopy of alginate: sequential structure and linkage conformations. Carbohydrate Research, 118, 255-260. doi:10.1016/0008-6215(83)88053-7 es_ES
dc.description.references Criado-Gonzalez, M., Fernandez-Gutierrez, M., San Roman, J., Mijangos, C., & Hernández, R. (2019). Local and controlled release of tamoxifen from multi (layer-by-layer) alginate/chitosan complex systems. Carbohydrate Polymers, 206, 428-434. doi:10.1016/j.carbpol.2018.11.007 es_ES
dc.description.references Kirdponpattara, S., Khamkeaw, A., Sanchavanakit, N., Pavasant, P., & Phisalaphong, M. (2015). Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydrate Polymers, 132, 146-155. doi:10.1016/j.carbpol.2015.06.059 es_ES
dc.description.references Price, R. D., Berry, M. G., & Navsaria, H. A. (2007). Hyaluronic acid: the scientific and clinical evidence. Journal of Plastic, Reconstructive & Aesthetic Surgery, 60(10), 1110-1119. doi:10.1016/j.bjps.2007.03.005 es_ES
dc.description.references Kristiansen, K. A., Potthast, A., & Christensen, B. E. (2010). Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydrate Research, 345(10), 1264-1271. doi:10.1016/j.carres.2010.02.011 es_ES
dc.description.references Millan, C., Cavalli, E., Groth, T., Maniura-Weber, K., & Zenobi-Wong, M. (2015). Engineered Microtissues Formed by Schiff Base Crosslinking Restore the Chondrogenic Potential of Aged Mesenchymal Stem Cells. Advanced Healthcare Materials, 4(9), 1348-1358. doi:10.1002/adhm.201500102 es_ES
dc.description.references Reyes, J. M. G., Herretes, S., Pirouzmanesh, A., Wang, D.-A., Elisseeff, J. H., Jun, A., … Behrens, A. (2005). A Modified Chondroitin Sulfate Aldehyde Adhesive for Sealing Corneal Incisions. Investigative Opthalmology & Visual Science, 46(4), 1247. doi:10.1167/iovs.04-1192 es_ES
dc.description.references Peppas, N. A., Hilt, J. Z., Khademhosseini, A., & Langer, R. (2006). Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Advanced Materials, 18(11), 1345-1360. doi:10.1002/adma.200501612 es_ES
dc.description.references Van Tomme, S. R., Storm, G., & Hennink, W. E. (2008). In situ gelling hydrogels for pharmaceutical and biomedical applications. International Journal of Pharmaceutics, 355(1-2), 1-18. doi:10.1016/j.ijpharm.2008.01.057 es_ES
dc.description.references Mota, C., Camarero-Espinosa, S., Baker, M. B., Wieringa, P., & Moroni, L. (2020). Bioprinting: From Tissue and Organ Development to in Vitro Models. Chemical Reviews, 120(19), 10547-10607. doi:10.1021/acs.chemrev.9b00789 es_ES
dc.description.references Matyash, M., Despang, F., Ikonomidou, C., & Gelinsky, M. (2014). Swelling and Mechanical Properties of Alginate Hydrogels with Respect to Promotion of Neural Growth. Tissue Engineering Part C: Methods, 20(5), 401-411. doi:10.1089/ten.tec.2013.0252 es_ES
dc.description.references Berger, J., Reist, M., Mayer, J. M., Felt, O., Peppas, N. A., & Gurny, R. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 19-34. doi:10.1016/s0939-6411(03)00161-9 es_ES
dc.description.references Segura, T., Anderson, B. C., Chung, P. H., Webber, R. E., Shull, K. R., & Shea, L. D. (2005). Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials, 26(4), 359-371. doi:10.1016/j.biomaterials.2004.02.067 es_ES
dc.description.references De la Riva, B., Nowak, C., Sánchez, E., Hernández, A., Schulz-Siegmund, M., Pec, M. K., … Évora, C. (2009). VEGF-controlled release within a bone defect from alginate/chitosan/PLA-H scaffolds. European Journal of Pharmaceutics and Biopharmaceutics, 73(1), 50-58. doi:10.1016/j.ejpb.2009.04.014 es_ES
dc.description.references Yang, Y., Köwitsch, A., Ma, N., Mäder, K., Pashkuleva, I., Reis, R. L., & Groth, T. (2015). Functionality of surface-coupled oxidised glycosaminoglycans towards fibroblast adhesion. Journal of Bioactive and Compatible Polymers, 31(2), 191-207. doi:10.1177/0883911515599999 es_ES
dc.description.references Köwitsch, A., Yang, Y., Ma, N., Kuntsche, J., Mäder, K., & Groth, T. (2011). Bioactivity of immobilized hyaluronic acid derivatives regarding protein adsorption and cell adhesion. Biotechnology and Applied Biochemistry, 58(5), 376-389. doi:10.1002/bab.41 es_ES
dc.description.references Korzhikov, V., Roeker, S., Vlakh, E., Kasper, C., & Tennikova, T. (2008). Synthesis of Multifunctional Polyvinylsaccharide Containing Controllable Amounts of Biospecific Ligands. Bioconjugate Chemistry, 19(3), 617-625. doi:10.1021/bc700383w es_ES
dc.description.references Zhao, M., Li, L., Zhou, C., Heyroth, F., Fuhrmann, B., Maeder, K., & Groth, T. (2014). Improved Stability and Cell Response by Intrinsic Cross-Linking of Multilayers from Collagen I and Oxidized Glycosaminoglycans. Biomacromolecules, 15(11), 4272-4280. doi:10.1021/bm501286f es_ES
dc.description.references Tang, Q.-Q., Otto, T. C., & Lane, M. D. (2004). Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proceedings of the National Academy of Sciences, 101(26), 9607-9611. doi:10.1073/pnas.0403100101 es_ES
dc.description.references Alarake, N. Z., Frohberg, P., Groth, T., & Pietzsch, M. (2017). Mechanical Properties and Biocompatibility of in Situ Enzymatically Cross-Linked Gelatin Hydrogels. The International Journal of Artificial Organs, 40(4), 159-168. doi:10.5301/ijao.5000553 es_ES
dc.description.references Morra, M. (2005). Engineering of Biomaterials Surfaces by Hyaluronan. Biomacromolecules, 6(3), 1205-1223. doi:10.1021/bm049346i es_ES
dc.description.references Zhang, R., Xue, M., Yang, J., & Tan, T. (2011). A novel injectable and in situ crosslinked hydrogel based on hyaluronic acid and α,β-polyaspartylhydrazide. Journal of Applied Polymer Science, 125(2), 1116-1126. doi:10.1002/app.34828 es_ES
dc.description.references Jejurikar, A., Seow, X. T., Lawrie, G., Martin, D., Jayakrishnan, A., & Grøndahl, L. (2012). Degradable alginate hydrogels crosslinked by the macromolecular crosslinker alginate dialdehyde. Journal of Materials Chemistry, 22(19), 9751. doi:10.1039/c2jm30564j es_ES
dc.description.references Emami, Z., Ehsani, M., Zandi, M., & Foudazi, R. (2018). Controlling alginate oxidation conditions for making alginate-gelatin hydrogels. Carbohydrate Polymers, 198, 509-517. doi:10.1016/j.carbpol.2018.06.080 es_ES
dc.description.references Yegappan, R., Selvaprithiviraj, V., Mohandas, A., & Jayakumar, R. (2019). Nano polydopamine crosslinked thiol-functionalized hyaluronic acid hydrogel for angiogenic drug delivery. Colloids and Surfaces B: Biointerfaces, 177, 41-49. doi:10.1016/j.colsurfb.2019.01.035 es_ES
dc.description.references Bouhadir, K. H., Lee, K. Y., Alsberg, E., Damm, K. L., Anderson, K. W., & Mooney, D. J. (2001). Degradation of Partially Oxidized Alginate and Its Potential Application for Tissue Engineering. Biotechnology Progress, 17(5), 945-950. doi:10.1021/bp010070p es_ES
dc.description.references Strätz, J., Liedmann, A., Heinze, T., Fischer, S., & Groth, T. (2019). Effect of Sulfation Route and Subsequent Oxidation on Derivatization Degree and Biocompatibility of Cellulose Sulfates. Macromolecular Bioscience, 20(2), 1900403. doi:10.1002/mabi.201900403 es_ES
dc.description.references Elahipanah, S., O’Brien, P. J., Rogozhnikov, D., & Yousaf, M. N. (2017). General Dialdehyde Click Chemistry for Amine Bioconjugation. Bioconjugate Chemistry, 28(5), 1422-1433. doi:10.1021/acs.bioconjchem.7b00106 es_ES
dc.description.references Huang, G., & Huang, H. (2018). Application of hyaluronic acid as carriers in drug delivery. Drug Delivery, 25(1), 766-772. doi:10.1080/10717544.2018.1450910 es_ES
dc.description.references Qhattal, H. S. S., & Liu, X. (2011). Characterization of CD44-Mediated Cancer Cell Uptake and Intracellular Distribution of Hyaluronan-Grafted Liposomes. Molecular Pharmaceutics, 8(4), 1233-1246. doi:10.1021/mp2000428 es_ES
dc.description.references Andersen, T., Auk-Emblem, P., & Dornish, M. (2015). 3D Cell Culture in Alginate Hydrogels. Microarrays, 4(2), 133-161. doi:10.3390/microarrays4020133 es_ES
dc.description.references Poveda-Reyes, S., Moulisova, V., Sanmartín-Masiá, E., Quintanilla-Sierra, L., Salmerón-Sánchez, M., & Ferrer, G. G. (2016). Gelatin-Hyaluronic Acid Hydrogels with Tuned Stiffness to Counterbalance Cellular Forces and Promote Cell Differentiation. Macromolecular Bioscience, 16(9), 1311-1324. doi:10.1002/mabi.201500469 es_ES
dc.description.references Poveda-Reyes, S., Rodrigo-Navarro, A., Gamboa-Martínez, T. C., Rodíguez-Cabello, J. C., Quintanilla-Sierra, L., Edlund, U., & Ferrer, G. G. (2015). Injectable composites of loose microfibers and gelatin with improved interfacial interaction for soft tissue engineering. Polymer, 74, 224-234. doi:10.1016/j.polymer.2015.08.018 es_ES


This item appears in the following Collection(s)

Show simple item record