- -

Effect of the CuO addition on a Sb-doped SnO2 ceramic electrode applied to the removal of Norfloxacin in chloride media by electro-oxidation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Effect of the CuO addition on a Sb-doped SnO2 ceramic electrode applied to the removal of Norfloxacin in chloride media by electro-oxidation

Show full item record

Carrillo Abad, J.; Mora-Gómez, J.; García Gabaldón, M.; Ortega Navarro, EM.; Mestre, S.; Pérez-Herranz, V. (2020). Effect of the CuO addition on a Sb-doped SnO2 ceramic electrode applied to the removal of Norfloxacin in chloride media by electro-oxidation. Chemosphere. 249:1-9. https://doi.org/10.1016/j.chemosphere.2020.126178

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165897

Files in this item

Item Metadata

Title: Effect of the CuO addition on a Sb-doped SnO2 ceramic electrode applied to the removal of Norfloxacin in chloride media by electro-oxidation
Author: Carrillo Abad, Jorge Mora-Gómez, Julia García Gabaldón, Montserrat Ortega Navarro, Emma María Mestre, S. Pérez-Herranz, Valentín
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Issued date:
Abstract:
[EN] Norfloxacin is employed as in veterinary and human medicine against gram-positive and gram-negative bacteria. Due to the ineffective treatment at the wastewater treatment plants it becomes an emergent pollutant. ...[+]
Subjects: Boron-doped diamond (BDD) anode , Ceramic anodes , Electro-oxidation , Norfloxacin (NOR) , Voltammetric study
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Chemosphere. (issn: 0045-6535 )
DOI: 10.1016/j.chemosphere.2020.126178
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.chemosphere.2020.126178
Project ID:
info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-2-R/ES/NUEVOS ELECTRODOS CERAMICOS MEJORADOS MEDIANTE NANOTECNOLOGIA/
info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-1-R/ES/CARACTERIZACION ELECTROQUIMICA DE ELECTRODOS CERAMICOS Y APLICACION A PROCESOS ELECTROQUIMICOS DE OXIDACION AVANZADA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101341-B-C21/ES/ELECTROCHEMICAL CHARACTERIZATION OF CERAMIC ELECTRODES AND MEMBRANES AND APPLICATION TO PHOTOELECTROOXIDATION AND ELECTROFILTRATION PROCESSES/
Thanks:
The authors want to express their gratitude to the Ministerio de Economia y Competitividad (Spain) and the FEDER funds, which financially support the projects CTQ2015-65202-C2-1-R, CTQ201565202-C2-2-R and RTI2018-101341-B-C21.[+]
Type: Artículo

References

Al Aukidy, M., Verlicchi, P., Jelic, A., Petrovic, M., & Barcelò, D. (2012). Monitoring release of pharmaceutical compounds: Occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Science of The Total Environment, 438, 15-25. doi:10.1016/j.scitotenv.2012.08.061

Bejan, D., Guinea, E., & Bunce, N. J. (2012). On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex® anodes. Electrochimica Acta, 69, 275-281. doi:10.1016/j.electacta.2012.02.097

Cañizares, P., García-Gómez, J., Lobato, J., & Rodrigo, M. A. (2004). Modeling of Wastewater Electro-oxidation Processes Part I. General Description and Application to Inactive Electrodes. Industrial & Engineering Chemistry Research, 43(9), 1915-1922. doi:10.1021/ie0341294 [+]
Al Aukidy, M., Verlicchi, P., Jelic, A., Petrovic, M., & Barcelò, D. (2012). Monitoring release of pharmaceutical compounds: Occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Science of The Total Environment, 438, 15-25. doi:10.1016/j.scitotenv.2012.08.061

Bejan, D., Guinea, E., & Bunce, N. J. (2012). On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex® anodes. Electrochimica Acta, 69, 275-281. doi:10.1016/j.electacta.2012.02.097

Cañizares, P., García-Gómez, J., Lobato, J., & Rodrigo, M. A. (2004). Modeling of Wastewater Electro-oxidation Processes Part I. General Description and Application to Inactive Electrodes. Industrial & Engineering Chemistry Research, 43(9), 1915-1922. doi:10.1021/ie0341294

Carrillo-Abad, J., Pérez-Herranz, V., & Urtiaga, A. (2018). Electrochemical oxidation of 6:2 fluorotelomer sulfonic acid (6:2 FTSA) on BDD: electrode characterization and mechanistic investigation. Journal of Applied Electrochemistry, 48(6), 589-596. doi:10.1007/s10800-018-1180-8

Chaplin, B. P., Hubler, D. K., & Farrell, J. (2013). Understanding anodic wear at boron doped diamond film electrodes. Electrochimica Acta, 89, 122-131. doi:10.1016/j.electacta.2012.10.166

Chaplin, B. P., Wyle, I., Zeng, H., Carlisle, J. A., & Farrell, J. (2011). Characterization of the performance and failure mechanisms of boron-doped ultrananocrystalline diamond electrodes. Journal of Applied Electrochemistry, 41(11), 1329-1340. doi:10.1007/s10800-011-0351-7

Chen, X., Gao, F., & Chen, G. (2005). Comparison of Ti/BDD and Ti/SnO2?Sb2O5 electrodes for pollutant oxidation. Journal of Applied Electrochemistry, 35(2), 185-191. doi:10.1007/s10800-004-6068-0

Coledam, D. A. C., Aquino, J. M., Silva, B. F., Silva, A. J., & Rocha-Filho, R. C. (2016). Electrochemical mineralization of norfloxacin using distinct boron-doped diamond anodes in a filter-press reactor, with investigations of toxicity and oxidation by-products. Electrochimica Acta, 213, 856-864. doi:10.1016/j.electacta.2016.08.003

Da Silva, H., Pacheco, J., Silva, J., Viswanathan, S., & Delerue-Matos, C. (2015). Molecularly imprinted sensor for voltammetric detection of norfloxacin. Sensors and Actuators B: Chemical, 219, 301-307. doi:10.1016/j.snb.2015.04.125

Da Silva, S. W., Navarro, E. M. O., Rodrigues, M. A. S., Bernardes, A. M., & Pérez-Herranz, V. (2018). The role of the anode material and water matrix in the electrochemical oxidation of norfloxacin. Chemosphere, 210, 615-623. doi:10.1016/j.chemosphere.2018.07.057

Gogoi, A., Mazumder, P., Tyagi, V. K., Tushara Chaminda, G. G., An, A. K., & Kumar, M. (2018). Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable Development, 6, 169-180. doi:10.1016/j.gsd.2017.12.009

Goyal, R. N., Rana, A. R. S., & Chasta, H. (2012). Electrochemical sensor for the sensitive determination of norfloxacin in human urine and pharmaceuticals. Bioelectrochemistry, 83, 46-51. doi:10.1016/j.bioelechem.2011.08.006

Gözmen, B., Oturan, M. A., Oturan, N., & Erbatur, O. (2003). Indirect Electrochemical Treatment of Bisphenol A in Water via Electrochemically Generated Fenton’s Reagent. Environmental Science & Technology, 37(16), 3716-3723. doi:10.1021/es034011e

Guinea, E., Garrido, J. A., Rodríguez, R. M., Cabot, P.-L., Arias, C., Centellas, F., & Brillas, E. (2010). Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochimica Acta, 55(6), 2101-2115. doi:10.1016/j.electacta.2009.11.040

Huang, K.-J., Liu, X., Xie, W.-Z., & Yuan, H.-X. (2008). Electrochemical behavior and voltammetric determination of norfloxacin at glassy carbon electrode modified with multi walled carbon nanotubes/Nafion. Colloids and Surfaces B: Biointerfaces, 64(2), 269-274. doi:10.1016/j.colsurfb.2008.02.003

Jojoa-Sierra, S. D., Silva-Agredo, J., Herrera-Calderon, E., & Torres-Palma, R. A. (2017). Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO2 anodes. Science of The Total Environment, 575, 1228-1238. doi:10.1016/j.scitotenv.2016.09.201

Kapałka, A., Fóti, G., & Comninellis, C. (2009). The importance of electrode material in environmental electrochemistry. Electrochimica Acta, 54(7), 2018-2023. doi:10.1016/j.electacta.2008.06.045

Laviron, E. (1979). General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101(1), 19-28. doi:10.1016/s0022-0728(79)80075-3

Liu, Z., Jin, M., Cao, J., Wang, J., Wang, X., Zhou, G., … Shui, L. (2018). High-sensitive electrochemical sensor for determination of Norfloxacin and its metabolism using MWCNT-CPE/pRGO-ANSA/Au. Sensors and Actuators B: Chemical, 257, 1065-1075. doi:10.1016/j.snb.2017.11.052

Ma, X., Cheng, Y., Ge, Y., Wu, H., Li, Q., Gao, N., & Deng, J. (2018). Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin. Ultrasonics Sonochemistry, 40, 763-772. doi:10.1016/j.ultsonch.2017.08.025

Mihaiu, S., Scarlat, O., Aldica, G., & Zaharescu, M. (2001). SnO2 electroceramics with various additives. Journal of the European Ceramic Society, 21(10-11), 1801-1804. doi:10.1016/s0955-2219(01)00119-4

Mora-Gómez, J., García-Gabaldón, M., Ortega, E., Sánchez-Rivera, M.-J., Mestre, S., & Pérez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 44(2), 2216-2222. doi:10.1016/j.ceramint.2017.10.178

Neugebauer, U., Szeghalmi, A., Schmitt, M., Kiefer, W., Popp, J., & Holzgrabe, U. (2005). Vibrational spectroscopic characterization of fluoroquinolones. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(7), 1505-1517. doi:10.1016/j.saa.2004.11.014

Nicholson, R. S., & Shain, I. (1964). Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. Analytical Chemistry, 36(4), 706-723. doi:10.1021/ac60210a007

Osorio, V., Larrañaga, A., Aceña, J., Pérez, S., & Barceló, D. (2016). Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers. Science of The Total Environment, 540, 267-277. doi:10.1016/j.scitotenv.2015.06.143

Özcan, A., Atılır Özcan, A., & Demirci, Y. (2016). Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment. Chemical Engineering Journal, 304, 518-526. doi:10.1016/j.cej.2016.06.105

Pipi, A. R. F., Sirés, I., De Andrade, A. R., & Brillas, E. (2014). Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron. Chemosphere, 109, 49-55. doi:10.1016/j.chemosphere.2014.03.006

Polcaro, A. M., Ricci, P. C., Palmas, S., Ferrara, F., & Anedda, A. (2006). Characterization of boron doped diamond electrodes during oxidation processes: Relationship between electrochemical activity and ageing time. Thin Solid Films, 515(4), 2073-2078. doi:10.1016/j.tsf.2006.06.033

Popescu, A.-M., Mihaiu, S., & Zuca, S. (2002). Microstructure and Electrochemical Behaviour of some SnO2-based Inert Electrodes in Aluminium Electrolysis. Zeitschrift für Naturforschung A, 57(1-2), 71-75. doi:10.1515/zna-2002-1-210

Santos, A., Yustos, P., Quintanilla, A., Rodrı́guez, S., & Garcı́a-Ochoa, F. (2002). Route of the catalytic oxidation of phenol in aqueous phase. Applied Catalysis B: Environmental, 39(2), 97-113. doi:10.1016/s0926-3373(02)00087-5

Soriano, Á., Gorri, D., Biegler, L. T., & Urtiaga, A. (2019). An optimization model for the treatment of perfluorocarboxylic acids considering membrane preconcentration and BDD electrooxidation. Water Research, 164, 114954. doi:10.1016/j.watres.2019.114954

Tadkaew, N., Hai, F. I., McDonald, J. A., Khan, S. J., & Nghiem, L. D. (2011). Removal of trace organics by MBR treatment: The role of molecular properties. Water Research, 45(8), 2439-2451. doi:10.1016/j.watres.2011.01.023

Trejo, G., Ortega B., R., Meas, Y., Ozil, P., Chainet, E., & Nguyen, B. (1998). Nucleation and Growth of Zinc from Chloride Concentrated Solutions. Journal of The Electrochemical Society, 145(12), 4090-4097. doi:10.1149/1.1838919

Tryk, D. A., Tsunozaki, K., Rao, T. N., & Fujishima, A. (2001). Relationships between surface character and electrochemical processes on diamond electrodes: dual roles of surface termination and near-surface hydrogen. Diamond and Related Materials, 10(9-10), 1804-1809. doi:10.1016/s0925-9635(01)00453-8

Urtiaga, A., Soriano, A., & Carrillo-Abad, J. (2018). BDD anodic treatment of 6:2 fluorotelomer sulfonate (6:2 FTSA). Evaluation of operating variables and by-product formation. Chemosphere, 201, 571-577. doi:10.1016/j.chemosphere.2018.03.027

Wang, X., Li, B., Zhang, T., & Li, X. (2015). Performance of nanofiltration membrane in rejecting trace organic compounds: Experiment and model prediction. Desalination, 370, 7-16. doi:10.1016/j.desal.2015.05.010

Watkinson, A. J., Murby, E. J., Kolpin, D. W., & Costanzo, S. D. (2009). The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Science of The Total Environment, 407(8), 2711-2723. doi:10.1016/j.scitotenv.2008.11.059

Wells, M. J. M. (2006). Log DOW: Key to Understanding and Regulating Wastewater-Derived Contaminants. Environmental Chemistry, 3(6), 439. doi:10.1071/en06045

Wilke, C. R., & Chang, P. (1955). Correlation of diffusion coefficients in dilute solutions. AIChE Journal, 1(2), 264-270. doi:10.1002/aic.690010222

Woodward, R. B. (1942). Structure and Absorption Spectra. III. Normal Conjugated Dienes. Journal of the American Chemical Society, 64(1), 72-75. doi:10.1021/ja01253a018

Woodward, R. B. (1942). Structure and Absorption Spectra. IV. Further Observations on α,β-Unsaturated Ketones. Journal of the American Chemical Society, 64(1), 76-77. doi:10.1021/ja01253a019

Woodward, R. B. (1941). Structure and the Absorption Spectra of α,β-Unsaturated Ketones. Journal of the American Chemical Society, 63(4), 1123-1126. doi:10.1021/ja01849a066

Woodward, R. B., & Clifford, A. F. (1941). Structure and Absorption Spectra. II. 3-Acetoxy-Δ5-(6)-nor-cholestene-7-carboxylic Acid. Journal of the American Chemical Society, 63(10), 2727-2729. doi:10.1021/ja01855a063

Zaharescu, M., Mihaiu, S., Zuca, S., & Matiasovsky, K. (1991). Contribution to the study of SnO2-based ceramics. Journal of Materials Science, 26(6), 1666-1672. doi:10.1007/bf00544680

Zou, S., Xu, W., Zhang, R., Tang, J., Chen, Y., & Zhang, G. (2011). Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities. Environmental Pollution, 159(10), 2913-2920. doi:10.1016/j.envpol.2011.04.037

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record