- -

Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López-Madrona, Víctor J. es_ES
dc.contributor.author Pérez-Montoyo, Elena es_ES
dc.contributor.author Alvarez-Salvado, Efren es_ES
dc.contributor.author Moratal, David es_ES
dc.contributor.author Herreras, Oscar es_ES
dc.contributor.author Pereda, Ernesto es_ES
dc.contributor.author Mirasso, Claudio R. es_ES
dc.contributor.author Canals, Santiago es_ES
dc.date.accessioned 2021-05-01T03:31:22Z
dc.date.available 2021-05-01T03:31:22Z
dc.date.issued 2020-07-20 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165841
dc.description.abstract [EN] Hippocampal firing is organized in theta sequences controlled by internal memory processes and by external sensory cues, but how these computations are coordinated is not fully understood. Although theta activity is commonly studied as a unique coherent oscillation, it is the result of complex interactions between different rhythm generators. Here, by separating hippocampal theta activity in three different current generators, we found epochs with variable theta frequency and phase coupling, suggesting flexible interactions between theta generators. We found that epochs of highly synchronized theta rhythmicity preferentially occurred during behavioral tasks requiring coordination between internal memory representations and incoming sensory information. In addition, we found that gamma oscillations were associated with specific theta generators and the strength of theta-gamma coupling predicted the synchronization between theta generators. We propose a mechanism for segregating or integrating hippocampal computations based on the flexible coordination of different theta frameworks to accommodate the cognitive needs. es_ES
dc.description.sponsorship European Regional Development Fund BFU2015-64380-C2-1-R Santiago Canals European Regional Development Fund BFU2015-64380-C2-2-R David Moratal European Regional Development Fund PGC2018-101055-B-I00 Santiago Canals Horizon 2020 Framework Programme 668863 (SyBil-AA) Santiago Canals Agencia Estatal de Investigacion SEV-2017-0723 Santiago Canals Ministerio de Economia y Competitividad TEC2016-80063-C3-3-R Claudio R Mirasso Ministerio de Economia y Competitividad TEC2016-80063-C3-2-R Ernesto Pereda Agencia Estatal de Investigacion MDM-2017-0711 Claudio R Mirasso Ministerio de Economi ' a y Competitividad SAF2016-80100-R Oscar Herreras The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. es_ES
dc.language Inglés es_ES
dc.publisher eLife Sciences Publications es_ES
dc.relation.ispartof eLife es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.7554/eLife.57313 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/668863/EU/Systems Biology of Alcohol Addiction: Modeling and validating disease state networks in human and animal brains for understanding pathophysiolgy, predicting outcomes and improving therapy/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-1-R/ES/TRATAR LA ENFERMEDAD RESINTONIZANDO LA DINAMICA DE LAS REDES CEREBRALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101055-B-I00/ES/PAPEL DEL NUCLEO ACCUMBENS EN LA REGULACION DE LA CONECTIVIDAD FUNCIONAL DE LARGO RECORRIDO DEL HIPOCAMPO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//SEV-2017-0723/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//MDM-2017-0711/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2016-80063-C3-3-R/ES/DESARROLLANDO UNA DESCODIFICACION DE DATOS DE FORMA OPTICA EN REDES DE COMUNICACIONES POR FIBRA UTILIZANDO DISPOSITIVOS FOTONICOS NEURO-INSPIRADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2016-80063-C3-2-R/ES/MEJORANDO LA DESCODIFICACION DE DATOS DE FORMA OPTICA EN REDES DE COMUNICACIONES POR FIBRA UTILIZANDO DISPOSITIVOS FOTONICOS NEURO-INSPIRADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SAF2016-80100-R/ES/GENERADORES LFP PARA ESTUDIAR PROCESAMIENTO BILATERAL Y DETECCION DE CAMBIOS PERMANENTES EN ESTRUCTURAS REMOTAS A FOCOS DE ICTUS Y EPILEPSIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation López-Madrona, VJ.; Pérez-Montoyo, E.; Alvarez-Salvado, E.; Moratal, D.; Herreras, O.; Pereda, E.; Mirasso, CR.... (2020). Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks. eLife. 9:1-35. https://doi.org/10.7554/eLife.57313 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.7554/eLife.57313 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 35 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.eissn 2050-084X es_ES
dc.identifier.pmid 32687054 es_ES
dc.identifier.pmcid PMC7413668 es_ES
dc.relation.pasarela S\427865 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ahmed, O. J., & Mehta, M. R. (2012). Running Speed Alters the Frequency of Hippocampal Gamma Oscillations. Journal of Neuroscience, 32(21), 7373-7383. doi:10.1523/jneurosci.5110-11.2012 es_ES
dc.description.references Ainge, J. A., van der Meer, M. A. A., Langston, R. F., & Wood, E. R. (2007). Exploring the role of context-dependent hippocampal activity in spatial alternation behavior. Hippocampus, 17(10), 988-1002. doi:10.1002/hipo.20301 es_ES
dc.description.references Alonso, A., & García-Austt, E. (1987). Neuronal sources of theta rhythm in the entorhinal cortex of the rat. Experimental Brain Research, 67(3), 502-509. doi:10.1007/bf00247283 es_ES
dc.description.references Álvarez-Salvado, E., Pallarés, V., Moreno, A., & Canals, S. (2014). Functional MRI of long-term potentiation: imaging network plasticity. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1633), 20130152. doi:10.1098/rstb.2013.0152 es_ES
dc.description.references Amzica, F., & Steriade, M. (1998). Electrophysiological correlates of sleep delta waves. Electroencephalography and Clinical Neurophysiology, 107(2), 69-83. doi:10.1016/s0013-4694(98)00051-0 es_ES
dc.description.references Andersen, P., Holmqvist, B., & Voorhoeve, P. E. (1966). Entorhinal Activation of Dentate Granule Cells. Acta Physiologica Scandinavica, 66(4), 448-460. doi:10.1111/j.1748-1716.1966.tb03223.x es_ES
dc.description.references Barnett, L., & Seth, A. K. (2011). Behaviour of Granger causality under filtering: Theoretical invariance and practical application. Journal of Neuroscience Methods, 201(2), 404-419. doi:10.1016/j.jneumeth.2011.08.010 es_ES
dc.description.references Barth, A. M., Domonkos, A., Fernandez-Ruiz, A., Freund, T. F., & Varga, V. (2018). Hippocampal Network Dynamics during Rearing Episodes. Cell Reports, 23(6), 1706-1715. doi:10.1016/j.celrep.2018.04.021 es_ES
dc.description.references Bell, A. J., & Sejnowski, T. J. (1995). An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation, 7(6), 1129-1159. doi:10.1162/neco.1995.7.6.1129 es_ES
dc.description.references Belluscio, M. A., Mizuseki, K., Schmidt, R., Kempter, R., & Buzsaki, G. (2012). Cross-Frequency Phase-Phase Coupling between Theta and Gamma Oscillations in the Hippocampus. Journal of Neuroscience, 32(2), 423-435. doi:10.1523/jneurosci.4122-11.2012 es_ES
dc.description.references Benito, N., Fernández-Ruiz, A., Makarov, V. A., Makarova, J., Korovaichuk, A., & Herreras, O. (2013). Spatial Modules of Coherent Activity in Pathway-Specific LFPs in the Hippocampus Reflect Topology and Different Modes of Presynaptic Synchronization. Cerebral Cortex, 24(7), 1738-1752. doi:10.1093/cercor/bht022 es_ES
dc.description.references Bland, B. H., & Whishaw, I. Q. (1976). Generators and topography of hippocampal Theta (RSA) in the anaesthetized and freely moving rat. Brain Research, 118(2), 259-280. doi:10.1016/0006-8993(76)90711-3 es_ES
dc.description.references Bragin, A., Jando, G., Nadasdy, Z., Hetke, J., Wise, K., & Buzsaki, G. (1995). Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. The Journal of Neuroscience, 15(1), 47-60. doi:10.1523/jneurosci.15-01-00047.1995 es_ES
dc.description.references Bruns, A., & Eckhorn, R. (2004). Task-related coupling from high- to low-frequency signals among visual cortical areas in human subdural recordings. International Journal of Psychophysiology, 51(2), 97-116. doi:10.1016/j.ijpsycho.2003.07.001 es_ES
dc.description.references Buzsáki, G. (2002). Theta Oscillations in the Hippocampus. Neuron, 33(3), 325-340. doi:10.1016/s0896-6273(02)00586-x es_ES
dc.description.references Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, 13(6), 407-420. doi:10.1038/nrn3241 es_ES
dc.description.references Buzsáki, G., & Draguhn, A. (2004). Neuronal Oscillations in Cortical Networks. Science, 304(5679), 1926-1929. doi:10.1126/science.1099745 es_ES
dc.description.references Buzsáki, G., & Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neuroscience, 16(2), 130-138. doi:10.1038/nn.3304 es_ES
dc.description.references Cabral, H. O., Vinck, M., Fouquet, C., Pennartz, C. M. A., Rondi-Reig, L., & Battaglia, F. P. (2014). Oscillatory Dynamics and Place Field Maps Reflect Hippocampal Ensemble Processing of Sequence and Place Memory under NMDA Receptor Control. Neuron, 81(2), 402-415. doi:10.1016/j.neuron.2013.11.010 es_ES
dc.description.references Canals, S., Beyerlein, M., Merkle, H., & Logothetis, N. K. (2009). Functional MRI Evidence for LTP-Induced Neural Network Reorganization. Current Biology, 19(5), 398-403. doi:10.1016/j.cub.2009.01.037 es_ES
dc.description.references Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., … Knight, R. T. (2006). High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex. Science, 313(5793), 1626-1628. doi:10.1126/science.1128115 es_ES
dc.description.references Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14(11), 506-515. doi:10.1016/j.tics.2010.09.001 es_ES
dc.description.references Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., … Moore, C. I. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459(7247), 663-667. doi:10.1038/nature08002 es_ES
dc.description.references Castellanos, N. P., & Makarov, V. A. (2006). Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis. Journal of Neuroscience Methods, 158(2), 300-312. doi:10.1016/j.jneumeth.2006.05.033 es_ES
dc.description.references Charpak, S., Paré, D., & Llinás, R. (1995). The Entorhinal Cortex Entrains Fast CA1 Hippocampal Oscillations in the Anaesthetized Guinea-pig: Role of the Monosynaptic Component of the Perforant Path. European Journal of Neuroscience, 7(7), 1548-1557. doi:10.1111/j.1460-9568.1995.tb01150.x es_ES
dc.description.references Chen A. 2006. Fast kernel density independent component analysis. Independent Component Analysis and Blind Signal Separation, Lecture Notes in Computer Science. es_ES
dc.description.references Cohen, M. X. (2014). Analyzing Neural Time Series Data. doi:10.7551/mitpress/9609.001.0001 es_ES
dc.description.references Cole, S. R., & Voytek, B. (2017). Brain Oscillations and the Importance of Waveform Shape. Trends in Cognitive Sciences, 21(2), 137-149. doi:10.1016/j.tics.2016.12.008 es_ES
dc.description.references Cole, S., & Voytek, B. (2018). Hippocampal theta bursting and waveform shape reflect CA1 spiking patterns. doi:10.1101/452987 es_ES
dc.description.references Cole, S., & Voytek, B. (2019). Cycle-by-cycle analysis of neural oscillations. Journal of Neurophysiology, 122(2), 849-861. doi:10.1152/jn.00273.2019 es_ES
dc.description.references Colgin, L. L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., … Moser, E. I. (2009). Frequency of gamma oscillations routes flow of information in the hippocampus. Nature, 462(7271), 353-357. doi:10.1038/nature08573 es_ES
dc.description.references Colgin, L. L. (2013). Mechanisms and Functions of Theta Rhythms. Annual Review of Neuroscience, 36(1), 295-312. doi:10.1146/annurev-neuro-062012-170330 es_ES
dc.description.references Colgin, L. L. (2015). Theta–gamma coupling in the entorhinal–hippocampal system. Current Opinion in Neurobiology, 31, 45-50. doi:10.1016/j.conb.2014.08.001 es_ES
dc.description.references Colgin, L. L. (2016). Rhythms of the hippocampal network. Nature Reviews Neuroscience, 17(4), 239-249. doi:10.1038/nrn.2016.21 es_ES
dc.description.references Csicsvari, J., Hirase, H., Czurkó, A., Mamiya, A., & Buzsáki, G. (1999). Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat. The Journal of Neuroscience, 19(1), 274-287. doi:10.1523/jneurosci.19-01-00274.1999 es_ES
dc.description.references DeCoteau, W. E., Thorn, C., Gibson, D. J., Courtemanche, R., Mitra, P., Kubota, Y., & Graybiel, A. M. (2007). Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task. Proceedings of the National Academy of Sciences, 104(13), 5644-5649. doi:10.1073/pnas.0700818104 es_ES
dc.description.references Douchamps, V., Jeewajee, A., Blundell, P., Burgess, N., & Lever, C. (2013). Evidence for Encoding versus Retrieval Scheduling in the Hippocampus by Theta Phase and Acetylcholine. Journal of Neuroscience, 33(20), 8689-8704. doi:10.1523/jneurosci.4483-12.2013 es_ES
dc.description.references Dudai, Y., & Morris, R. G. M. (2013). Memorable Trends. Neuron, 80(3), 742-750. doi:10.1016/j.neuron.2013.09.039 es_ES
dc.description.references Dvorak, D., Radwan, B., Sparks, F. T., Talbot, Z. N., & Fenton, A. A. (2018). Control of recollection by slow gamma dominating mid-frequency gamma in hippocampus CA1. PLOS Biology, 16(1), e2003354. doi:10.1371/journal.pbio.2003354 es_ES
dc.description.references Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top–down processing. Nature Reviews Neuroscience, 2(10), 704-716. doi:10.1038/35094565 es_ES
dc.description.references Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12(2), 105-118. doi:10.1038/nrn2979 es_ES
dc.description.references Fernandez-Ruiz, A., Makarov, V. A., Benito, N., & Herreras, O. (2012). Schaffer-Specific Local Field Potentials Reflect Discrete Excitatory Events at Gamma Frequency That May Fire Postsynaptic Hippocampal CA1 Units. Journal of Neuroscience, 32(15), 5165-5176. doi:10.1523/jneurosci.4499-11.2012 es_ES
dc.description.references Fernández-Ruiz, A., Makarov, V. A., & Herreras, O. (2012). Sustained increase of spontaneous input and spike transfer in the CA3-CA1 pathway following long-term potentiation in vivo. Frontiers in Neural Circuits, 6. doi:10.3389/fncir.2012.00071 es_ES
dc.description.references Fernández-Ruiz, A., Oliva, A., Nagy, G. A., Maurer, A. P., Berényi, A., & Buzsáki, G. (2017). Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling. Neuron, 93(5), 1213-1226.e5. doi:10.1016/j.neuron.2017.02.017 es_ES
dc.description.references Fernández-Ruiz, A., & Herreras, O. (2013). Identifying the synaptic origin of ongoing neuronal oscillations through spatial discrimination of electric fields. Frontiers in Computational Neuroscience, 7. doi:10.3389/fncom.2013.00005 es_ES
dc.description.references Freeman, J. A., & Nicholson, C. (1975). Experimental optimization of current source-density technique for anuran cerebellum. Journal of Neurophysiology, 38(2), 369-382. doi:10.1152/jn.1975.38.2.369 es_ES
dc.description.references Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474-480. doi:10.1016/j.tics.2005.08.011 es_ES
dc.description.references Fries, P. (2015). Rhythms for Cognition: Communication through Coherence. Neuron, 88(1), 220-235. doi:10.1016/j.neuron.2015.09.034 es_ES
dc.description.references Goutagny, R., Gu, N., Cavanagh, C., Jackson, J., Chabot, J.-G., Quirion, R., … Williams, S. (2013). Alterations in hippocampal network oscillations and theta-gamma coupling arise before Aβ overproduction in a mouse model of Alzheimer’s disease. European Journal of Neuroscience, 37(12), 1896-1902. doi:10.1111/ejn.12233 es_ES
dc.description.references Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 37(3), 424. doi:10.2307/1912791 es_ES
dc.description.references Green, K. F., & Rawlins, J. N. P. (1979). Hippocampal theta in rats under urethane: Generators and phase relations. Electroencephalography and Clinical Neurophysiology, 47(4), 420-429. doi:10.1016/0013-4694(79)90158-5 es_ES
dc.description.references Hasselmo, M. E., Bodelón, C., & Wyble, B. P. (2002). A Proposed Function for Hippocampal Theta Rhythm: Separate Phases of Encoding and Retrieval Enhance Reversal of Prior Learning. Neural Computation, 14(4), 793-817. doi:10.1162/089976602317318965 es_ES
dc.description.references Helfrich, R. F., Mander, B. A., Jagust, W. J., Knight, R. T., & Walker, M. P. (2018). Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting. Neuron, 97(1), 221-230.e4. doi:10.1016/j.neuron.2017.11.020 es_ES
dc.description.references Helfrich, R. F., Lendner, J. D., Mander, B. A., Guillen, H., Paff, M., Mnatsakanyan, L., … Knight, R. T. (2019). Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans. Nature Communications, 10(1). doi:10.1038/s41467-019-11444-x es_ES
dc.description.references Herreras, O. (1990). Propagating dendritic action potential mediates synaptic transmission in CA1 pyramidal cells in situ. Journal of Neurophysiology, 64(5), 1429-1441. doi:10.1152/jn.1990.64.5.1429 es_ES
dc.description.references Herreras, O., Makarova, J., & Makarov, V. A. (2015). New uses of LFPs: Pathway-specific threads obtained through spatial discrimination. Neuroscience, 310, 486-503. doi:10.1016/j.neuroscience.2015.09.054 es_ES
dc.description.references Herreras, O. (2016). Local Field Potentials: Myths and Misunderstandings. Frontiers in Neural Circuits, 10. doi:10.3389/fncir.2016.00101 es_ES
dc.description.references Holsheimer, J. (1987). Electrical conductivity of the hippocampal CA1 layers and application to current-source-density analysis. Experimental Brain Research, 67(2). doi:10.1007/bf00248560 es_ES
dc.description.references Iaccarino, H. F., Singer, A. C., Martorell, A. J., Rudenko, A., Gao, F., Gillingham, T. Z., … Tsai, L.-H. (2016). Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 540(7632), 230-235. doi:10.1038/nature20587 es_ES
dc.description.references Igarashi, K. M., Lu, L., Colgin, L. L., Moser, M.-B., & Moser, E. I. (2014). Coordination of entorhinal–hippocampal ensemble activity during associative learning. Nature, 510(7503), 143-147. doi:10.1038/nature13162 es_ES
dc.description.references Jackson, J. C., Johnson, A., & Redish, A. D. (2006). Hippocampal Sharp Waves and Reactivation during Awake States Depend on Repeated Sequential Experience. Journal of Neuroscience, 26(48), 12415-12426. doi:10.1523/jneurosci.4118-06.2006 es_ES
dc.description.references Jiang, H., Bahramisharif, A., van Gerven, M. A. J., & Jensen, O. (2015). Measuring directionality between neuronal oscillations of different frequencies. NeuroImage, 118, 359-367. doi:10.1016/j.neuroimage.2015.05.044 es_ES
dc.description.references Aru, J., Aru, J., Priesemann, V., Wibral, M., Lana, L., Pipa, G., … Vicente, R. (2015). Untangling cross-frequency coupling in neuroscience. Current Opinion in Neurobiology, 31, 51-61. doi:10.1016/j.conb.2014.08.002 es_ES
dc.description.references Klausberger, T., Magill, P. J., Márton, L. F., Roberts, J. D. B., Cobden, P. M., Buzsáki, G., & Somogyi, P. (2003). Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature, 421(6925), 844-848. doi:10.1038/nature01374 es_ES
dc.description.references Klausberger, T., & Somogyi, P. (2008). Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations. Science, 321(5885), 53-57. doi:10.1126/science.1149381 es_ES
dc.description.references Kocsis, B., Bragin, A., & Buzsáki, G. (1999). Interdependence of Multiple Theta Generators in the Hippocampus: a Partial Coherence Analysis. The Journal of Neuroscience, 19(14), 6200-6212. doi:10.1523/jneurosci.19-14-06200.1999 es_ES
dc.description.references Korovaichuk, A., Makarova, J., Makarov, V. A., Benito, N., & Herreras, O. (2010). Minor Contribution of Principal Excitatory Pathways to Hippocampal LFPs in the Anesthetized Rat: A Combined Independent Component and Current Source Density Study. Journal of Neurophysiology, 104(1), 484-497. doi:10.1152/jn.00297.2010 es_ES
dc.description.references Kramer, M. A., Tort, A. B. L., & Kopell, N. J. (2008). Sharp edge artifacts and spurious coupling in EEG frequency comodulation measures. Journal of Neuroscience Methods, 170(2), 352-357. doi:10.1016/j.jneumeth.2008.01.020 es_ES
dc.description.references Kramis, R., Vanderwolf, C. H., & Bland, B. H. (1975). Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: Relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Experimental Neurology, 49(1), 58-85. doi:10.1016/0014-4886(75)90195-8 es_ES
dc.description.references Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An Oscillatory Hierarchy Controlling Neuronal Excitability and Stimulus Processing in the Auditory Cortex. Journal of Neurophysiology, 94(3), 1904-1911. doi:10.1152/jn.00263.2005 es_ES
dc.description.references Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection. Science, 320(5872), 110-113. doi:10.1126/science.1154735 es_ES
dc.description.references Lasztóczi, B., & Klausberger, T. (2014). Layer-Specific GABAergic Control of Distinct Gamma Oscillations in the CA1 Hippocampus. Neuron, 81(5), 1126-1139. doi:10.1016/j.neuron.2014.01.021 es_ES
dc.description.references Lasztóczi, B., & Klausberger, T. (2016). Hippocampal Place Cells Couple to Three Different Gamma Oscillations during Place Field Traversal. Neuron, 91(1), 34-40. doi:10.1016/j.neuron.2016.05.036 es_ES
dc.description.references Łęski, S., Kublik, E., Świejkowski, D. A., Wróbel, A., & Wójcik, D. K. (2009). Extracting functional components of neural dynamics with Independent Component Analysis and inverse Current Source Density. Journal of Computational Neuroscience, 29(3), 459-473. doi:10.1007/s10827-009-0203-1 es_ES
dc.description.references Lever, C., Burton, S., & Ο’Keefe, J. (2006). Rearing on Hind Legs, Environmental Novelty, and the Hippocampal Formation. Reviews in the Neurosciences, 17(1-2). doi:10.1515/revneuro.2006.17.1-2.111 es_ES
dc.description.references Lisman, J. E., & Idiart, M. A. P. (1995). Storage of 7 ± 2 Short-Term Memories in Oscillatory Subcycles. Science, 267(5203), 1512-1515. doi:10.1126/science.7878473 es_ES
dc.description.references Lisman, J. E., & Jensen, O. (2013). The Theta-Gamma Neural Code. Neuron, 77(6), 1002-1016. doi:10.1016/j.neuron.2013.03.007 es_ES
dc.description.references Lopes-dos-Santos, V., van de Ven, G. M., Morley, A., Trouche, S., Campo-Urriza, N., & Dupret, D. (2018). Parsing Hippocampal Theta Oscillations by Nested Spectral Components during Spatial Exploration and Memory-Guided Behavior. Neuron, 100(4), 940-952.e7. doi:10.1016/j.neuron.2018.09.031 es_ES
dc.description.references López-Aguado, L., Ibarz, J. ., & Herreras, O. (2001). Activity-dependent changes of tissue resistivity in the CA1 region in vivo are layer-specific: modulation of evoked potentials. Neuroscience, 108(2), 249-262. doi:10.1016/s0306-4522(01)00417-1 es_ES
dc.description.references Lozano-Soldevilla, D., ter Huurne, N., & Oostenveld, R. (2016). Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality. Frontiers in Computational Neuroscience, 10. doi:10.3389/fncom.2016.00087 es_ES
dc.description.references Makarov, V. A., Makarova, J., & Herreras, O. (2010). Disentanglement of local field potential sources by independent component analysis. Journal of Computational Neuroscience, 29(3), 445-457. doi:10.1007/s10827-009-0206-y es_ES
dc.description.references Makarova, J. (2011). Parallel readout of pathway-specific inputs to laminated brain structures. Frontiers in Systems Neuroscience, 5. doi:10.3389/fnsys.2011.00077 es_ES
dc.description.references Martín-Vázquez, G., Makarova, J., Makarov, V. A., & Herreras, O. (2013). Determining the True Polarity and Amplitude of Synaptic Currents Underlying Gamma Oscillations of Local Field Potentials. PLoS ONE, 8(9), e75499. doi:10.1371/journal.pone.0075499 es_ES
dc.description.references Martín-Vázquez, G., Benito, N., Makarov, V. A., Herreras, O., & Makarova, J. (2015). Diversity of LFPs Activated in Different Target Regions by a Common CA3 Input. Cerebral Cortex, 26(10), 4082-4100. doi:10.1093/cercor/bhv211 es_ES
dc.description.references McNaughton, B. L., Barnes, C. A., & O’Keefe, J. (1983). The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Experimental Brain Research, 52(1). doi:10.1007/bf00237147 es_ES
dc.description.references Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65(1), 37-100. doi:10.1152/physrev.1985.65.1.37 es_ES
dc.description.references Mizuseki, K., Sirota, A., Pastalkova, E., & Buzsáki, G. (2009). Theta Oscillations Provide Temporal Windows for Local Circuit Computation in the Entorhinal-Hippocampal Loop. Neuron, 64(2), 267-280. doi:10.1016/j.neuron.2009.08.037 es_ES
dc.description.references Mizuseki, K., & Buzsaki, G. (2014). Theta oscillations decrease spike synchrony in the hippocampus and entorhinal cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1635), 20120530. doi:10.1098/rstb.2012.0530 es_ES
dc.description.references Montgomery, S. M., Betancur, M. I., & Buzsaki, G. (2009). Behavior-Dependent Coordination of Multiple Theta Dipoles in the Hippocampus. Journal of Neuroscience, 29(5), 1381-1394. doi:10.1523/jneurosci.4339-08.2009 es_ES
dc.description.references Montgomery, S. M., & Buzsaki, G. (2007). Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proceedings of the National Academy of Sciences, 104(36), 14495-14500. doi:10.1073/pnas.0701826104 es_ES
dc.description.references Moreno, A., Morris, R. G. M., & Canals, S. (2015). Frequency-Dependent Gating of Hippocampal–Neocortical Interactions. Cerebral Cortex, 26(5), 2105-2114. doi:10.1093/cercor/bhv033 es_ES
dc.description.references Mormann, F., Fell, J., Axmacher, N., Weber, B., Lehnertz, K., Elger, C. E., & Fernández, G. (2005). Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus, 15(7), 890-900. doi:10.1002/hipo.20117 es_ES
dc.description.references Neymotin, S. A., Lazarewicz, M. T., Sherif, M., Contreras, D., Finkel, L. H., & Lytton, W. W. (2011). Ketamine Disrupts Theta Modulation of Gamma in a Computer Model of Hippocampus. Journal of Neuroscience, 31(32), 11733-11743. doi:10.1523/jneurosci.0501-11.2011 es_ES
dc.description.references Niso, G., Bruña, R., Pereda, E., Gutiérrez, R., Bajo, R., Maestú, F., & del-Pozo, F. (2013). HERMES: Towards an Integrated Toolbox to Characterize Functional and Effective Brain Connectivity. Neuroinformatics, 11(4), 405-434. doi:10.1007/s12021-013-9186-1 es_ES
dc.description.references Nolte, G., Ziehe, A., Nikulin, V. V., Schlögl, A., Krämer, N., Brismar, T., & Müller, K.-R. (2008). Robustly Estimating the Flow Direction of Information in Complex Physical Systems. Physical Review Letters, 100(23). doi:10.1103/physrevlett.100.234101 es_ES
dc.description.references Nolte G, Ziehe A, Krämer N, Popescu F, Müller K-R. 2010. Comparison of Granger causality and phase slope index. Proceedings of Workshop on Causality: Objectives and Assessment at NIPS 2008, PMLR 6. es_ES
dc.description.references Ólafsdóttir, H. F., Carpenter, F., & Barry, C. (2017). Task Demands Predict a Dynamic Switch in the Content of Awake Hippocampal Replay. Neuron, 96(4), 925-935.e6. doi:10.1016/j.neuron.2017.09.035 es_ES
dc.description.references Olypher, A. V. (2006). Cognitive Disorganization in Hippocampus: A Physiological Model of the Disorganization in Psychosis. Journal of Neuroscience, 26(1), 158-168. doi:10.1523/jneurosci.2064-05.2006 es_ES
dc.description.references Orbán, G., Kiss, T., & Érdi, P. (2006). Intrinsic and Synaptic Mechanisms Determining the Timing of Neuron Population Activity During Hippocampal Theta Oscillation. Journal of Neurophysiology, 96(6), 2889-2904. doi:10.1152/jn.01233.2005 es_ES
dc.description.references Ortuño, T., López-Madrona, V. J., Makarova, J., Tapia-Gonzalez, S., Muñoz, A., DeFelipe, J., & Herreras, O. (2019). Slow-Wave Activity in the S1HL Cortex Is Contributed by Different Layer-Specific Field Potential Sources during Development. The Journal of Neuroscience, 39(45), 8900-8915. doi:10.1523/jneurosci.1212-19.2019 es_ES
dc.description.references Palop, J. J. (2009). Epilepsy and Cognitive Impairments in Alzheimer Disease. Archives of Neurology, 66(4), 435. doi:10.1001/archneurol.2009.15 es_ES
dc.description.references Palva, J. M. (2005). Phase Synchrony among Neuronal Oscillations in the Human Cortex. Journal of Neuroscience, 25(15), 3962-3972. doi:10.1523/jneurosci.4250-04.2005 es_ES
dc.description.references Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsáki, G. (2008). Internally Generated Cell Assembly Sequences in the Rat Hippocampus. Science, 321(5894), 1322-1327. doi:10.1126/science.1159775 es_ES
dc.description.references Phillips, W. A., & Silverstein, S. M. (2003). Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behavioral and Brain Sciences, 26(1), 65-82. doi:10.1017/s0140525x03000025 es_ES
dc.description.references Rotstein, H. G., Pervouchine, D. D., Acker, C. D., Gillies, M. J., White, J. A., Buhl, E. H., … Kopell, N. (2005). Slow and Fast Inhibition and an H-Current Interact to Create a Theta Rhythm in a Model of CA1 Interneuron Network. Journal of Neurophysiology, 94(2), 1509-1518. doi:10.1152/jn.00957.2004 es_ES
dc.description.references Saleh, M., Reimer, J., Penn, R., Ojakangas, C. L., & Hatsopoulos, N. G. (2010). Fast and Slow Oscillations in Human Primary Motor Cortex Predict Oncoming Behaviorally Relevant Cues. Neuron, 65(4), 461-471. doi:10.1016/j.neuron.2010.02.001 es_ES
dc.description.references Scheffer-Teixeira, R., & Tort, A. B. (2016). On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. eLife, 5. doi:10.7554/elife.20515 es_ES
dc.description.references Schomburg, E. W., Fernández-Ruiz, A., Mizuseki, K., Berényi, A., Anastassiou, C. A., Koch, C., & Buzsáki, G. (2014). Theta Phase Segregation of Input-Specific Gamma Patterns in Entorhinal-Hippocampal Networks. Neuron, 84(2), 470-485. doi:10.1016/j.neuron.2014.08.051 es_ES
dc.description.references Siapas, A. G., Lubenov, E. V., & Wilson, M. A. (2005). Prefrontal Phase Locking to Hippocampal Theta Oscillations. Neuron, 46(1), 141-151. doi:10.1016/j.neuron.2005.02.028 es_ES
dc.description.references Siegle, J. H., & Wilson, M. A. (2014). Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus. eLife, 3. doi:10.7554/elife.03061 es_ES
dc.description.references Sirota, A., Montgomery, S., Fujisawa, S., Isomura, Y., Zugaro, M., & Buzsáki, G. (2008). Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm. Neuron, 60(4), 683-697. doi:10.1016/j.neuron.2008.09.014 es_ES
dc.description.references Soltesz, I., & Deschenes, M. (1993). Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. Journal of Neurophysiology, 70(1), 97-116. doi:10.1152/jn.1993.70.1.97 es_ES
dc.description.references Stark, E., Eichler, R., Roux, L., Fujisawa, S., Rotstein, H. G., & Buzsáki, G. (2013). Inhibition-Induced Theta Resonance in Cortical Circuits. Neuron, 80(5), 1263-1276. doi:10.1016/j.neuron.2013.09.033 es_ES
dc.description.references Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70(9), 1055-1096. doi:10.1109/proc.1982.12433 es_ES
dc.description.references Tort, A. B. L., Rotstein, H. G., Dugladze, T., Gloveli, T., & Kopell, N. J. (2007). On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proceedings of the National Academy of Sciences, 104(33), 13490-13495. doi:10.1073/pnas.0705708104 es_ES
dc.description.references Tort, A. B. L., Kramer, M. A., Thorn, C., Gibson, D. J., Kubota, Y., Graybiel, A. M., & Kopell, N. J. (2008). Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proceedings of the National Academy of Sciences, 105(51), 20517-20522. doi:10.1073/pnas.0810524105 es_ES
dc.description.references Tort, A. B. L., Komorowski, R. W., Manns, J. R., Kopell, N. J., & Eichenbaum, H. (2009). Theta-gamma coupling increases during the learning of item-context associations. Proceedings of the National Academy of Sciences, 106(49), 20942-20947. doi:10.1073/pnas.0911331106 es_ES
dc.description.references Uhlhaas, P. J., & Singer, W. (2006). Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology. Neuron, 52(1), 155-168. doi:10.1016/j.neuron.2006.09.020 es_ES
dc.description.references Van Driel, J., Cox, R., & Cohen, M. X. (2015). Phase-clustering bias in phase–amplitude cross-frequency coupling and its removal. Journal of Neuroscience Methods, 254, 60-72. doi:10.1016/j.jneumeth.2015.07.014 es_ES
dc.description.references Vanderwolf, C. . (1969). Hippocampal electrical activity and voluntary movement in the rat. Electroencephalography and Clinical Neurophysiology, 26(4), 407-418. doi:10.1016/0013-4694(69)90092-3 es_ES
dc.description.references Verret, L., Mann, E. O., Hang, G. B., Barth, A. M. I., Cobos, I., Ho, K., … Palop, J. J. (2012). Inhibitory Interneuron Deficit Links Altered Network Activity and Cognitive Dysfunction in Alzheimer Model. Cell, 149(3), 708-721. doi:10.1016/j.cell.2012.02.046 es_ES
dc.description.references Vinogradova, O. S. (2001). Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus, 11(5), 578-598. doi:10.1002/hipo.1073 es_ES
dc.description.references Wang, Y., Romani, S., Lustig, B., Leonardo, A., & Pastalkova, E. (2014). Theta sequences are essential for internally generated hippocampal firing fields. Nature Neuroscience, 18(2), 282-288. doi:10.1038/nn.3904 es_ES
dc.description.references Wang, S.-H., & Morris, R. G. M. (2010). Hippocampal-Neocortical Interactions in Memory Formation, Consolidation, and Reconsolidation. Annual Review of Psychology, 61(1), 49-79. doi:10.1146/annurev.psych.093008.100523 es_ES
dc.description.references Wells, C. E., Amos, D. P., Jeewajee, A., Douchamps, V., Rodgers, J., O’Keefe, J., … Lever, C. (2013). Novelty and Anxiolytic Drugs Dissociate Two Components of Hippocampal Theta in Behaving Rats. Journal of Neuroscience, 33(20), 8650-8667. doi:10.1523/jneurosci.5040-12.2013 es_ES
dc.description.references Winson, J. (1974). Patterns of hippocampal theta rhythm in the freely moving rat. Electroencephalography and Clinical Neurophysiology, 36, 291-301. doi:10.1016/0013-4694(74)90171-0 es_ES
dc.description.references Wood, E. R., Dudchenko, P. A., Robitsek, R. J., & Eichenbaum, H. (2000). Hippocampal Neurons Encode Information about Different Types of Memory Episodes Occurring in the Same Location. Neuron, 27(3), 623-633. doi:10.1016/s0896-6273(00)00071-4 es_ES
dc.description.references Zhang, L., Lee, J., Rozell, C., & Singer, A. C. (2019). Sub-second dynamics of theta-gamma coupling in hippocampal CA1. eLife, 8. doi:10.7554/elife.44320 es_ES
dc.description.references Zheng, C., Bieri, K. W., Trettel, S. G., & Colgin, L. L. (2015). The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats. Hippocampus, 25(8), 924-938. doi:10.1002/hipo.22415 es_ES
dc.description.references Zheng, C., Bieri, K. W., Hwaun, E., & Colgin, L. L. (2016). Fast Gamma Rhythms in the Hippocampus Promote Encoding of Novel Object–Place Pairings. eneuro, 3(2), ENEURO.0001-16.2016. doi:10.1523/eneuro.0001-16.2016 es_ES
dc.description.references Zheng, J., Anderson, K. L., Leal, S. L., Shestyuk, A., Gulsen, G., Mnatsakanyan, L., … Lin, J. J. (2017). Amygdala-hippocampal dynamics during salient information processing. Nature Communications, 8(1). doi:10.1038/ncomms14413 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem