- -

Potential step voltammetry: An approach to corrosion rate measurement of reinforcements in concrete

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Potential step voltammetry: An approach to corrosion rate measurement of reinforcements in concrete

Mostrar el registro completo del ítem

Ramón, J.; Gandía-Romero, JM.; Bataller Prats, R.; Alcañiz Fillol, M.; Valcuende Payá, MO.; Soto Camino, J. (2020). Potential step voltammetry: An approach to corrosion rate measurement of reinforcements in concrete. Cement and Concrete Composites. 110:1-12. https://doi.org/10.1016/j.cemconcomp.2020.103590

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165901

Ficheros en el ítem

Metadatos del ítem

Título: Potential step voltammetry: An approach to corrosion rate measurement of reinforcements in concrete
Autor: Ramón, J.E. Gandía-Romero, Jose M. Bataller Prats, Román Alcañiz Fillol, Miguel Valcuende Payá, Manuel Octavio Soto Camino, Juan
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] This paper presents a Potentiostatic Step Voltammetry approach to corrosion rate measurement of reinforcements in concrete. We have termed this approach PSV-TE since it is based on the Tafel extrapolation method, but ...[+]
Palabras clave: Potential step voltammetry , Non-destructive technique , Steel corrosion , Reinforced concrete , Durability
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Cement and Concrete Composites. (issn: 0958-9465 )
DOI: 10.1016/j.cemconcomp.2020.103590
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.cemconcomp.2020.103590
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/760824/EU/Rethinking coastal defence and Green-Energy Service infrastructures through enHancEd-durAbiLIty high-performance fiber reinforced cement-based materials./
info:eu-repo/grantAgreement/MECD//FPU13%2F00911/ES/FPU13%2F00911/
info:eu-repo/grantAgreement/MINECO//BIA2016-78460-C3-3-R/ES/DURABILIDAD Y VIDA UTIL DEL HORMIGON DE MUY ALTO RENDIMIENTO/
Agradecimientos:
This work was supported by a pre-doctoral scholarship granted to Jose Enrique Ramon Zamora by the Spanish Ministry of Science and Innovation [grant number FPU13/00911]. We would also like to acknowledge financial support ...[+]
Tipo: Artículo

References

Mansfeld, F. (1976). The Polarization Resistance Technique for Measuring Corrosion Currents. Advances in Corrosion Science and Technology, 163-262. doi:10.1007/978-1-4684-8986-6_3

Andrade, C., & González, J. A. (1978). Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Materials and Corrosion, 29(8), 515-519. doi:10.1002/maco.19780290804

Chang, Z.-T., Cherry, B., & Marosszeky, M. (2008). Polarisation behaviour of steel bar samples in concrete in seawater. Part 1: Experimental measurement of polarisation curves of steel in concrete. Corrosion Science, 50(2), 357-364. doi:10.1016/j.corsci.2007.08.009 [+]
Mansfeld, F. (1976). The Polarization Resistance Technique for Measuring Corrosion Currents. Advances in Corrosion Science and Technology, 163-262. doi:10.1007/978-1-4684-8986-6_3

Andrade, C., & González, J. A. (1978). Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Materials and Corrosion, 29(8), 515-519. doi:10.1002/maco.19780290804

Chang, Z.-T., Cherry, B., & Marosszeky, M. (2008). Polarisation behaviour of steel bar samples in concrete in seawater. Part 1: Experimental measurement of polarisation curves of steel in concrete. Corrosion Science, 50(2), 357-364. doi:10.1016/j.corsci.2007.08.009

Stern, M., & Geaby, A. L. (1957). Electrochemical Polarization. Journal of The Electrochemical Society, 104(1), 56. doi:10.1149/1.2428496

González, J. A., Albéniz, J., & Feliu, S. (1996). Valores de la constante B del método de resistencia de polarización para veinte sistemas metal-medio diferentes. Revista de Metalurgia, 32(1), 10-17. doi:10.3989/revmetalm.1996.v32.i1.926

González, J. A., Molina, A., Escudero, M. L., & Andrade, C. (1985). Errors in the electrochemical evaluation of very small corrosion rates—I. polarization resistance method applied to corrosion of steel in concrete. Corrosion Science, 25(10), 917-930. doi:10.1016/0010-938x(85)90021-6

Scully, J. R. (2000). Polarization Resistance Method for Determination of Instantaneous Corrosion Rates. CORROSION, 56(2), 199-218. doi:10.5006/1.3280536

Bastidas, D. M., González, J. A., Feliu, S., Cobo, A., & Miranda, J. M. (2007). A Quantitative Study of Concrete-Embedded Steel Corrosion Using Potentiostatic Pulses. CORROSION, 63(12), 1094-1100. doi:10.5006/1.3278327

Glass, G. K., Page, C. L., Short, N. R., & Zhang, J.-Z. (1997). The analysis of potentiostatic transients applied to the corrosion of steel in concrete. Corrosion Science, 39(9), 1657-1663. doi:10.1016/s0010-938x(97)00071-1

Feliu, V., González, J. A., & Feliu, S. (2007). Corrosion estimates from the transient response to a potential step. Corrosion Science, 49(8), 3241-3255. doi:10.1016/j.corsci.2007.03.004

Andrade, C., Soler, L., Alonso, C., Nóvoa, X. R., & Keddam, M. (1995). The importance of geometrical considerations in the measurement of steel corrosion in concrete by means of AC impedance. Corrosion Science, 37(12), 2013-2023. doi:10.1016/0010-938x(95)00095-2

Barnartt, S. (1970). Two-point and three-point methods for the investigation of electrode reaction mechanisms. Electrochimica Acta, 15(8), 1313-1324. doi:10.1016/0013-4686(70)80051-2

Bandy, R. (1980). The simultaneous determination of tafel constants and corrosion rate—a new method. Corrosion Science, 20(8-9), 1017-1028. doi:10.1016/0010-938x(80)90081-5

Beleevskii, V. S., Konev, K. A., Novosadov, V. V., & Vasil’ev, V. Y. (2004). Estimating Corrosion Current and Tafel Constants from the Curvature of Voltammetric Curves Near the Free-Corrosion Potential. Protection of Metals, 40(6), 566-569. doi:10.1023/b:prom.0000049521.65336.25

Oldham, K. B., & Mansfeld, F. (1973). Corrosion rates from polarization curves: A new method. Corrosion Science, 13(10), 813-819. doi:10.1016/s0010-938x(73)80021-6

Kanno, K., Suzuki, M., & Sato, Y. (1980). Tafel slope determination of corrosion reaction by the coulostatic method. Corrosion Science, 20(8-9), 1059-1066. doi:10.1016/0010-938x(80)90084-0

MANSFELD, F. (1973). Tafel Slopes and Corrosion Rates from Polarization Resistance Measurements. Corrosion, 29(10), 397-402. doi:10.5006/0010-9312-29.10.397

Rocchini, G. (1995). The determination of tafel slopes by the successive approximation method. Corrosion Science, 37(6), 987-1003. doi:10.1016/0010-938x(95)00009-9

Mansfeld, F. (2005). Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves. Corrosion Science, 47(12), 3178-3186. doi:10.1016/j.corsci.2005.04.012

Campos, I., Alcañiz, M., Masot, R., Soto, J., Martínez-Máñez, R., Vivancos, J.-L., & Gil, L. (2012). A method of pulse array design for voltammetric electronic tongues. Sensors and Actuators B: Chemical, 161(1), 556-563. doi:10.1016/j.snb.2011.10.075

Martínez-Bisbal, M. C., Loeff, E., Olivas, E., Carbó, N., García-Castillo, F. J., López-Carrero, J., … Soto, J. (2017). A Voltammetric Electronic Tongue for the Quantitative Analysis of Quality Parameters in Wastewater. Electroanalysis, 29(4), 1147-1153. doi:10.1002/elan.201600717

Sobrino-Gregorio, L., Bataller, R., Soto, J., & Escriche, I. (2018). Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue. Food Control, 91, 254-260. doi:10.1016/j.foodcont.2018.04.003

Ramón, J. E., Martínez-Ibernón, A., Gandía-Romero, J. M., Fraile, R., Bataller, R., Alcañiz, M., … Soto, J. (2019). Characterization of electrochemical systems using potential step voltammetry. Part I: Modeling by means of equivalent circuits. Electrochimica Acta, 323, 134702. doi:10.1016/j.electacta.2019.134702

Martínez-Ibernón, A., Ramón, J. E., Gandía-Romero, J. M., Gasch, I., Valcuende, M., Alcañiz, M., & Soto, J. (2019). Characterization of electrochemical systems using potential step voltammetry. Part II: Modeling of reversible systems. Electrochimica Acta, 328, 135111. doi:10.1016/j.electacta.2019.135111

M. Alcañiz, R. Bataller, J.M. Gandía-Romero, J.E. Ramón, J. Soto, M. Valcuende, Sensor, red de sensores, método y programa informático para determinar la corrosión en una estructura de hormigón armado, invention patent No. ES2545669, Publication date 19 de January 2016.

Rodríguez, P., Ramírez, E., & González, J. A. (1994). Methods for studying corrosion in reinforced concrete. Magazine of Concrete Research, 46(167), 81-90. doi:10.1680/macr.1994.46.167.81

Feliu, S., Gonzalez, J. A., Andrade, C., & Feliu, V. (1986). The determination of the corrosion rate of steel in concrete by a non-stationary method. Corrosion Science, 26(11), 961-970. doi:10.1016/0010-938x(86)90086-7

Feliu, V., González, J. ., Andrade, C., & Feliu, S. (1998). Equivalent circuit for modelling the steel-concrete interface. I. experimental evidence and theoretical predictions. Corrosion Science, 40(6), 975-993. doi:10.1016/s0010-938x(98)00036-5

Song, G. (2000). Theoretical analysis of the measurement of polarisation resistance in reinforced concrete. Cement and Concrete Composites, 22(6), 407-415. doi:10.1016/s0958-9465(00)00040-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem