Mostrar el registro sencillo del ítem
dc.contributor.author | López-Madrona, Víctor J. | es_ES |
dc.contributor.author | Pérez-Montoyo, Elena | es_ES |
dc.contributor.author | Alvarez-Salvado, Efren | es_ES |
dc.contributor.author | Moratal, David | es_ES |
dc.contributor.author | Herreras, Oscar | es_ES |
dc.contributor.author | Pereda, Ernesto | es_ES |
dc.contributor.author | Mirasso, Claudio R. | es_ES |
dc.contributor.author | Canals, Santiago | es_ES |
dc.date.accessioned | 2021-05-01T03:31:22Z | |
dc.date.available | 2021-05-01T03:31:22Z | |
dc.date.issued | 2020-07-20 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165841 | |
dc.description.abstract | [EN] Hippocampal firing is organized in theta sequences controlled by internal memory processes and by external sensory cues, but how these computations are coordinated is not fully understood. Although theta activity is commonly studied as a unique coherent oscillation, it is the result of complex interactions between different rhythm generators. Here, by separating hippocampal theta activity in three different current generators, we found epochs with variable theta frequency and phase coupling, suggesting flexible interactions between theta generators. We found that epochs of highly synchronized theta rhythmicity preferentially occurred during behavioral tasks requiring coordination between internal memory representations and incoming sensory information. In addition, we found that gamma oscillations were associated with specific theta generators and the strength of theta-gamma coupling predicted the synchronization between theta generators. We propose a mechanism for segregating or integrating hippocampal computations based on the flexible coordination of different theta frameworks to accommodate the cognitive needs. | es_ES |
dc.description.sponsorship | European Regional Development Fund BFU2015-64380-C2-1-R Santiago Canals European Regional Development Fund BFU2015-64380-C2-2-R David Moratal European Regional Development Fund PGC2018-101055-B-I00 Santiago Canals Horizon 2020 Framework Programme 668863 (SyBil-AA) Santiago Canals Agencia Estatal de Investigacion SEV-2017-0723 Santiago Canals Ministerio de Economia y Competitividad TEC2016-80063-C3-3-R Claudio R Mirasso Ministerio de Economia y Competitividad TEC2016-80063-C3-2-R Ernesto Pereda Agencia Estatal de Investigacion MDM-2017-0711 Claudio R Mirasso Ministerio de Economi ' a y Competitividad SAF2016-80100-R Oscar Herreras The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | eLife Sciences Publications | es_ES |
dc.relation.ispartof | eLife | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.7554/eLife.57313 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/668863/EU/Systems Biology of Alcohol Addiction: Modeling and validating disease state networks in human and animal brains for understanding pathophysiolgy, predicting outcomes and improving therapy/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-1-R/ES/TRATAR LA ENFERMEDAD RESINTONIZANDO LA DINAMICA DE LAS REDES CEREBRALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101055-B-I00/ES/PAPEL DEL NUCLEO ACCUMBENS EN LA REGULACION DE LA CONECTIVIDAD FUNCIONAL DE LARGO RECORRIDO DEL HIPOCAMPO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//SEV-2017-0723/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//MDM-2017-0711/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2016-80063-C3-3-R/ES/DESARROLLANDO UNA DESCODIFICACION DE DATOS DE FORMA OPTICA EN REDES DE COMUNICACIONES POR FIBRA UTILIZANDO DISPOSITIVOS FOTONICOS NEURO-INSPIRADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2016-80063-C3-2-R/ES/MEJORANDO LA DESCODIFICACION DE DATOS DE FORMA OPTICA EN REDES DE COMUNICACIONES POR FIBRA UTILIZANDO DISPOSITIVOS FOTONICOS NEURO-INSPIRADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SAF2016-80100-R/ES/GENERADORES LFP PARA ESTUDIAR PROCESAMIENTO BILATERAL Y DETECCION DE CAMBIOS PERMANENTES EN ESTRUCTURAS REMOTAS A FOCOS DE ICTUS Y EPILEPSIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | López-Madrona, VJ.; Pérez-Montoyo, E.; Alvarez-Salvado, E.; Moratal, D.; Herreras, O.; Pereda, E.; Mirasso, CR.... (2020). Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks. eLife. 9:1-35. https://doi.org/10.7554/eLife.57313 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.7554/eLife.57313 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 35 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.identifier.eissn | 2050-084X | es_ES |
dc.identifier.pmid | 32687054 | es_ES |
dc.identifier.pmcid | PMC7413668 | es_ES |
dc.relation.pasarela | S\427865 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Ahmed, O. J., & Mehta, M. R. (2012). Running Speed Alters the Frequency of Hippocampal Gamma Oscillations. Journal of Neuroscience, 32(21), 7373-7383. doi:10.1523/jneurosci.5110-11.2012 | es_ES |
dc.description.references | Ainge, J. A., van der Meer, M. A. A., Langston, R. F., & Wood, E. R. (2007). Exploring the role of context-dependent hippocampal activity in spatial alternation behavior. Hippocampus, 17(10), 988-1002. doi:10.1002/hipo.20301 | es_ES |
dc.description.references | Alonso, A., & García-Austt, E. (1987). Neuronal sources of theta rhythm in the entorhinal cortex of the rat. Experimental Brain Research, 67(3), 502-509. doi:10.1007/bf00247283 | es_ES |
dc.description.references | Álvarez-Salvado, E., Pallarés, V., Moreno, A., & Canals, S. (2014). Functional MRI of long-term potentiation: imaging network plasticity. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1633), 20130152. doi:10.1098/rstb.2013.0152 | es_ES |
dc.description.references | Amzica, F., & Steriade, M. (1998). Electrophysiological correlates of sleep delta waves. Electroencephalography and Clinical Neurophysiology, 107(2), 69-83. doi:10.1016/s0013-4694(98)00051-0 | es_ES |
dc.description.references | Andersen, P., Holmqvist, B., & Voorhoeve, P. E. (1966). Entorhinal Activation of Dentate Granule Cells. Acta Physiologica Scandinavica, 66(4), 448-460. doi:10.1111/j.1748-1716.1966.tb03223.x | es_ES |
dc.description.references | Barnett, L., & Seth, A. K. (2011). Behaviour of Granger causality under filtering: Theoretical invariance and practical application. Journal of Neuroscience Methods, 201(2), 404-419. doi:10.1016/j.jneumeth.2011.08.010 | es_ES |
dc.description.references | Barth, A. M., Domonkos, A., Fernandez-Ruiz, A., Freund, T. F., & Varga, V. (2018). Hippocampal Network Dynamics during Rearing Episodes. Cell Reports, 23(6), 1706-1715. doi:10.1016/j.celrep.2018.04.021 | es_ES |
dc.description.references | Bell, A. J., & Sejnowski, T. J. (1995). An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation, 7(6), 1129-1159. doi:10.1162/neco.1995.7.6.1129 | es_ES |
dc.description.references | Belluscio, M. A., Mizuseki, K., Schmidt, R., Kempter, R., & Buzsaki, G. (2012). Cross-Frequency Phase-Phase Coupling between Theta and Gamma Oscillations in the Hippocampus. Journal of Neuroscience, 32(2), 423-435. doi:10.1523/jneurosci.4122-11.2012 | es_ES |
dc.description.references | Benito, N., Fernández-Ruiz, A., Makarov, V. A., Makarova, J., Korovaichuk, A., & Herreras, O. (2013). Spatial Modules of Coherent Activity in Pathway-Specific LFPs in the Hippocampus Reflect Topology and Different Modes of Presynaptic Synchronization. Cerebral Cortex, 24(7), 1738-1752. doi:10.1093/cercor/bht022 | es_ES |
dc.description.references | Bland, B. H., & Whishaw, I. Q. (1976). Generators and topography of hippocampal Theta (RSA) in the anaesthetized and freely moving rat. Brain Research, 118(2), 259-280. doi:10.1016/0006-8993(76)90711-3 | es_ES |
dc.description.references | Bragin, A., Jando, G., Nadasdy, Z., Hetke, J., Wise, K., & Buzsaki, G. (1995). Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. The Journal of Neuroscience, 15(1), 47-60. doi:10.1523/jneurosci.15-01-00047.1995 | es_ES |
dc.description.references | Bruns, A., & Eckhorn, R. (2004). Task-related coupling from high- to low-frequency signals among visual cortical areas in human subdural recordings. International Journal of Psychophysiology, 51(2), 97-116. doi:10.1016/j.ijpsycho.2003.07.001 | es_ES |
dc.description.references | Buzsáki, G. (2002). Theta Oscillations in the Hippocampus. Neuron, 33(3), 325-340. doi:10.1016/s0896-6273(02)00586-x | es_ES |
dc.description.references | Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, 13(6), 407-420. doi:10.1038/nrn3241 | es_ES |
dc.description.references | Buzsáki, G., & Draguhn, A. (2004). Neuronal Oscillations in Cortical Networks. Science, 304(5679), 1926-1929. doi:10.1126/science.1099745 | es_ES |
dc.description.references | Buzsáki, G., & Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neuroscience, 16(2), 130-138. doi:10.1038/nn.3304 | es_ES |
dc.description.references | Cabral, H. O., Vinck, M., Fouquet, C., Pennartz, C. M. A., Rondi-Reig, L., & Battaglia, F. P. (2014). Oscillatory Dynamics and Place Field Maps Reflect Hippocampal Ensemble Processing of Sequence and Place Memory under NMDA Receptor Control. Neuron, 81(2), 402-415. doi:10.1016/j.neuron.2013.11.010 | es_ES |
dc.description.references | Canals, S., Beyerlein, M., Merkle, H., & Logothetis, N. K. (2009). Functional MRI Evidence for LTP-Induced Neural Network Reorganization. Current Biology, 19(5), 398-403. doi:10.1016/j.cub.2009.01.037 | es_ES |
dc.description.references | Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., … Knight, R. T. (2006). High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex. Science, 313(5793), 1626-1628. doi:10.1126/science.1128115 | es_ES |
dc.description.references | Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14(11), 506-515. doi:10.1016/j.tics.2010.09.001 | es_ES |
dc.description.references | Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., … Moore, C. I. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459(7247), 663-667. doi:10.1038/nature08002 | es_ES |
dc.description.references | Castellanos, N. P., & Makarov, V. A. (2006). Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis. Journal of Neuroscience Methods, 158(2), 300-312. doi:10.1016/j.jneumeth.2006.05.033 | es_ES |
dc.description.references | Charpak, S., Paré, D., & Llinás, R. (1995). The Entorhinal Cortex Entrains Fast CA1 Hippocampal Oscillations in the Anaesthetized Guinea-pig: Role of the Monosynaptic Component of the Perforant Path. European Journal of Neuroscience, 7(7), 1548-1557. doi:10.1111/j.1460-9568.1995.tb01150.x | es_ES |
dc.description.references | Chen A. 2006. Fast kernel density independent component analysis. Independent Component Analysis and Blind Signal Separation, Lecture Notes in Computer Science. | es_ES |
dc.description.references | Cohen, M. X. (2014). Analyzing Neural Time Series Data. doi:10.7551/mitpress/9609.001.0001 | es_ES |
dc.description.references | Cole, S. R., & Voytek, B. (2017). Brain Oscillations and the Importance of Waveform Shape. Trends in Cognitive Sciences, 21(2), 137-149. doi:10.1016/j.tics.2016.12.008 | es_ES |
dc.description.references | Cole, S., & Voytek, B. (2018). Hippocampal theta bursting and waveform shape reflect CA1 spiking patterns. doi:10.1101/452987 | es_ES |
dc.description.references | Cole, S., & Voytek, B. (2019). Cycle-by-cycle analysis of neural oscillations. Journal of Neurophysiology, 122(2), 849-861. doi:10.1152/jn.00273.2019 | es_ES |
dc.description.references | Colgin, L. L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., … Moser, E. I. (2009). Frequency of gamma oscillations routes flow of information in the hippocampus. Nature, 462(7271), 353-357. doi:10.1038/nature08573 | es_ES |
dc.description.references | Colgin, L. L. (2013). Mechanisms and Functions of Theta Rhythms. Annual Review of Neuroscience, 36(1), 295-312. doi:10.1146/annurev-neuro-062012-170330 | es_ES |
dc.description.references | Colgin, L. L. (2015). Theta–gamma coupling in the entorhinal–hippocampal system. Current Opinion in Neurobiology, 31, 45-50. doi:10.1016/j.conb.2014.08.001 | es_ES |
dc.description.references | Colgin, L. L. (2016). Rhythms of the hippocampal network. Nature Reviews Neuroscience, 17(4), 239-249. doi:10.1038/nrn.2016.21 | es_ES |
dc.description.references | Csicsvari, J., Hirase, H., Czurkó, A., Mamiya, A., & Buzsáki, G. (1999). Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat. The Journal of Neuroscience, 19(1), 274-287. doi:10.1523/jneurosci.19-01-00274.1999 | es_ES |
dc.description.references | DeCoteau, W. E., Thorn, C., Gibson, D. J., Courtemanche, R., Mitra, P., Kubota, Y., & Graybiel, A. M. (2007). Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task. Proceedings of the National Academy of Sciences, 104(13), 5644-5649. doi:10.1073/pnas.0700818104 | es_ES |
dc.description.references | Douchamps, V., Jeewajee, A., Blundell, P., Burgess, N., & Lever, C. (2013). Evidence for Encoding versus Retrieval Scheduling in the Hippocampus by Theta Phase and Acetylcholine. Journal of Neuroscience, 33(20), 8689-8704. doi:10.1523/jneurosci.4483-12.2013 | es_ES |
dc.description.references | Dudai, Y., & Morris, R. G. M. (2013). Memorable Trends. Neuron, 80(3), 742-750. doi:10.1016/j.neuron.2013.09.039 | es_ES |
dc.description.references | Dvorak, D., Radwan, B., Sparks, F. T., Talbot, Z. N., & Fenton, A. A. (2018). Control of recollection by slow gamma dominating mid-frequency gamma in hippocampus CA1. PLOS Biology, 16(1), e2003354. doi:10.1371/journal.pbio.2003354 | es_ES |
dc.description.references | Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top–down processing. Nature Reviews Neuroscience, 2(10), 704-716. doi:10.1038/35094565 | es_ES |
dc.description.references | Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12(2), 105-118. doi:10.1038/nrn2979 | es_ES |
dc.description.references | Fernandez-Ruiz, A., Makarov, V. A., Benito, N., & Herreras, O. (2012). Schaffer-Specific Local Field Potentials Reflect Discrete Excitatory Events at Gamma Frequency That May Fire Postsynaptic Hippocampal CA1 Units. Journal of Neuroscience, 32(15), 5165-5176. doi:10.1523/jneurosci.4499-11.2012 | es_ES |
dc.description.references | Fernández-Ruiz, A., Makarov, V. A., & Herreras, O. (2012). Sustained increase of spontaneous input and spike transfer in the CA3-CA1 pathway following long-term potentiation in vivo. Frontiers in Neural Circuits, 6. doi:10.3389/fncir.2012.00071 | es_ES |
dc.description.references | Fernández-Ruiz, A., Oliva, A., Nagy, G. A., Maurer, A. P., Berényi, A., & Buzsáki, G. (2017). Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling. Neuron, 93(5), 1213-1226.e5. doi:10.1016/j.neuron.2017.02.017 | es_ES |
dc.description.references | Fernández-Ruiz, A., & Herreras, O. (2013). Identifying the synaptic origin of ongoing neuronal oscillations through spatial discrimination of electric fields. Frontiers in Computational Neuroscience, 7. doi:10.3389/fncom.2013.00005 | es_ES |
dc.description.references | Freeman, J. A., & Nicholson, C. (1975). Experimental optimization of current source-density technique for anuran cerebellum. Journal of Neurophysiology, 38(2), 369-382. doi:10.1152/jn.1975.38.2.369 | es_ES |
dc.description.references | Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474-480. doi:10.1016/j.tics.2005.08.011 | es_ES |
dc.description.references | Fries, P. (2015). Rhythms for Cognition: Communication through Coherence. Neuron, 88(1), 220-235. doi:10.1016/j.neuron.2015.09.034 | es_ES |
dc.description.references | Goutagny, R., Gu, N., Cavanagh, C., Jackson, J., Chabot, J.-G., Quirion, R., … Williams, S. (2013). Alterations in hippocampal network oscillations and theta-gamma coupling arise before Aβ overproduction in a mouse model of Alzheimer’s disease. European Journal of Neuroscience, 37(12), 1896-1902. doi:10.1111/ejn.12233 | es_ES |
dc.description.references | Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 37(3), 424. doi:10.2307/1912791 | es_ES |
dc.description.references | Green, K. F., & Rawlins, J. N. P. (1979). Hippocampal theta in rats under urethane: Generators and phase relations. Electroencephalography and Clinical Neurophysiology, 47(4), 420-429. doi:10.1016/0013-4694(79)90158-5 | es_ES |
dc.description.references | Hasselmo, M. E., Bodelón, C., & Wyble, B. P. (2002). A Proposed Function for Hippocampal Theta Rhythm: Separate Phases of Encoding and Retrieval Enhance Reversal of Prior Learning. Neural Computation, 14(4), 793-817. doi:10.1162/089976602317318965 | es_ES |
dc.description.references | Helfrich, R. F., Mander, B. A., Jagust, W. J., Knight, R. T., & Walker, M. P. (2018). Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting. Neuron, 97(1), 221-230.e4. doi:10.1016/j.neuron.2017.11.020 | es_ES |
dc.description.references | Helfrich, R. F., Lendner, J. D., Mander, B. A., Guillen, H., Paff, M., Mnatsakanyan, L., … Knight, R. T. (2019). Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans. Nature Communications, 10(1). doi:10.1038/s41467-019-11444-x | es_ES |
dc.description.references | Herreras, O. (1990). Propagating dendritic action potential mediates synaptic transmission in CA1 pyramidal cells in situ. Journal of Neurophysiology, 64(5), 1429-1441. doi:10.1152/jn.1990.64.5.1429 | es_ES |
dc.description.references | Herreras, O., Makarova, J., & Makarov, V. A. (2015). New uses of LFPs: Pathway-specific threads obtained through spatial discrimination. Neuroscience, 310, 486-503. doi:10.1016/j.neuroscience.2015.09.054 | es_ES |
dc.description.references | Herreras, O. (2016). Local Field Potentials: Myths and Misunderstandings. Frontiers in Neural Circuits, 10. doi:10.3389/fncir.2016.00101 | es_ES |
dc.description.references | Holsheimer, J. (1987). Electrical conductivity of the hippocampal CA1 layers and application to current-source-density analysis. Experimental Brain Research, 67(2). doi:10.1007/bf00248560 | es_ES |
dc.description.references | Iaccarino, H. F., Singer, A. C., Martorell, A. J., Rudenko, A., Gao, F., Gillingham, T. Z., … Tsai, L.-H. (2016). Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 540(7632), 230-235. doi:10.1038/nature20587 | es_ES |
dc.description.references | Igarashi, K. M., Lu, L., Colgin, L. L., Moser, M.-B., & Moser, E. I. (2014). Coordination of entorhinal–hippocampal ensemble activity during associative learning. Nature, 510(7503), 143-147. doi:10.1038/nature13162 | es_ES |
dc.description.references | Jackson, J. C., Johnson, A., & Redish, A. D. (2006). Hippocampal Sharp Waves and Reactivation during Awake States Depend on Repeated Sequential Experience. Journal of Neuroscience, 26(48), 12415-12426. doi:10.1523/jneurosci.4118-06.2006 | es_ES |
dc.description.references | Jiang, H., Bahramisharif, A., van Gerven, M. A. J., & Jensen, O. (2015). Measuring directionality between neuronal oscillations of different frequencies. NeuroImage, 118, 359-367. doi:10.1016/j.neuroimage.2015.05.044 | es_ES |
dc.description.references | Aru, J., Aru, J., Priesemann, V., Wibral, M., Lana, L., Pipa, G., … Vicente, R. (2015). Untangling cross-frequency coupling in neuroscience. Current Opinion in Neurobiology, 31, 51-61. doi:10.1016/j.conb.2014.08.002 | es_ES |
dc.description.references | Klausberger, T., Magill, P. J., Márton, L. F., Roberts, J. D. B., Cobden, P. M., Buzsáki, G., & Somogyi, P. (2003). Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature, 421(6925), 844-848. doi:10.1038/nature01374 | es_ES |
dc.description.references | Klausberger, T., & Somogyi, P. (2008). Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations. Science, 321(5885), 53-57. doi:10.1126/science.1149381 | es_ES |
dc.description.references | Kocsis, B., Bragin, A., & Buzsáki, G. (1999). Interdependence of Multiple Theta Generators in the Hippocampus: a Partial Coherence Analysis. The Journal of Neuroscience, 19(14), 6200-6212. doi:10.1523/jneurosci.19-14-06200.1999 | es_ES |
dc.description.references | Korovaichuk, A., Makarova, J., Makarov, V. A., Benito, N., & Herreras, O. (2010). Minor Contribution of Principal Excitatory Pathways to Hippocampal LFPs in the Anesthetized Rat: A Combined Independent Component and Current Source Density Study. Journal of Neurophysiology, 104(1), 484-497. doi:10.1152/jn.00297.2010 | es_ES |
dc.description.references | Kramer, M. A., Tort, A. B. L., & Kopell, N. J. (2008). Sharp edge artifacts and spurious coupling in EEG frequency comodulation measures. Journal of Neuroscience Methods, 170(2), 352-357. doi:10.1016/j.jneumeth.2008.01.020 | es_ES |
dc.description.references | Kramis, R., Vanderwolf, C. H., & Bland, B. H. (1975). Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: Relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Experimental Neurology, 49(1), 58-85. doi:10.1016/0014-4886(75)90195-8 | es_ES |
dc.description.references | Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An Oscillatory Hierarchy Controlling Neuronal Excitability and Stimulus Processing in the Auditory Cortex. Journal of Neurophysiology, 94(3), 1904-1911. doi:10.1152/jn.00263.2005 | es_ES |
dc.description.references | Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection. Science, 320(5872), 110-113. doi:10.1126/science.1154735 | es_ES |
dc.description.references | Lasztóczi, B., & Klausberger, T. (2014). Layer-Specific GABAergic Control of Distinct Gamma Oscillations in the CA1 Hippocampus. Neuron, 81(5), 1126-1139. doi:10.1016/j.neuron.2014.01.021 | es_ES |
dc.description.references | Lasztóczi, B., & Klausberger, T. (2016). Hippocampal Place Cells Couple to Three Different Gamma Oscillations during Place Field Traversal. Neuron, 91(1), 34-40. doi:10.1016/j.neuron.2016.05.036 | es_ES |
dc.description.references | Łęski, S., Kublik, E., Świejkowski, D. A., Wróbel, A., & Wójcik, D. K. (2009). Extracting functional components of neural dynamics with Independent Component Analysis and inverse Current Source Density. Journal of Computational Neuroscience, 29(3), 459-473. doi:10.1007/s10827-009-0203-1 | es_ES |
dc.description.references | Lever, C., Burton, S., & Ο’Keefe, J. (2006). Rearing on Hind Legs, Environmental Novelty, and the Hippocampal Formation. Reviews in the Neurosciences, 17(1-2). doi:10.1515/revneuro.2006.17.1-2.111 | es_ES |
dc.description.references | Lisman, J. E., & Idiart, M. A. P. (1995). Storage of 7 ± 2 Short-Term Memories in Oscillatory Subcycles. Science, 267(5203), 1512-1515. doi:10.1126/science.7878473 | es_ES |
dc.description.references | Lisman, J. E., & Jensen, O. (2013). The Theta-Gamma Neural Code. Neuron, 77(6), 1002-1016. doi:10.1016/j.neuron.2013.03.007 | es_ES |
dc.description.references | Lopes-dos-Santos, V., van de Ven, G. M., Morley, A., Trouche, S., Campo-Urriza, N., & Dupret, D. (2018). Parsing Hippocampal Theta Oscillations by Nested Spectral Components during Spatial Exploration and Memory-Guided Behavior. Neuron, 100(4), 940-952.e7. doi:10.1016/j.neuron.2018.09.031 | es_ES |
dc.description.references | López-Aguado, L., Ibarz, J. ., & Herreras, O. (2001). Activity-dependent changes of tissue resistivity in the CA1 region in vivo are layer-specific: modulation of evoked potentials. Neuroscience, 108(2), 249-262. doi:10.1016/s0306-4522(01)00417-1 | es_ES |
dc.description.references | Lozano-Soldevilla, D., ter Huurne, N., & Oostenveld, R. (2016). Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality. Frontiers in Computational Neuroscience, 10. doi:10.3389/fncom.2016.00087 | es_ES |
dc.description.references | Makarov, V. A., Makarova, J., & Herreras, O. (2010). Disentanglement of local field potential sources by independent component analysis. Journal of Computational Neuroscience, 29(3), 445-457. doi:10.1007/s10827-009-0206-y | es_ES |
dc.description.references | Makarova, J. (2011). Parallel readout of pathway-specific inputs to laminated brain structures. Frontiers in Systems Neuroscience, 5. doi:10.3389/fnsys.2011.00077 | es_ES |
dc.description.references | Martín-Vázquez, G., Makarova, J., Makarov, V. A., & Herreras, O. (2013). Determining the True Polarity and Amplitude of Synaptic Currents Underlying Gamma Oscillations of Local Field Potentials. PLoS ONE, 8(9), e75499. doi:10.1371/journal.pone.0075499 | es_ES |
dc.description.references | Martín-Vázquez, G., Benito, N., Makarov, V. A., Herreras, O., & Makarova, J. (2015). Diversity of LFPs Activated in Different Target Regions by a Common CA3 Input. Cerebral Cortex, 26(10), 4082-4100. doi:10.1093/cercor/bhv211 | es_ES |
dc.description.references | McNaughton, B. L., Barnes, C. A., & O’Keefe, J. (1983). The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Experimental Brain Research, 52(1). doi:10.1007/bf00237147 | es_ES |
dc.description.references | Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65(1), 37-100. doi:10.1152/physrev.1985.65.1.37 | es_ES |
dc.description.references | Mizuseki, K., Sirota, A., Pastalkova, E., & Buzsáki, G. (2009). Theta Oscillations Provide Temporal Windows for Local Circuit Computation in the Entorhinal-Hippocampal Loop. Neuron, 64(2), 267-280. doi:10.1016/j.neuron.2009.08.037 | es_ES |
dc.description.references | Mizuseki, K., & Buzsaki, G. (2014). Theta oscillations decrease spike synchrony in the hippocampus and entorhinal cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1635), 20120530. doi:10.1098/rstb.2012.0530 | es_ES |
dc.description.references | Montgomery, S. M., Betancur, M. I., & Buzsaki, G. (2009). Behavior-Dependent Coordination of Multiple Theta Dipoles in the Hippocampus. Journal of Neuroscience, 29(5), 1381-1394. doi:10.1523/jneurosci.4339-08.2009 | es_ES |
dc.description.references | Montgomery, S. M., & Buzsaki, G. (2007). Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proceedings of the National Academy of Sciences, 104(36), 14495-14500. doi:10.1073/pnas.0701826104 | es_ES |
dc.description.references | Moreno, A., Morris, R. G. M., & Canals, S. (2015). Frequency-Dependent Gating of Hippocampal–Neocortical Interactions. Cerebral Cortex, 26(5), 2105-2114. doi:10.1093/cercor/bhv033 | es_ES |
dc.description.references | Mormann, F., Fell, J., Axmacher, N., Weber, B., Lehnertz, K., Elger, C. E., & Fernández, G. (2005). Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus, 15(7), 890-900. doi:10.1002/hipo.20117 | es_ES |
dc.description.references | Neymotin, S. A., Lazarewicz, M. T., Sherif, M., Contreras, D., Finkel, L. H., & Lytton, W. W. (2011). Ketamine Disrupts Theta Modulation of Gamma in a Computer Model of Hippocampus. Journal of Neuroscience, 31(32), 11733-11743. doi:10.1523/jneurosci.0501-11.2011 | es_ES |
dc.description.references | Niso, G., Bruña, R., Pereda, E., Gutiérrez, R., Bajo, R., Maestú, F., & del-Pozo, F. (2013). HERMES: Towards an Integrated Toolbox to Characterize Functional and Effective Brain Connectivity. Neuroinformatics, 11(4), 405-434. doi:10.1007/s12021-013-9186-1 | es_ES |
dc.description.references | Nolte, G., Ziehe, A., Nikulin, V. V., Schlögl, A., Krämer, N., Brismar, T., & Müller, K.-R. (2008). Robustly Estimating the Flow Direction of Information in Complex Physical Systems. Physical Review Letters, 100(23). doi:10.1103/physrevlett.100.234101 | es_ES |
dc.description.references | Nolte G, Ziehe A, Krämer N, Popescu F, Müller K-R. 2010. Comparison of Granger causality and phase slope index. Proceedings of Workshop on Causality: Objectives and Assessment at NIPS 2008, PMLR 6. | es_ES |
dc.description.references | Ólafsdóttir, H. F., Carpenter, F., & Barry, C. (2017). Task Demands Predict a Dynamic Switch in the Content of Awake Hippocampal Replay. Neuron, 96(4), 925-935.e6. doi:10.1016/j.neuron.2017.09.035 | es_ES |
dc.description.references | Olypher, A. V. (2006). Cognitive Disorganization in Hippocampus: A Physiological Model of the Disorganization in Psychosis. Journal of Neuroscience, 26(1), 158-168. doi:10.1523/jneurosci.2064-05.2006 | es_ES |
dc.description.references | Orbán, G., Kiss, T., & Érdi, P. (2006). Intrinsic and Synaptic Mechanisms Determining the Timing of Neuron Population Activity During Hippocampal Theta Oscillation. Journal of Neurophysiology, 96(6), 2889-2904. doi:10.1152/jn.01233.2005 | es_ES |
dc.description.references | Ortuño, T., López-Madrona, V. J., Makarova, J., Tapia-Gonzalez, S., Muñoz, A., DeFelipe, J., & Herreras, O. (2019). Slow-Wave Activity in the S1HL Cortex Is Contributed by Different Layer-Specific Field Potential Sources during Development. The Journal of Neuroscience, 39(45), 8900-8915. doi:10.1523/jneurosci.1212-19.2019 | es_ES |
dc.description.references | Palop, J. J. (2009). Epilepsy and Cognitive Impairments in Alzheimer Disease. Archives of Neurology, 66(4), 435. doi:10.1001/archneurol.2009.15 | es_ES |
dc.description.references | Palva, J. M. (2005). Phase Synchrony among Neuronal Oscillations in the Human Cortex. Journal of Neuroscience, 25(15), 3962-3972. doi:10.1523/jneurosci.4250-04.2005 | es_ES |
dc.description.references | Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsáki, G. (2008). Internally Generated Cell Assembly Sequences in the Rat Hippocampus. Science, 321(5894), 1322-1327. doi:10.1126/science.1159775 | es_ES |
dc.description.references | Phillips, W. A., & Silverstein, S. M. (2003). Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behavioral and Brain Sciences, 26(1), 65-82. doi:10.1017/s0140525x03000025 | es_ES |
dc.description.references | Rotstein, H. G., Pervouchine, D. D., Acker, C. D., Gillies, M. J., White, J. A., Buhl, E. H., … Kopell, N. (2005). Slow and Fast Inhibition and an H-Current Interact to Create a Theta Rhythm in a Model of CA1 Interneuron Network. Journal of Neurophysiology, 94(2), 1509-1518. doi:10.1152/jn.00957.2004 | es_ES |
dc.description.references | Saleh, M., Reimer, J., Penn, R., Ojakangas, C. L., & Hatsopoulos, N. G. (2010). Fast and Slow Oscillations in Human Primary Motor Cortex Predict Oncoming Behaviorally Relevant Cues. Neuron, 65(4), 461-471. doi:10.1016/j.neuron.2010.02.001 | es_ES |
dc.description.references | Scheffer-Teixeira, R., & Tort, A. B. (2016). On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. eLife, 5. doi:10.7554/elife.20515 | es_ES |
dc.description.references | Schomburg, E. W., Fernández-Ruiz, A., Mizuseki, K., Berényi, A., Anastassiou, C. A., Koch, C., & Buzsáki, G. (2014). Theta Phase Segregation of Input-Specific Gamma Patterns in Entorhinal-Hippocampal Networks. Neuron, 84(2), 470-485. doi:10.1016/j.neuron.2014.08.051 | es_ES |
dc.description.references | Siapas, A. G., Lubenov, E. V., & Wilson, M. A. (2005). Prefrontal Phase Locking to Hippocampal Theta Oscillations. Neuron, 46(1), 141-151. doi:10.1016/j.neuron.2005.02.028 | es_ES |
dc.description.references | Siegle, J. H., & Wilson, M. A. (2014). Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus. eLife, 3. doi:10.7554/elife.03061 | es_ES |
dc.description.references | Sirota, A., Montgomery, S., Fujisawa, S., Isomura, Y., Zugaro, M., & Buzsáki, G. (2008). Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm. Neuron, 60(4), 683-697. doi:10.1016/j.neuron.2008.09.014 | es_ES |
dc.description.references | Soltesz, I., & Deschenes, M. (1993). Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. Journal of Neurophysiology, 70(1), 97-116. doi:10.1152/jn.1993.70.1.97 | es_ES |
dc.description.references | Stark, E., Eichler, R., Roux, L., Fujisawa, S., Rotstein, H. G., & Buzsáki, G. (2013). Inhibition-Induced Theta Resonance in Cortical Circuits. Neuron, 80(5), 1263-1276. doi:10.1016/j.neuron.2013.09.033 | es_ES |
dc.description.references | Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70(9), 1055-1096. doi:10.1109/proc.1982.12433 | es_ES |
dc.description.references | Tort, A. B. L., Rotstein, H. G., Dugladze, T., Gloveli, T., & Kopell, N. J. (2007). On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proceedings of the National Academy of Sciences, 104(33), 13490-13495. doi:10.1073/pnas.0705708104 | es_ES |
dc.description.references | Tort, A. B. L., Kramer, M. A., Thorn, C., Gibson, D. J., Kubota, Y., Graybiel, A. M., & Kopell, N. J. (2008). Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proceedings of the National Academy of Sciences, 105(51), 20517-20522. doi:10.1073/pnas.0810524105 | es_ES |
dc.description.references | Tort, A. B. L., Komorowski, R. W., Manns, J. R., Kopell, N. J., & Eichenbaum, H. (2009). Theta-gamma coupling increases during the learning of item-context associations. Proceedings of the National Academy of Sciences, 106(49), 20942-20947. doi:10.1073/pnas.0911331106 | es_ES |
dc.description.references | Uhlhaas, P. J., & Singer, W. (2006). Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology. Neuron, 52(1), 155-168. doi:10.1016/j.neuron.2006.09.020 | es_ES |
dc.description.references | Van Driel, J., Cox, R., & Cohen, M. X. (2015). Phase-clustering bias in phase–amplitude cross-frequency coupling and its removal. Journal of Neuroscience Methods, 254, 60-72. doi:10.1016/j.jneumeth.2015.07.014 | es_ES |
dc.description.references | Vanderwolf, C. . (1969). Hippocampal electrical activity and voluntary movement in the rat. Electroencephalography and Clinical Neurophysiology, 26(4), 407-418. doi:10.1016/0013-4694(69)90092-3 | es_ES |
dc.description.references | Verret, L., Mann, E. O., Hang, G. B., Barth, A. M. I., Cobos, I., Ho, K., … Palop, J. J. (2012). Inhibitory Interneuron Deficit Links Altered Network Activity and Cognitive Dysfunction in Alzheimer Model. Cell, 149(3), 708-721. doi:10.1016/j.cell.2012.02.046 | es_ES |
dc.description.references | Vinogradova, O. S. (2001). Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus, 11(5), 578-598. doi:10.1002/hipo.1073 | es_ES |
dc.description.references | Wang, Y., Romani, S., Lustig, B., Leonardo, A., & Pastalkova, E. (2014). Theta sequences are essential for internally generated hippocampal firing fields. Nature Neuroscience, 18(2), 282-288. doi:10.1038/nn.3904 | es_ES |
dc.description.references | Wang, S.-H., & Morris, R. G. M. (2010). Hippocampal-Neocortical Interactions in Memory Formation, Consolidation, and Reconsolidation. Annual Review of Psychology, 61(1), 49-79. doi:10.1146/annurev.psych.093008.100523 | es_ES |
dc.description.references | Wells, C. E., Amos, D. P., Jeewajee, A., Douchamps, V., Rodgers, J., O’Keefe, J., … Lever, C. (2013). Novelty and Anxiolytic Drugs Dissociate Two Components of Hippocampal Theta in Behaving Rats. Journal of Neuroscience, 33(20), 8650-8667. doi:10.1523/jneurosci.5040-12.2013 | es_ES |
dc.description.references | Winson, J. (1974). Patterns of hippocampal theta rhythm in the freely moving rat. Electroencephalography and Clinical Neurophysiology, 36, 291-301. doi:10.1016/0013-4694(74)90171-0 | es_ES |
dc.description.references | Wood, E. R., Dudchenko, P. A., Robitsek, R. J., & Eichenbaum, H. (2000). Hippocampal Neurons Encode Information about Different Types of Memory Episodes Occurring in the Same Location. Neuron, 27(3), 623-633. doi:10.1016/s0896-6273(00)00071-4 | es_ES |
dc.description.references | Zhang, L., Lee, J., Rozell, C., & Singer, A. C. (2019). Sub-second dynamics of theta-gamma coupling in hippocampal CA1. eLife, 8. doi:10.7554/elife.44320 | es_ES |
dc.description.references | Zheng, C., Bieri, K. W., Trettel, S. G., & Colgin, L. L. (2015). The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats. Hippocampus, 25(8), 924-938. doi:10.1002/hipo.22415 | es_ES |
dc.description.references | Zheng, C., Bieri, K. W., Hwaun, E., & Colgin, L. L. (2016). Fast Gamma Rhythms in the Hippocampus Promote Encoding of Novel Object–Place Pairings. eneuro, 3(2), ENEURO.0001-16.2016. doi:10.1523/eneuro.0001-16.2016 | es_ES |
dc.description.references | Zheng, J., Anderson, K. L., Leal, S. L., Shestyuk, A., Gulsen, G., Mnatsakanyan, L., … Lin, J. J. (2017). Amygdala-hippocampal dynamics during salient information processing. Nature Communications, 8(1). doi:10.1038/ncomms14413 | es_ES |