- -

Borax induces osteogenesis by stimulating NaBC1 transporter via activation of BMP pathway

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Borax induces osteogenesis by stimulating NaBC1 transporter via activation of BMP pathway

Show full item record

Rico Tortosa, PM.; Rodrigo Navarro, A.; Sánchez-Pérez, L.; Salmerón Sánchez, M. (2020). Borax induces osteogenesis by stimulating NaBC1 transporter via activation of BMP pathway. Communications Biology. 3(1):1-15. https://doi.org/10.1038/s42003-020-01449-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165839

Files in this item

Item Metadata

Title: Borax induces osteogenesis by stimulating NaBC1 transporter via activation of BMP pathway
Author: Rico Tortosa, Patricia María Rodrigo Navarro, Aleixandre Sánchez-Pérez, Laura Salmerón Sánchez, Manuel
UPV Unit: Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] The intrinsic properties of mesenchymal stem cells (MSCs) make them ideal candidates for tissue engineering applications. Efforts have been made to control MSC behavior by using material systems to engineer synthetic ...[+]
Subjects: Borax , NaBC1 , Integrins , Fibronectin , Mesenchymal Stem Cells , Osteogenesis , Cell repceptor crosstalk , Intracellular tension
Copyrigths: Reconocimiento (by)
Source:
Communications Biology. (eissn: 2399-3642 )
DOI: 10.1038/s42003-020-01449-4
Publisher:
Springer Nature
Publisher version: https://doi.org/10.1038/s42003-020-01449-4
Project ID:
info:eu-repo/grantAgreement/UKRI//EP%2FP001114%2F1/GB/Engineering growth factor microenvironments - a new therapeutic paradigm for regenerative medicine/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096794-B-I00/ES/DISEÑO DE MICROENTORNOS CELULARES PARA PROMOVER LA MECANOTRANSDUCCION SINERGICA DE CANALES DE IONES E INTEGRINAS/
Thanks:
P.R. acknowledges support from the Spanish Ministry of Science, Innovation and Universities (RTI2018-096794), and Fondo Europeo de Desarrollo Regional (FEDER). CIBER-BBN is an initiative funded by the VI National R&D&I ...[+]
Type: Artículo

References

Akhurst, R. J. & Hata, A. Targeting the TGFbeta signalling pathway in disease. Nat. Rev. Drug Discov. 11, 790–811 (2012).

Brizzi, M. F., Tarone, G. & Defilippi, P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr. Opin. Cell Biol. 24, 645–651 (2012).

Watt, F. M. & Huck, W. T. S. Role of extracellular matrix regulating stem cell fate. Nat. Rev. Mol. Cell Biol. 14, 467–473 (2013). [+]
Akhurst, R. J. & Hata, A. Targeting the TGFbeta signalling pathway in disease. Nat. Rev. Drug Discov. 11, 790–811 (2012).

Brizzi, M. F., Tarone, G. & Defilippi, P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr. Opin. Cell Biol. 24, 645–651 (2012).

Watt, F. M. & Huck, W. T. S. Role of extracellular matrix regulating stem cell fate. Nat. Rev. Mol. Cell Biol. 14, 467–473 (2013).

Benoit, D. S. W., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat. Mater. 7, 816–823 (2008).

Baker, B. M., Trappmann, B., Wang, W. Y., Sakar, M. S., Kim, I. L., Shenoy, V. B., Burdick, J. A. & Chen, C. S. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillary microenvironments. Nat. Mater. 14, 1262–1268 (2015).

Das, R. K., Gocheva, V., Hammink, R., Zouani, O. F. & Rowan, A. E. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat. Mater. 15, 318–325 (2015).

Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA 107, 4872–4877 (2010).

Yang, J., McNamara, L. E., Gadegaard, N., Alakpa, E. V., Burgess, K. V., Dominic Meek, R. M. & Dalby, M. J. Nanotopographical induction of osteogenesis through adhesion, bone morphogenetic protein cosignaling, and regulation of microRNAs. ACS Nano. 8, 9941–9953 (2014).

Dalby, M. J., García, A. J. & Salmeron-Sanchez, M. Receptor control in mesenchymal stem cell engineering. Nat. Rev. 3, 17091 (2018).

Carragee, E. J., Hurwitz, E. L. & Weiner, B. K. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 11, 471–491 (2011).

Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behavior in development and regeneration. Nat. Rev. 18, 728–742 (2017).

Biggs, M. J., Richards, R. G., Gadegaard, N., Wilkinson, C. D., Oreffo, R. O. & Dalby, M. J. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signaling in STRO-1+ enriched skeletal stem cells. Biomaterials 30, 5094–5103 (2009).

McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell. 6, 483–495 (2004).

Hille, B. Ion Channels of Excitable Membranes. (Sinauer Associates Inc, Sunderland, MA, 2001).

Lauritzen, I., Chemin, J., Honoré, E., Martine, J., Guy, N., Lazdunski, M. & Patel, A. J. Cross-talk between the mechano-gated K2p channel TREK-1 and the actin cytoskeleton. EMBO Rep. 6, 642–648 (2005).

Gasparski, A. N. & Beningo, K. A. Mechanoreception at the cell membrane: more than the integrins. Arch. Biochem. Biophys. 586, 20–26 (2015).

Pillozzi, S. & Becchetti, A. Ion channels in hematopoietic and mesenchymal stem cells. Stem Cells Int. 2012, 217910 (2012).

Park, M., Li, Q., Shcheynikov, N., Zeng, W. & Muallem, S. NaBC1 is a ubiquitous electrogenic Na+-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mol. Cell. 16, 331–341 (2004).

Vithana, E. N., Morgan, P., Sundaresan, P., Ebenezer, N. D., Tan, D. T., Mohamed, M. D., Anand, S., Khine, K. O., Venkataraman, D., Yong, V. H., Salto-Tellez, M., Venkatraman, A., Guo, K., Hemadevi, B., Srinivasan, M., Prajna, V., Khine, M., Casey, J. R., Inglehearn, C. F. & Aung, T. Mutations in sodium-borate cotransporter SLC4A11 cause recessive congenital hereditary endotelial dystrophy (CHED2). Nat. Genet. 38, 755–757 (2006).

Lopez, I. A., Rosenblatt, M. I., Kim, C., Galbraith, G. C., Jones, S. M., Kao, L., Newman, D., Liu, W., Yeh, S., Pushkin, A., Abuladze, N. & Kurtz, I. Slc4a11 gene disruption in mice: cellular targets of sensorineural abnormalities. J. Biol. Chem. 284, 26882–26896 (2009).

Rico, P., Rodrigo-Navarro, A. & Salmeron-Sanchez, M. Borax-loaded PLLA for promotion of myogenic differentiation. Tissue Eng. Part A. 21, 2662–2672 (2015).

Rico, P., Rodrigo-Navarro, A., de la Peña, M., Moulisová, V., Costell, M. & Salmeron-Sanchez, M. Simultaneous boron ion-channel activation for enhanced vascularization. Adv. Biosyst. 3, 1800220 (2019).

Cifti, E., Köse, S., Korkusuz, P., Timuçin, M. & Korkusuz, F. Boron containing nano hydroxyapatites (Bn-HAp) stimulate mesenchymal stem cell adhesion, proliferation and differentiation. Key Eng. Mater. 631, 373–378 (2015).

Li, X., Wang, X., Jiang, X., Yamaguchi, M., Ito, A., Bando, Y. & Golberg, D. Boron nitride nanotube-enhanced osteogenic differentiation of mesenchymal stem cells. J. Biomed. Res. 104, 323–329 (2015).

Liu, Y. J., Su, W. T. & Chen, P. H. Magnesium and zinc borate enhance osteoblastic differentiation of stem cells from human exfoliated deciduous teeth in vitro. J. Biomater. Appl. 32, 765–774 (2018).

Dogan, A., Demirci, S., Apdik, H., Bayrak, O. F., Gulluoglu, S., Tuysuz, E. C., Gusev, O., Rizanov, A. A., Nikerel, E. & Sahin, F. A new hope for obesity management: boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway. Metabolism 69, 130–142 (2017).

Abdik, E. A., Abdik, H., Tasli, P. N., Asli, A., Deniz, H. & Sahin, F. Suppressive role of boron on adipogenic differentiation and fat deposition in human mesenchymal stem cells. Biol. Trace Elem. Res. 188, 384–392 (2018).

Humphries, M. J., Travis, M. A., Clark, K. & Mould, A. P. Mechanisms of integration of cells and extracellular matrices by integrins. Biochem. Soc. Trans. 32, 822–825 (2004).

Burns, A. E. & Varin, J. Poly-L-lactic acid rod fixation results in foot surgery. J. Foot Ankle Surg. 37, 37–41 (1998).

Harada, S. & Rodan, G. A. Control of osteoblast function and regulation of bone mass. Nature 423, 349–355 (2003).

Gregory, C. A., Ylostalo, J. & Prockop, D. J. Adult bone marrow stem/progenitor cells (MSCs) are preconditioned by microenvironmental niches in culture: a two-stage hypothesis for regulation of MSC fate. Sci. Stke. 294, pe37 (2005).

Jones, D. R. H. & Ashby, M. F. Engineering Materials 1. (Butterworth-Heinemann, 2019).

Farah, S., Anderson, D. G. & Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications-A comprehensive review. Adv. Drug Deliv. Rev. 107, 367–392 (2016).

González-García, C., Moratal, D., Oreffo, R. O. C., Dalby, M. J. & Salmeron-Sanchez, M. Surface mobility regulates skeletal stem cell differentiation. Integr. Biol. 4, 531–539 (2012).

Liddington, R. C. & Ginsberg, M. H. Integrin activation takes shape. J. Cell Biol. 158, 833–839 (2002).

Ganor, Y., Besser, M. & Ben-Zakay, N. et al. Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J. Immunol. 170, 4362–4372 (2003).

Puklin-Faucher, E. & Sheetz, M. P. The mechanical integrin cycle. J. Cell Sci. 122, 179–186 (2009).

Liao, S. F., Monegue, J. S., Lindemann, M. D., Cromwell, G. L. & Matthews, J. C. Dietary supplementation of boron differentially alters expression of borate transporter (NaBC1) mRNA by jejunum and kidney of growing pigs. Biol. Trace Elem. Res. 143, 901–912 (2011).

Saidak, Z., Le Henaff, C., Azzi, S., Marty, C., Da Nascimento, S., Sonnet, P. & Marie, P. J. Wnt/β-catenin signaling mediates osteoblast differentiation triggered by peptide-induced α5β1 integrin priming in Mesenchymal Skeletal Cells. J. Biol. Chem. 290, 6903–6912 (2015).

Chen, Q., Shou, P., Zhang, L., Xu, C., Zheng, C., Han, Y., Li, W., Huang, Y., Zhang, X., Shao, C., Roberts, A. I., Rabson, A. B., Ren, G., Zhang, Y., Wang, Y., Denhardt, D. T. & Shi, Y. An osteopontine-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells. Stem Cells 32, 327–337 (2014).

Hofmann, G., Bernabei, P. A. & Crociani, O. et al. HERG K+ channels activation during β1 integrin-mediated adhesion to fibronectin induces an up-regulation of αvβ3 integrin in the preosteoclastic leukemia cell line FLG 29.1. J. Biol. Chem. 276, 4923–4931 (2001).

Becchetti, A. et al. Response to fibronectin-integrin interaction in leukaemia cells: delayed enhancing of a K + current. Proc. R. Soc. Lond. 248, 235–240 (1992).

Arcangeli, A. & Becchetti, A. Complex functional interaction between integrin receptors and ion channels. TRENDS Cell Biol. 16, 631–639 (2006).

Jing, J., Hinton, R. J. & Feng, J. Q. BMR1A signaling in cartilage development and endochondral bone formation. Vitam. Hormones. 99, 273–291 (2015).

Kimura, M., Ito, M., Amano, K., Chihara, Y., Fukata, M., Nakafuku, B., Yamamori, J., Feng, J., Nakano, T. & Okawa, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–248 (1996).

Pelham, R. J. & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

Kovacs, M., Tóth, J., Hetényi, C., Málnási-Csizmadia, A. & Sellers, J. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279, 35557–35563 (2004).

Narumiya, S., Ishizaki, T. & Ufhata, M. Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol. 325, 273–284 (2000).

Schmierer, B. & Hill, C. S. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat. Rev. 8, 970–982 (2007).

Zhao, B., Li, L. & Guan, K. L. Hippo signaling at a glance. J. Cell Sci. 123, 4001–4006 (2010).

Varelas, X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141, 1614–1626 (2014).

Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S. & Marshak, D. R. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

Kirkham, G. R. & Cartmell, S. H. Genes and proteins involved in the regulation of osteogenesis. Top. Tissue Eng. 3, 1–22 (2007).

Chamberlain, G., Fox, J., Ashton, B. & Middleton, J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25, 2739–2749 (2007).

Lowe, C. E., O´Rahilly, S. & Rochford, J. J. Adipogenesis at a glance. J. Cell Sci. 124, 2681–2686 (2011).

MacQueen, L., Sun, Y. & Simmons, C. A. Mesenchymal stem cell mechanobiology and emerging experimental platforms. J. R. Soc. Interface 10, 20130179 (2013).

Ivanovska, I. L., Shin, J. W., Swift, J. & Discher, D. E. Stem cell mechanobiology: diverse lessons from bone marrow. Trends Cell Biol. 25, 523–532 (2015).

Phimphilai, M., Zhao, Z., Boules, H., Roca, H. & Franceschi, R. T. BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J. Bone Miner. Res. 21, 637–646 (2006).

Comoglio, P. M., Boccaccio, C. & Trusolino, L. Interactions between growth factor receptors and adhesion molecules: breaking the rules. Curr. Opin. Cell Biol. 15, 565–571 (2003).

Fourel, L., Valat, A., Faurobert, E., Guillot, R., Bourrin-Reynard, I., Ren, K., Lafanechère, L., Planus, E., Picart, C. & Albiges-Rizo, C. β3 integrin-mediated spreading induced by matrix-bound BMP-2 controls Smad signaling in a stiffness-independent manner. J. Cell Biol. 212, 693–706 (2016).

Morandi, E. M., Verstappen, R., Zwierzina, M. E., Geley, S., Pierer, G. & Ploner, C. ITGAV and ITGA5 diversely regulate proliferation and adipogenic differentiation of human adipose derived stem cells. Sci. Rep. 6, 28889 (2016).

Brazil, D. P., Church, R. H., Surae, S., Godson, C. & Martin, F. BMP signalling: agony and antagony in the family. Trends Cell Biol. 25, 249–264 (2015).

Nardone, G., Oliver-De La Cruz, J., Vrbsky, J., Martini, C., Pribyl, J., Skla´dal, P., Pesl, M., Caluori, G., Pagliari, S., martino, F., Maceckova, Z., Hajduch, M., Sanz-Garcia, A., Pugno, N. M., Stokin, G. B. & Forte, G. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 8, 15321 (2017).

Miyazono, K., Maeda, S. & Imamura, T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 16, 251–263 (2005).

Rico, P., Rodrigo-Navarro, A., Sánchez Pérez, L. & Salmeron-Sanchez, M. Borax induces osteogenesis by stimulating NaBC1 transporter via activation of BMP pathway. Commun. Biol. https://doi.org/10.5525/gla.researchdata.1076 (2020).

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record