- -

Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks

Mostrar el registro completo del ítem

López-Madrona, VJ.; Pérez-Montoyo, E.; Alvarez-Salvado, E.; Moratal, D.; Herreras, O.; Pereda, E.; Mirasso, CR.... (2020). Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks. eLife. 9:1-35. https://doi.org/10.7554/eLife.57313

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165841

Ficheros en el ítem

Metadatos del ítem

Título: Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks
Autor: López-Madrona, Víctor J. Pérez-Montoyo, Elena Alvarez-Salvado, Efren Moratal, David Herreras, Oscar Pereda, Ernesto Mirasso, Claudio R. Canals, Santiago
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Hippocampal firing is organized in theta sequences controlled by internal memory processes and by external sensory cues, but how these computations are coordinated is not fully understood. Although theta activity is ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
eLife. (eissn: 2050-084X )
DOI: 10.7554/eLife.57313
Editorial:
eLife Sciences Publications
Versión del editor: https://doi.org/10.7554/eLife.57313
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/668863/EU/Systems Biology of Alcohol Addiction: Modeling and validating disease state networks in human and animal brains for understanding pathophysiolgy, predicting outcomes and improving therapy/
...[+]
info:eu-repo/grantAgreement/EC/H2020/668863/EU/Systems Biology of Alcohol Addiction: Modeling and validating disease state networks in human and animal brains for understanding pathophysiolgy, predicting outcomes and improving therapy/
info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-1-R/ES/TRATAR LA ENFERMEDAD RESINTONIZANDO LA DINAMICA DE LAS REDES CEREBRALES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101055-B-I00/ES/PAPEL DEL NUCLEO ACCUMBENS EN LA REGULACION DE LA CONECTIVIDAD FUNCIONAL DE LARGO RECORRIDO DEL HIPOCAMPO/
info:eu-repo/grantAgreement/AEI//SEV-2017-0723/
info:eu-repo/grantAgreement/AEI//MDM-2017-0711/
info:eu-repo/grantAgreement/MINECO//TEC2016-80063-C3-3-R/ES/DESARROLLANDO UNA DESCODIFICACION DE DATOS DE FORMA OPTICA EN REDES DE COMUNICACIONES POR FIBRA UTILIZANDO DISPOSITIVOS FOTONICOS NEURO-INSPIRADOS/
info:eu-repo/grantAgreement/MINECO//TEC2016-80063-C3-2-R/ES/MEJORANDO LA DESCODIFICACION DE DATOS DE FORMA OPTICA EN REDES DE COMUNICACIONES POR FIBRA UTILIZANDO DISPOSITIVOS FOTONICOS NEURO-INSPIRADOS/
info:eu-repo/grantAgreement/MINECO//SAF2016-80100-R/ES/GENERADORES LFP PARA ESTUDIAR PROCESAMIENTO BILATERAL Y DETECCION DE CAMBIOS PERMANENTES EN ESTRUCTURAS REMOTAS A FOCOS DE ICTUS Y EPILEPSIA/
info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/
[-]
Agradecimientos:
European Regional Development Fund BFU2015-64380-C2-1-R Santiago Canals European Regional Development Fund BFU2015-64380-C2-2-R David Moratal European Regional Development Fund PGC2018-101055-B-I00 Santiago Canals Horizon ...[+]
Tipo: Artículo

References

Ahmed, O. J., & Mehta, M. R. (2012). Running Speed Alters the Frequency of Hippocampal Gamma Oscillations. Journal of Neuroscience, 32(21), 7373-7383. doi:10.1523/jneurosci.5110-11.2012

Ainge, J. A., van der Meer, M. A. A., Langston, R. F., & Wood, E. R. (2007). Exploring the role of context-dependent hippocampal activity in spatial alternation behavior. Hippocampus, 17(10), 988-1002. doi:10.1002/hipo.20301

Alonso, A., & García-Austt, E. (1987). Neuronal sources of theta rhythm in the entorhinal cortex of the rat. Experimental Brain Research, 67(3), 502-509. doi:10.1007/bf00247283 [+]
Ahmed, O. J., & Mehta, M. R. (2012). Running Speed Alters the Frequency of Hippocampal Gamma Oscillations. Journal of Neuroscience, 32(21), 7373-7383. doi:10.1523/jneurosci.5110-11.2012

Ainge, J. A., van der Meer, M. A. A., Langston, R. F., & Wood, E. R. (2007). Exploring the role of context-dependent hippocampal activity in spatial alternation behavior. Hippocampus, 17(10), 988-1002. doi:10.1002/hipo.20301

Alonso, A., & García-Austt, E. (1987). Neuronal sources of theta rhythm in the entorhinal cortex of the rat. Experimental Brain Research, 67(3), 502-509. doi:10.1007/bf00247283

Álvarez-Salvado, E., Pallarés, V., Moreno, A., & Canals, S. (2014). Functional MRI of long-term potentiation: imaging network plasticity. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1633), 20130152. doi:10.1098/rstb.2013.0152

Amzica, F., & Steriade, M. (1998). Electrophysiological correlates of sleep delta waves. Electroencephalography and Clinical Neurophysiology, 107(2), 69-83. doi:10.1016/s0013-4694(98)00051-0

Andersen, P., Holmqvist, B., & Voorhoeve, P. E. (1966). Entorhinal Activation of Dentate Granule Cells. Acta Physiologica Scandinavica, 66(4), 448-460. doi:10.1111/j.1748-1716.1966.tb03223.x

Barnett, L., & Seth, A. K. (2011). Behaviour of Granger causality under filtering: Theoretical invariance and practical application. Journal of Neuroscience Methods, 201(2), 404-419. doi:10.1016/j.jneumeth.2011.08.010

Barth, A. M., Domonkos, A., Fernandez-Ruiz, A., Freund, T. F., & Varga, V. (2018). Hippocampal Network Dynamics during Rearing Episodes. Cell Reports, 23(6), 1706-1715. doi:10.1016/j.celrep.2018.04.021

Bell, A. J., & Sejnowski, T. J. (1995). An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation, 7(6), 1129-1159. doi:10.1162/neco.1995.7.6.1129

Belluscio, M. A., Mizuseki, K., Schmidt, R., Kempter, R., & Buzsaki, G. (2012). Cross-Frequency Phase-Phase Coupling between Theta and Gamma Oscillations in the Hippocampus. Journal of Neuroscience, 32(2), 423-435. doi:10.1523/jneurosci.4122-11.2012

Benito, N., Fernández-Ruiz, A., Makarov, V. A., Makarova, J., Korovaichuk, A., & Herreras, O. (2013). Spatial Modules of Coherent Activity in Pathway-Specific LFPs in the Hippocampus Reflect Topology and Different Modes of Presynaptic Synchronization. Cerebral Cortex, 24(7), 1738-1752. doi:10.1093/cercor/bht022

Bland, B. H., & Whishaw, I. Q. (1976). Generators and topography of hippocampal Theta (RSA) in the anaesthetized and freely moving rat. Brain Research, 118(2), 259-280. doi:10.1016/0006-8993(76)90711-3

Bragin, A., Jando, G., Nadasdy, Z., Hetke, J., Wise, K., & Buzsaki, G. (1995). Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. The Journal of Neuroscience, 15(1), 47-60. doi:10.1523/jneurosci.15-01-00047.1995

Bruns, A., & Eckhorn, R. (2004). Task-related coupling from high- to low-frequency signals among visual cortical areas in human subdural recordings. International Journal of Psychophysiology, 51(2), 97-116. doi:10.1016/j.ijpsycho.2003.07.001

Buzsáki, G. (2002). Theta Oscillations in the Hippocampus. Neuron, 33(3), 325-340. doi:10.1016/s0896-6273(02)00586-x

Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, 13(6), 407-420. doi:10.1038/nrn3241

Buzsáki, G., & Draguhn, A. (2004). Neuronal Oscillations in Cortical Networks. Science, 304(5679), 1926-1929. doi:10.1126/science.1099745

Buzsáki, G., & Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neuroscience, 16(2), 130-138. doi:10.1038/nn.3304

Cabral, H. O., Vinck, M., Fouquet, C., Pennartz, C. M. A., Rondi-Reig, L., & Battaglia, F. P. (2014). Oscillatory Dynamics and Place Field Maps Reflect Hippocampal Ensemble Processing of Sequence and Place Memory under NMDA Receptor Control. Neuron, 81(2), 402-415. doi:10.1016/j.neuron.2013.11.010

Canals, S., Beyerlein, M., Merkle, H., & Logothetis, N. K. (2009). Functional MRI Evidence for LTP-Induced Neural Network Reorganization. Current Biology, 19(5), 398-403. doi:10.1016/j.cub.2009.01.037

Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., … Knight, R. T. (2006). High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex. Science, 313(5793), 1626-1628. doi:10.1126/science.1128115

Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14(11), 506-515. doi:10.1016/j.tics.2010.09.001

Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., … Moore, C. I. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459(7247), 663-667. doi:10.1038/nature08002

Castellanos, N. P., & Makarov, V. A. (2006). Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis. Journal of Neuroscience Methods, 158(2), 300-312. doi:10.1016/j.jneumeth.2006.05.033

Charpak, S., Paré, D., & Llinás, R. (1995). The Entorhinal Cortex Entrains Fast CA1 Hippocampal Oscillations in the Anaesthetized Guinea-pig: Role of the Monosynaptic Component of the Perforant Path. European Journal of Neuroscience, 7(7), 1548-1557. doi:10.1111/j.1460-9568.1995.tb01150.x

Chen A. 2006. Fast kernel density independent component analysis. Independent Component Analysis and Blind Signal Separation, Lecture Notes in Computer Science.

Cohen, M. X. (2014). Analyzing Neural Time Series Data. doi:10.7551/mitpress/9609.001.0001

Cole, S. R., & Voytek, B. (2017). Brain Oscillations and the Importance of Waveform Shape. Trends in Cognitive Sciences, 21(2), 137-149. doi:10.1016/j.tics.2016.12.008

Cole, S., & Voytek, B. (2018). Hippocampal theta bursting and waveform shape reflect CA1 spiking patterns. doi:10.1101/452987

Cole, S., & Voytek, B. (2019). Cycle-by-cycle analysis of neural oscillations. Journal of Neurophysiology, 122(2), 849-861. doi:10.1152/jn.00273.2019

Colgin, L. L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., … Moser, E. I. (2009). Frequency of gamma oscillations routes flow of information in the hippocampus. Nature, 462(7271), 353-357. doi:10.1038/nature08573

Colgin, L. L. (2013). Mechanisms and Functions of Theta Rhythms. Annual Review of Neuroscience, 36(1), 295-312. doi:10.1146/annurev-neuro-062012-170330

Colgin, L. L. (2015). Theta–gamma coupling in the entorhinal–hippocampal system. Current Opinion in Neurobiology, 31, 45-50. doi:10.1016/j.conb.2014.08.001

Colgin, L. L. (2016). Rhythms of the hippocampal network. Nature Reviews Neuroscience, 17(4), 239-249. doi:10.1038/nrn.2016.21

Csicsvari, J., Hirase, H., Czurkó, A., Mamiya, A., & Buzsáki, G. (1999). Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat. The Journal of Neuroscience, 19(1), 274-287. doi:10.1523/jneurosci.19-01-00274.1999

DeCoteau, W. E., Thorn, C., Gibson, D. J., Courtemanche, R., Mitra, P., Kubota, Y., & Graybiel, A. M. (2007). Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task. Proceedings of the National Academy of Sciences, 104(13), 5644-5649. doi:10.1073/pnas.0700818104

Douchamps, V., Jeewajee, A., Blundell, P., Burgess, N., & Lever, C. (2013). Evidence for Encoding versus Retrieval Scheduling in the Hippocampus by Theta Phase and Acetylcholine. Journal of Neuroscience, 33(20), 8689-8704. doi:10.1523/jneurosci.4483-12.2013

Dudai, Y., & Morris, R. G. M. (2013). Memorable Trends. Neuron, 80(3), 742-750. doi:10.1016/j.neuron.2013.09.039

Dvorak, D., Radwan, B., Sparks, F. T., Talbot, Z. N., & Fenton, A. A. (2018). Control of recollection by slow gamma dominating mid-frequency gamma in hippocampus CA1. PLOS Biology, 16(1), e2003354. doi:10.1371/journal.pbio.2003354

Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top–down processing. Nature Reviews Neuroscience, 2(10), 704-716. doi:10.1038/35094565

Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12(2), 105-118. doi:10.1038/nrn2979

Fernandez-Ruiz, A., Makarov, V. A., Benito, N., & Herreras, O. (2012). Schaffer-Specific Local Field Potentials Reflect Discrete Excitatory Events at Gamma Frequency That May Fire Postsynaptic Hippocampal CA1 Units. Journal of Neuroscience, 32(15), 5165-5176. doi:10.1523/jneurosci.4499-11.2012

Fernández-Ruiz, A., Makarov, V. A., & Herreras, O. (2012). Sustained increase of spontaneous input and spike transfer in the CA3-CA1 pathway following long-term potentiation in vivo. Frontiers in Neural Circuits, 6. doi:10.3389/fncir.2012.00071

Fernández-Ruiz, A., Oliva, A., Nagy, G. A., Maurer, A. P., Berényi, A., & Buzsáki, G. (2017). Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling. Neuron, 93(5), 1213-1226.e5. doi:10.1016/j.neuron.2017.02.017

Fernández-Ruiz, A., & Herreras, O. (2013). Identifying the synaptic origin of ongoing neuronal oscillations through spatial discrimination of electric fields. Frontiers in Computational Neuroscience, 7. doi:10.3389/fncom.2013.00005

Freeman, J. A., & Nicholson, C. (1975). Experimental optimization of current source-density technique for anuran cerebellum. Journal of Neurophysiology, 38(2), 369-382. doi:10.1152/jn.1975.38.2.369

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474-480. doi:10.1016/j.tics.2005.08.011

Fries, P. (2015). Rhythms for Cognition: Communication through Coherence. Neuron, 88(1), 220-235. doi:10.1016/j.neuron.2015.09.034

Goutagny, R., Gu, N., Cavanagh, C., Jackson, J., Chabot, J.-G., Quirion, R., … Williams, S. (2013). Alterations in hippocampal network oscillations and theta-gamma coupling arise before Aβ overproduction in a mouse model of Alzheimer’s disease. European Journal of Neuroscience, 37(12), 1896-1902. doi:10.1111/ejn.12233

Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 37(3), 424. doi:10.2307/1912791

Green, K. F., & Rawlins, J. N. P. (1979). Hippocampal theta in rats under urethane: Generators and phase relations. Electroencephalography and Clinical Neurophysiology, 47(4), 420-429. doi:10.1016/0013-4694(79)90158-5

Hasselmo, M. E., Bodelón, C., & Wyble, B. P. (2002). A Proposed Function for Hippocampal Theta Rhythm: Separate Phases of Encoding and Retrieval Enhance Reversal of Prior Learning. Neural Computation, 14(4), 793-817. doi:10.1162/089976602317318965

Helfrich, R. F., Mander, B. A., Jagust, W. J., Knight, R. T., & Walker, M. P. (2018). Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting. Neuron, 97(1), 221-230.e4. doi:10.1016/j.neuron.2017.11.020

Helfrich, R. F., Lendner, J. D., Mander, B. A., Guillen, H., Paff, M., Mnatsakanyan, L., … Knight, R. T. (2019). Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans. Nature Communications, 10(1). doi:10.1038/s41467-019-11444-x

Herreras, O. (1990). Propagating dendritic action potential mediates synaptic transmission in CA1 pyramidal cells in situ. Journal of Neurophysiology, 64(5), 1429-1441. doi:10.1152/jn.1990.64.5.1429

Herreras, O., Makarova, J., & Makarov, V. A. (2015). New uses of LFPs: Pathway-specific threads obtained through spatial discrimination. Neuroscience, 310, 486-503. doi:10.1016/j.neuroscience.2015.09.054

Herreras, O. (2016). Local Field Potentials: Myths and Misunderstandings. Frontiers in Neural Circuits, 10. doi:10.3389/fncir.2016.00101

Holsheimer, J. (1987). Electrical conductivity of the hippocampal CA1 layers and application to current-source-density analysis. Experimental Brain Research, 67(2). doi:10.1007/bf00248560

Iaccarino, H. F., Singer, A. C., Martorell, A. J., Rudenko, A., Gao, F., Gillingham, T. Z., … Tsai, L.-H. (2016). Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 540(7632), 230-235. doi:10.1038/nature20587

Igarashi, K. M., Lu, L., Colgin, L. L., Moser, M.-B., & Moser, E. I. (2014). Coordination of entorhinal–hippocampal ensemble activity during associative learning. Nature, 510(7503), 143-147. doi:10.1038/nature13162

Jackson, J. C., Johnson, A., & Redish, A. D. (2006). Hippocampal Sharp Waves and Reactivation during Awake States Depend on Repeated Sequential Experience. Journal of Neuroscience, 26(48), 12415-12426. doi:10.1523/jneurosci.4118-06.2006

Jiang, H., Bahramisharif, A., van Gerven, M. A. J., & Jensen, O. (2015). Measuring directionality between neuronal oscillations of different frequencies. NeuroImage, 118, 359-367. doi:10.1016/j.neuroimage.2015.05.044

Aru, J., Aru, J., Priesemann, V., Wibral, M., Lana, L., Pipa, G., … Vicente, R. (2015). Untangling cross-frequency coupling in neuroscience. Current Opinion in Neurobiology, 31, 51-61. doi:10.1016/j.conb.2014.08.002

Klausberger, T., Magill, P. J., Márton, L. F., Roberts, J. D. B., Cobden, P. M., Buzsáki, G., & Somogyi, P. (2003). Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature, 421(6925), 844-848. doi:10.1038/nature01374

Klausberger, T., & Somogyi, P. (2008). Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations. Science, 321(5885), 53-57. doi:10.1126/science.1149381

Kocsis, B., Bragin, A., & Buzsáki, G. (1999). Interdependence of Multiple Theta Generators in the Hippocampus: a Partial Coherence Analysis. The Journal of Neuroscience, 19(14), 6200-6212. doi:10.1523/jneurosci.19-14-06200.1999

Korovaichuk, A., Makarova, J., Makarov, V. A., Benito, N., & Herreras, O. (2010). Minor Contribution of Principal Excitatory Pathways to Hippocampal LFPs in the Anesthetized Rat: A Combined Independent Component and Current Source Density Study. Journal of Neurophysiology, 104(1), 484-497. doi:10.1152/jn.00297.2010

Kramer, M. A., Tort, A. B. L., & Kopell, N. J. (2008). Sharp edge artifacts and spurious coupling in EEG frequency comodulation measures. Journal of Neuroscience Methods, 170(2), 352-357. doi:10.1016/j.jneumeth.2008.01.020

Kramis, R., Vanderwolf, C. H., & Bland, B. H. (1975). Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: Relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Experimental Neurology, 49(1), 58-85. doi:10.1016/0014-4886(75)90195-8

Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An Oscillatory Hierarchy Controlling Neuronal Excitability and Stimulus Processing in the Auditory Cortex. Journal of Neurophysiology, 94(3), 1904-1911. doi:10.1152/jn.00263.2005

Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection. Science, 320(5872), 110-113. doi:10.1126/science.1154735

Lasztóczi, B., & Klausberger, T. (2014). Layer-Specific GABAergic Control of Distinct Gamma Oscillations in the CA1 Hippocampus. Neuron, 81(5), 1126-1139. doi:10.1016/j.neuron.2014.01.021

Lasztóczi, B., & Klausberger, T. (2016). Hippocampal Place Cells Couple to Three Different Gamma Oscillations during Place Field Traversal. Neuron, 91(1), 34-40. doi:10.1016/j.neuron.2016.05.036

Łęski, S., Kublik, E., Świejkowski, D. A., Wróbel, A., & Wójcik, D. K. (2009). Extracting functional components of neural dynamics with Independent Component Analysis and inverse Current Source Density. Journal of Computational Neuroscience, 29(3), 459-473. doi:10.1007/s10827-009-0203-1

Lever, C., Burton, S., & Ο’Keefe, J. (2006). Rearing on Hind Legs, Environmental Novelty, and the Hippocampal Formation. Reviews in the Neurosciences, 17(1-2). doi:10.1515/revneuro.2006.17.1-2.111

Lisman, J. E., & Idiart, M. A. P. (1995). Storage of 7 ± 2 Short-Term Memories in Oscillatory Subcycles. Science, 267(5203), 1512-1515. doi:10.1126/science.7878473

Lisman, J. E., & Jensen, O. (2013). The Theta-Gamma Neural Code. Neuron, 77(6), 1002-1016. doi:10.1016/j.neuron.2013.03.007

Lopes-dos-Santos, V., van de Ven, G. M., Morley, A., Trouche, S., Campo-Urriza, N., & Dupret, D. (2018). Parsing Hippocampal Theta Oscillations by Nested Spectral Components during Spatial Exploration and Memory-Guided Behavior. Neuron, 100(4), 940-952.e7. doi:10.1016/j.neuron.2018.09.031

López-Aguado, L., Ibarz, J. ., & Herreras, O. (2001). Activity-dependent changes of tissue resistivity in the CA1 region in vivo are layer-specific: modulation of evoked potentials. Neuroscience, 108(2), 249-262. doi:10.1016/s0306-4522(01)00417-1

Lozano-Soldevilla, D., ter Huurne, N., & Oostenveld, R. (2016). Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality. Frontiers in Computational Neuroscience, 10. doi:10.3389/fncom.2016.00087

Makarov, V. A., Makarova, J., & Herreras, O. (2010). Disentanglement of local field potential sources by independent component analysis. Journal of Computational Neuroscience, 29(3), 445-457. doi:10.1007/s10827-009-0206-y

Makarova, J. (2011). Parallel readout of pathway-specific inputs to laminated brain structures. Frontiers in Systems Neuroscience, 5. doi:10.3389/fnsys.2011.00077

Martín-Vázquez, G., Makarova, J., Makarov, V. A., & Herreras, O. (2013). Determining the True Polarity and Amplitude of Synaptic Currents Underlying Gamma Oscillations of Local Field Potentials. PLoS ONE, 8(9), e75499. doi:10.1371/journal.pone.0075499

Martín-Vázquez, G., Benito, N., Makarov, V. A., Herreras, O., & Makarova, J. (2015). Diversity of LFPs Activated in Different Target Regions by a Common CA3 Input. Cerebral Cortex, 26(10), 4082-4100. doi:10.1093/cercor/bhv211

McNaughton, B. L., Barnes, C. A., & O’Keefe, J. (1983). The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Experimental Brain Research, 52(1). doi:10.1007/bf00237147

Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65(1), 37-100. doi:10.1152/physrev.1985.65.1.37

Mizuseki, K., Sirota, A., Pastalkova, E., & Buzsáki, G. (2009). Theta Oscillations Provide Temporal Windows for Local Circuit Computation in the Entorhinal-Hippocampal Loop. Neuron, 64(2), 267-280. doi:10.1016/j.neuron.2009.08.037

Mizuseki, K., & Buzsaki, G. (2014). Theta oscillations decrease spike synchrony in the hippocampus and entorhinal cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1635), 20120530. doi:10.1098/rstb.2012.0530

Montgomery, S. M., Betancur, M. I., & Buzsaki, G. (2009). Behavior-Dependent Coordination of Multiple Theta Dipoles in the Hippocampus. Journal of Neuroscience, 29(5), 1381-1394. doi:10.1523/jneurosci.4339-08.2009

Montgomery, S. M., & Buzsaki, G. (2007). Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proceedings of the National Academy of Sciences, 104(36), 14495-14500. doi:10.1073/pnas.0701826104

Moreno, A., Morris, R. G. M., & Canals, S. (2015). Frequency-Dependent Gating of Hippocampal–Neocortical Interactions. Cerebral Cortex, 26(5), 2105-2114. doi:10.1093/cercor/bhv033

Mormann, F., Fell, J., Axmacher, N., Weber, B., Lehnertz, K., Elger, C. E., & Fernández, G. (2005). Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus, 15(7), 890-900. doi:10.1002/hipo.20117

Neymotin, S. A., Lazarewicz, M. T., Sherif, M., Contreras, D., Finkel, L. H., & Lytton, W. W. (2011). Ketamine Disrupts Theta Modulation of Gamma in a Computer Model of Hippocampus. Journal of Neuroscience, 31(32), 11733-11743. doi:10.1523/jneurosci.0501-11.2011

Niso, G., Bruña, R., Pereda, E., Gutiérrez, R., Bajo, R., Maestú, F., & del-Pozo, F. (2013). HERMES: Towards an Integrated Toolbox to Characterize Functional and Effective Brain Connectivity. Neuroinformatics, 11(4), 405-434. doi:10.1007/s12021-013-9186-1

Nolte, G., Ziehe, A., Nikulin, V. V., Schlögl, A., Krämer, N., Brismar, T., & Müller, K.-R. (2008). Robustly Estimating the Flow Direction of Information in Complex Physical Systems. Physical Review Letters, 100(23). doi:10.1103/physrevlett.100.234101

Nolte G, Ziehe A, Krämer N, Popescu F, Müller K-R. 2010. Comparison of Granger causality and phase slope index. Proceedings of Workshop on Causality: Objectives and Assessment at NIPS 2008, PMLR 6.

Ólafsdóttir, H. F., Carpenter, F., & Barry, C. (2017). Task Demands Predict a Dynamic Switch in the Content of Awake Hippocampal Replay. Neuron, 96(4), 925-935.e6. doi:10.1016/j.neuron.2017.09.035

Olypher, A. V. (2006). Cognitive Disorganization in Hippocampus: A Physiological Model of the Disorganization in Psychosis. Journal of Neuroscience, 26(1), 158-168. doi:10.1523/jneurosci.2064-05.2006

Orbán, G., Kiss, T., & Érdi, P. (2006). Intrinsic and Synaptic Mechanisms Determining the Timing of Neuron Population Activity During Hippocampal Theta Oscillation. Journal of Neurophysiology, 96(6), 2889-2904. doi:10.1152/jn.01233.2005

Ortuño, T., López-Madrona, V. J., Makarova, J., Tapia-Gonzalez, S., Muñoz, A., DeFelipe, J., & Herreras, O. (2019). Slow-Wave Activity in the S1HL Cortex Is Contributed by Different Layer-Specific Field Potential Sources during Development. The Journal of Neuroscience, 39(45), 8900-8915. doi:10.1523/jneurosci.1212-19.2019

Palop, J. J. (2009). Epilepsy and Cognitive Impairments in Alzheimer Disease. Archives of Neurology, 66(4), 435. doi:10.1001/archneurol.2009.15

Palva, J. M. (2005). Phase Synchrony among Neuronal Oscillations in the Human Cortex. Journal of Neuroscience, 25(15), 3962-3972. doi:10.1523/jneurosci.4250-04.2005

Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsáki, G. (2008). Internally Generated Cell Assembly Sequences in the Rat Hippocampus. Science, 321(5894), 1322-1327. doi:10.1126/science.1159775

Phillips, W. A., & Silverstein, S. M. (2003). Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behavioral and Brain Sciences, 26(1), 65-82. doi:10.1017/s0140525x03000025

Rotstein, H. G., Pervouchine, D. D., Acker, C. D., Gillies, M. J., White, J. A., Buhl, E. H., … Kopell, N. (2005). Slow and Fast Inhibition and an H-Current Interact to Create a Theta Rhythm in a Model of CA1 Interneuron Network. Journal of Neurophysiology, 94(2), 1509-1518. doi:10.1152/jn.00957.2004

Saleh, M., Reimer, J., Penn, R., Ojakangas, C. L., & Hatsopoulos, N. G. (2010). Fast and Slow Oscillations in Human Primary Motor Cortex Predict Oncoming Behaviorally Relevant Cues. Neuron, 65(4), 461-471. doi:10.1016/j.neuron.2010.02.001

Scheffer-Teixeira, R., & Tort, A. B. (2016). On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. eLife, 5. doi:10.7554/elife.20515

Schomburg, E. W., Fernández-Ruiz, A., Mizuseki, K., Berényi, A., Anastassiou, C. A., Koch, C., & Buzsáki, G. (2014). Theta Phase Segregation of Input-Specific Gamma Patterns in Entorhinal-Hippocampal Networks. Neuron, 84(2), 470-485. doi:10.1016/j.neuron.2014.08.051

Siapas, A. G., Lubenov, E. V., & Wilson, M. A. (2005). Prefrontal Phase Locking to Hippocampal Theta Oscillations. Neuron, 46(1), 141-151. doi:10.1016/j.neuron.2005.02.028

Siegle, J. H., & Wilson, M. A. (2014). Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus. eLife, 3. doi:10.7554/elife.03061

Sirota, A., Montgomery, S., Fujisawa, S., Isomura, Y., Zugaro, M., & Buzsáki, G. (2008). Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm. Neuron, 60(4), 683-697. doi:10.1016/j.neuron.2008.09.014

Soltesz, I., & Deschenes, M. (1993). Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. Journal of Neurophysiology, 70(1), 97-116. doi:10.1152/jn.1993.70.1.97

Stark, E., Eichler, R., Roux, L., Fujisawa, S., Rotstein, H. G., & Buzsáki, G. (2013). Inhibition-Induced Theta Resonance in Cortical Circuits. Neuron, 80(5), 1263-1276. doi:10.1016/j.neuron.2013.09.033

Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70(9), 1055-1096. doi:10.1109/proc.1982.12433

Tort, A. B. L., Rotstein, H. G., Dugladze, T., Gloveli, T., & Kopell, N. J. (2007). On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proceedings of the National Academy of Sciences, 104(33), 13490-13495. doi:10.1073/pnas.0705708104

Tort, A. B. L., Kramer, M. A., Thorn, C., Gibson, D. J., Kubota, Y., Graybiel, A. M., & Kopell, N. J. (2008). Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proceedings of the National Academy of Sciences, 105(51), 20517-20522. doi:10.1073/pnas.0810524105

Tort, A. B. L., Komorowski, R. W., Manns, J. R., Kopell, N. J., & Eichenbaum, H. (2009). Theta-gamma coupling increases during the learning of item-context associations. Proceedings of the National Academy of Sciences, 106(49), 20942-20947. doi:10.1073/pnas.0911331106

Uhlhaas, P. J., & Singer, W. (2006). Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology. Neuron, 52(1), 155-168. doi:10.1016/j.neuron.2006.09.020

Van Driel, J., Cox, R., & Cohen, M. X. (2015). Phase-clustering bias in phase–amplitude cross-frequency coupling and its removal. Journal of Neuroscience Methods, 254, 60-72. doi:10.1016/j.jneumeth.2015.07.014

Vanderwolf, C. . (1969). Hippocampal electrical activity and voluntary movement in the rat. Electroencephalography and Clinical Neurophysiology, 26(4), 407-418. doi:10.1016/0013-4694(69)90092-3

Verret, L., Mann, E. O., Hang, G. B., Barth, A. M. I., Cobos, I., Ho, K., … Palop, J. J. (2012). Inhibitory Interneuron Deficit Links Altered Network Activity and Cognitive Dysfunction in Alzheimer Model. Cell, 149(3), 708-721. doi:10.1016/j.cell.2012.02.046

Vinogradova, O. S. (2001). Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus, 11(5), 578-598. doi:10.1002/hipo.1073

Wang, Y., Romani, S., Lustig, B., Leonardo, A., & Pastalkova, E. (2014). Theta sequences are essential for internally generated hippocampal firing fields. Nature Neuroscience, 18(2), 282-288. doi:10.1038/nn.3904

Wang, S.-H., & Morris, R. G. M. (2010). Hippocampal-Neocortical Interactions in Memory Formation, Consolidation, and Reconsolidation. Annual Review of Psychology, 61(1), 49-79. doi:10.1146/annurev.psych.093008.100523

Wells, C. E., Amos, D. P., Jeewajee, A., Douchamps, V., Rodgers, J., O’Keefe, J., … Lever, C. (2013). Novelty and Anxiolytic Drugs Dissociate Two Components of Hippocampal Theta in Behaving Rats. Journal of Neuroscience, 33(20), 8650-8667. doi:10.1523/jneurosci.5040-12.2013

Winson, J. (1974). Patterns of hippocampal theta rhythm in the freely moving rat. Electroencephalography and Clinical Neurophysiology, 36, 291-301. doi:10.1016/0013-4694(74)90171-0

Wood, E. R., Dudchenko, P. A., Robitsek, R. J., & Eichenbaum, H. (2000). Hippocampal Neurons Encode Information about Different Types of Memory Episodes Occurring in the Same Location. Neuron, 27(3), 623-633. doi:10.1016/s0896-6273(00)00071-4

Zhang, L., Lee, J., Rozell, C., & Singer, A. C. (2019). Sub-second dynamics of theta-gamma coupling in hippocampal CA1. eLife, 8. doi:10.7554/elife.44320

Zheng, C., Bieri, K. W., Trettel, S. G., & Colgin, L. L. (2015). The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats. Hippocampus, 25(8), 924-938. doi:10.1002/hipo.22415

Zheng, C., Bieri, K. W., Hwaun, E., & Colgin, L. L. (2016). Fast Gamma Rhythms in the Hippocampus Promote Encoding of Novel Object–Place Pairings. eneuro, 3(2), ENEURO.0001-16.2016. doi:10.1523/eneuro.0001-16.2016

Zheng, J., Anderson, K. L., Leal, S. L., Shestyuk, A., Gulsen, G., Mnatsakanyan, L., … Lin, J. J. (2017). Amygdala-hippocampal dynamics during salient information processing. Nature Communications, 8(1). doi:10.1038/ncomms14413

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem