- -

Effect of the CuO addition on a Sb-doped SnO2 ceramic electrode applied to the removal of Norfloxacin in chloride media by electro-oxidation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of the CuO addition on a Sb-doped SnO2 ceramic electrode applied to the removal of Norfloxacin in chloride media by electro-oxidation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carrillo Abad, Jorge es_ES
dc.contributor.author Mora-Gómez, Julia es_ES
dc.contributor.author García Gabaldón, Montserrat es_ES
dc.contributor.author Ortega Navarro, Emma María es_ES
dc.contributor.author Mestre, S. es_ES
dc.contributor.author Pérez-Herranz, Valentín es_ES
dc.date.accessioned 2021-05-04T03:31:32Z
dc.date.available 2021-05-04T03:31:32Z
dc.date.issued 2020-06 es_ES
dc.identifier.issn 0045-6535 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165897
dc.description.abstract [EN] Norfloxacin is employed as in veterinary and human medicine against gram-positive and gram-negative bacteria. Due to the ineffective treatment at the wastewater treatment plants it becomes an emergent pollutant. Electro-oxidation appears as an alternative to its effective mineralization. This work compares Norfloxacin electro-oxidation on different anodic materials: two ceramic electrodes (both based on SnO2 + Sb2O3 with and without CuO, named as CuO and BCE, respectively) and a boron doped diamond (BDD). First, the anodes were characterized by cyclic voltammetry, revealing that NOR direct oxidation occurred at 1.30 V vs. Ag/AgCl. The higher the scan rate the higher both the current density and the anodic potential of the peak. This behavior was analyzed using the Randles¿Sevcik equation to calculate the Norfloxacin diffusion coefficient in aqueous media, giving a value of D= 7.80¿10-6 cm2 s-1 at 25 °C), which is close to the predicted value obtained using the Wilke-Chang correlation. The electrolysis experiments showed that both NOR and TOC decay increased with the applied current density, presenting a pseudo-first order kinetic. All the anodes tested achieved more than 90% NOR degradation at each current density. The CuO is not a good alternative to BCE because although it acts as a catalyst during the first use, it is lost from the anode surface in the subsequent uses. According to their oxidizing power, the anodes employed are ordered as follows: BDD>BCE>CuO. es_ES
dc.description.sponsorship The authors want to express their gratitude to the Ministerio de Economia y Competitividad (Spain) and the FEDER funds, which financially support the projects CTQ2015-65202-C2-1-R, CTQ201565202-C2-2-R and RTI2018-101341-B-C21. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemosphere es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Boron-doped diamond (BDD) anode es_ES
dc.subject Ceramic anodes es_ES
dc.subject Electro-oxidation es_ES
dc.subject Norfloxacin (NOR) es_ES
dc.subject Voltammetric study es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Effect of the CuO addition on a Sb-doped SnO2 ceramic electrode applied to the removal of Norfloxacin in chloride media by electro-oxidation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chemosphere.2020.126178 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-2-R/ES/NUEVOS ELECTRODOS CERAMICOS MEJORADOS MEDIANTE NANOTECNOLOGIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-1-R/ES/CARACTERIZACION ELECTROQUIMICA DE ELECTRODOS CERAMICOS Y APLICACION A PROCESOS ELECTROQUIMICOS DE OXIDACION AVANZADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101341-B-C21/ES/ELECTROCHEMICAL CHARACTERIZATION OF CERAMIC ELECTRODES AND MEMBRANES AND APPLICATION TO PHOTOELECTROOXIDATION AND ELECTROFILTRATION PROCESSES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Carrillo Abad, J.; Mora-Gómez, J.; García Gabaldón, M.; Ortega Navarro, EM.; Mestre, S.; Pérez-Herranz, V. (2020). Effect of the CuO addition on a Sb-doped SnO2 ceramic electrode applied to the removal of Norfloxacin in chloride media by electro-oxidation. Chemosphere. 249:1-9. https://doi.org/10.1016/j.chemosphere.2020.126178 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.chemosphere.2020.126178 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 249 es_ES
dc.identifier.pmid 32087454 es_ES
dc.relation.pasarela S\417895 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Al Aukidy, M., Verlicchi, P., Jelic, A., Petrovic, M., & Barcelò, D. (2012). Monitoring release of pharmaceutical compounds: Occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Science of The Total Environment, 438, 15-25. doi:10.1016/j.scitotenv.2012.08.061 es_ES
dc.description.references Bejan, D., Guinea, E., & Bunce, N. J. (2012). On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex® anodes. Electrochimica Acta, 69, 275-281. doi:10.1016/j.electacta.2012.02.097 es_ES
dc.description.references Cañizares, P., García-Gómez, J., Lobato, J., & Rodrigo, M. A. (2004). Modeling of Wastewater Electro-oxidation Processes Part I. General Description and Application to Inactive Electrodes. Industrial & Engineering Chemistry Research, 43(9), 1915-1922. doi:10.1021/ie0341294 es_ES
dc.description.references Carrillo-Abad, J., Pérez-Herranz, V., & Urtiaga, A. (2018). Electrochemical oxidation of 6:2 fluorotelomer sulfonic acid (6:2 FTSA) on BDD: electrode characterization and mechanistic investigation. Journal of Applied Electrochemistry, 48(6), 589-596. doi:10.1007/s10800-018-1180-8 es_ES
dc.description.references Chaplin, B. P., Hubler, D. K., & Farrell, J. (2013). Understanding anodic wear at boron doped diamond film electrodes. Electrochimica Acta, 89, 122-131. doi:10.1016/j.electacta.2012.10.166 es_ES
dc.description.references Chaplin, B. P., Wyle, I., Zeng, H., Carlisle, J. A., & Farrell, J. (2011). Characterization of the performance and failure mechanisms of boron-doped ultrananocrystalline diamond electrodes. Journal of Applied Electrochemistry, 41(11), 1329-1340. doi:10.1007/s10800-011-0351-7 es_ES
dc.description.references Chen, X., Gao, F., & Chen, G. (2005). Comparison of Ti/BDD and Ti/SnO2?Sb2O5 electrodes for pollutant oxidation. Journal of Applied Electrochemistry, 35(2), 185-191. doi:10.1007/s10800-004-6068-0 es_ES
dc.description.references Coledam, D. A. C., Aquino, J. M., Silva, B. F., Silva, A. J., & Rocha-Filho, R. C. (2016). Electrochemical mineralization of norfloxacin using distinct boron-doped diamond anodes in a filter-press reactor, with investigations of toxicity and oxidation by-products. Electrochimica Acta, 213, 856-864. doi:10.1016/j.electacta.2016.08.003 es_ES
dc.description.references Da Silva, H., Pacheco, J., Silva, J., Viswanathan, S., & Delerue-Matos, C. (2015). Molecularly imprinted sensor for voltammetric detection of norfloxacin. Sensors and Actuators B: Chemical, 219, 301-307. doi:10.1016/j.snb.2015.04.125 es_ES
dc.description.references Da Silva, S. W., Navarro, E. M. O., Rodrigues, M. A. S., Bernardes, A. M., & Pérez-Herranz, V. (2018). The role of the anode material and water matrix in the electrochemical oxidation of norfloxacin. Chemosphere, 210, 615-623. doi:10.1016/j.chemosphere.2018.07.057 es_ES
dc.description.references Gogoi, A., Mazumder, P., Tyagi, V. K., Tushara Chaminda, G. G., An, A. K., & Kumar, M. (2018). Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable Development, 6, 169-180. doi:10.1016/j.gsd.2017.12.009 es_ES
dc.description.references Goyal, R. N., Rana, A. R. S., & Chasta, H. (2012). Electrochemical sensor for the sensitive determination of norfloxacin in human urine and pharmaceuticals. Bioelectrochemistry, 83, 46-51. doi:10.1016/j.bioelechem.2011.08.006 es_ES
dc.description.references Gözmen, B., Oturan, M. A., Oturan, N., & Erbatur, O. (2003). Indirect Electrochemical Treatment of Bisphenol A in Water via Electrochemically Generated Fenton’s Reagent. Environmental Science & Technology, 37(16), 3716-3723. doi:10.1021/es034011e es_ES
dc.description.references Guinea, E., Garrido, J. A., Rodríguez, R. M., Cabot, P.-L., Arias, C., Centellas, F., & Brillas, E. (2010). Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochimica Acta, 55(6), 2101-2115. doi:10.1016/j.electacta.2009.11.040 es_ES
dc.description.references Huang, K.-J., Liu, X., Xie, W.-Z., & Yuan, H.-X. (2008). Electrochemical behavior and voltammetric determination of norfloxacin at glassy carbon electrode modified with multi walled carbon nanotubes/Nafion. Colloids and Surfaces B: Biointerfaces, 64(2), 269-274. doi:10.1016/j.colsurfb.2008.02.003 es_ES
dc.description.references Jojoa-Sierra, S. D., Silva-Agredo, J., Herrera-Calderon, E., & Torres-Palma, R. A. (2017). Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO2 anodes. Science of The Total Environment, 575, 1228-1238. doi:10.1016/j.scitotenv.2016.09.201 es_ES
dc.description.references Kapałka, A., Fóti, G., & Comninellis, C. (2009). The importance of electrode material in environmental electrochemistry. Electrochimica Acta, 54(7), 2018-2023. doi:10.1016/j.electacta.2008.06.045 es_ES
dc.description.references Laviron, E. (1979). General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101(1), 19-28. doi:10.1016/s0022-0728(79)80075-3 es_ES
dc.description.references Liu, Z., Jin, M., Cao, J., Wang, J., Wang, X., Zhou, G., … Shui, L. (2018). High-sensitive electrochemical sensor for determination of Norfloxacin and its metabolism using MWCNT-CPE/pRGO-ANSA/Au. Sensors and Actuators B: Chemical, 257, 1065-1075. doi:10.1016/j.snb.2017.11.052 es_ES
dc.description.references Ma, X., Cheng, Y., Ge, Y., Wu, H., Li, Q., Gao, N., & Deng, J. (2018). Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin. Ultrasonics Sonochemistry, 40, 763-772. doi:10.1016/j.ultsonch.2017.08.025 es_ES
dc.description.references Mihaiu, S., Scarlat, O., Aldica, G., & Zaharescu, M. (2001). SnO2 electroceramics with various additives. Journal of the European Ceramic Society, 21(10-11), 1801-1804. doi:10.1016/s0955-2219(01)00119-4 es_ES
dc.description.references Mora-Gómez, J., García-Gabaldón, M., Ortega, E., Sánchez-Rivera, M.-J., Mestre, S., & Pérez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 44(2), 2216-2222. doi:10.1016/j.ceramint.2017.10.178 es_ES
dc.description.references Neugebauer, U., Szeghalmi, A., Schmitt, M., Kiefer, W., Popp, J., & Holzgrabe, U. (2005). Vibrational spectroscopic characterization of fluoroquinolones. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(7), 1505-1517. doi:10.1016/j.saa.2004.11.014 es_ES
dc.description.references Nicholson, R. S., & Shain, I. (1964). Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. Analytical Chemistry, 36(4), 706-723. doi:10.1021/ac60210a007 es_ES
dc.description.references Osorio, V., Larrañaga, A., Aceña, J., Pérez, S., & Barceló, D. (2016). Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers. Science of The Total Environment, 540, 267-277. doi:10.1016/j.scitotenv.2015.06.143 es_ES
dc.description.references Özcan, A., Atılır Özcan, A., & Demirci, Y. (2016). Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment. Chemical Engineering Journal, 304, 518-526. doi:10.1016/j.cej.2016.06.105 es_ES
dc.description.references Pipi, A. R. F., Sirés, I., De Andrade, A. R., & Brillas, E. (2014). Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron. Chemosphere, 109, 49-55. doi:10.1016/j.chemosphere.2014.03.006 es_ES
dc.description.references Polcaro, A. M., Ricci, P. C., Palmas, S., Ferrara, F., & Anedda, A. (2006). Characterization of boron doped diamond electrodes during oxidation processes: Relationship between electrochemical activity and ageing time. Thin Solid Films, 515(4), 2073-2078. doi:10.1016/j.tsf.2006.06.033 es_ES
dc.description.references Popescu, A.-M., Mihaiu, S., & Zuca, S. (2002). Microstructure and Electrochemical Behaviour of some SnO2-based Inert Electrodes in Aluminium Electrolysis. Zeitschrift für Naturforschung A, 57(1-2), 71-75. doi:10.1515/zna-2002-1-210 es_ES
dc.description.references Santos, A., Yustos, P., Quintanilla, A., Rodrı́guez, S., & Garcı́a-Ochoa, F. (2002). Route of the catalytic oxidation of phenol in aqueous phase. Applied Catalysis B: Environmental, 39(2), 97-113. doi:10.1016/s0926-3373(02)00087-5 es_ES
dc.description.references Soriano, Á., Gorri, D., Biegler, L. T., & Urtiaga, A. (2019). An optimization model for the treatment of perfluorocarboxylic acids considering membrane preconcentration and BDD electrooxidation. Water Research, 164, 114954. doi:10.1016/j.watres.2019.114954 es_ES
dc.description.references Tadkaew, N., Hai, F. I., McDonald, J. A., Khan, S. J., & Nghiem, L. D. (2011). Removal of trace organics by MBR treatment: The role of molecular properties. Water Research, 45(8), 2439-2451. doi:10.1016/j.watres.2011.01.023 es_ES
dc.description.references Trejo, G., Ortega B., R., Meas, Y., Ozil, P., Chainet, E., & Nguyen, B. (1998). Nucleation and Growth of Zinc from Chloride Concentrated Solutions. Journal of The Electrochemical Society, 145(12), 4090-4097. doi:10.1149/1.1838919 es_ES
dc.description.references Tryk, D. A., Tsunozaki, K., Rao, T. N., & Fujishima, A. (2001). Relationships between surface character and electrochemical processes on diamond electrodes: dual roles of surface termination and near-surface hydrogen. Diamond and Related Materials, 10(9-10), 1804-1809. doi:10.1016/s0925-9635(01)00453-8 es_ES
dc.description.references Urtiaga, A., Soriano, A., & Carrillo-Abad, J. (2018). BDD anodic treatment of 6:2 fluorotelomer sulfonate (6:2 FTSA). Evaluation of operating variables and by-product formation. Chemosphere, 201, 571-577. doi:10.1016/j.chemosphere.2018.03.027 es_ES
dc.description.references Wang, X., Li, B., Zhang, T., & Li, X. (2015). Performance of nanofiltration membrane in rejecting trace organic compounds: Experiment and model prediction. Desalination, 370, 7-16. doi:10.1016/j.desal.2015.05.010 es_ES
dc.description.references Watkinson, A. J., Murby, E. J., Kolpin, D. W., & Costanzo, S. D. (2009). The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Science of The Total Environment, 407(8), 2711-2723. doi:10.1016/j.scitotenv.2008.11.059 es_ES
dc.description.references Wells, M. J. M. (2006). Log DOW: Key to Understanding and Regulating Wastewater-Derived Contaminants. Environmental Chemistry, 3(6), 439. doi:10.1071/en06045 es_ES
dc.description.references Wilke, C. R., & Chang, P. (1955). Correlation of diffusion coefficients in dilute solutions. AIChE Journal, 1(2), 264-270. doi:10.1002/aic.690010222 es_ES
dc.description.references Woodward, R. B. (1942). Structure and Absorption Spectra. III. Normal Conjugated Dienes. Journal of the American Chemical Society, 64(1), 72-75. doi:10.1021/ja01253a018 es_ES
dc.description.references Woodward, R. B. (1942). Structure and Absorption Spectra. IV. Further Observations on α,β-Unsaturated Ketones. Journal of the American Chemical Society, 64(1), 76-77. doi:10.1021/ja01253a019 es_ES
dc.description.references Woodward, R. B. (1941). Structure and the Absorption Spectra of α,β-Unsaturated Ketones. Journal of the American Chemical Society, 63(4), 1123-1126. doi:10.1021/ja01849a066 es_ES
dc.description.references Woodward, R. B., & Clifford, A. F. (1941). Structure and Absorption Spectra. II. 3-Acetoxy-Δ5-(6)-nor-cholestene-7-carboxylic Acid. Journal of the American Chemical Society, 63(10), 2727-2729. doi:10.1021/ja01855a063 es_ES
dc.description.references Zaharescu, M., Mihaiu, S., Zuca, S., & Matiasovsky, K. (1991). Contribution to the study of SnO2-based ceramics. Journal of Materials Science, 26(6), 1666-1672. doi:10.1007/bf00544680 es_ES
dc.description.references Zou, S., Xu, W., Zhang, R., Tang, J., Chen, Y., & Zhang, G. (2011). Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities. Environmental Pollution, 159(10), 2913-2920. doi:10.1016/j.envpol.2011.04.037 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem