- -

Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows

Show full item record

Liang, Y.; Alharthi, A.; Bucktrout, R.; Elolimy, A.; Lopreiato, V.; Martinez-Cortes, I.; Xu, C.... (2020). Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows. Journal of Dairy Science. 103(7):6439-6453. https://doi.org/10.3168/jds.2019-17813

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165903

Files in this item

Item Metadata

Title: Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows
Author: Liang, Y. Alharthi, A.S. Bucktrout, R. Elolimy, A.A. Lopreiato, V. Martinez-Cortes, I. Xu, C. Fernández Martínez, Carlos Javier Trevisi, E. Loor, J.J.
UPV Unit: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Issued date:
Abstract:
[EN] Dairy cows with high body condition score (BCS) in late prepartum are more susceptible to oxidative stress (OS). Nuclear factor erythroid 2-like 2 (NFE2L2) is a major antioxidant transcription factor. We investigated ...[+]
Subjects: Dairy-Cows , Oxidative stress , Condition score , Inflammatory conditions , Gene-Expression , Early lactation , Liver-Function , Beta-Carotene , Metabolism , Transition
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Journal of Dairy Science. (issn: 0022-0302 )
DOI: 10.3168/jds.2019-17813
Publisher:
American Dairy Science Association
Publisher version: https://doi.org/10.3168/jds.2019-17813
Thanks:
Y. Liang is a recipient of a doctoral fellowship from China Scholarship Council (CSC, Beijing, China). A. S. Alharthi received a fellowship from King Saud University to perform his PhD studies at the University of Illinois ...[+]
Type: Artículo

References

Alharthi, A., Zhou, Z., Lopreiato, V., Trevisi, E., & Loor, J. J. (2018). Body condition score prior to parturition is associated with plasma and adipose tissue biomarkers of lipid metabolism and inflammation in Holstein cows. Journal of Animal Science and Biotechnology, 9(1). doi:10.1186/s40104-017-0221-1

Aquilano, K., Baldelli, S., & Ciriolo, M. R. (2014). Glutathione: new roles in redox signaling for an old antioxidant. Frontiers in Pharmacology, 5. doi:10.3389/fphar.2014.00196

Arias, E., González, A., Shimada, A., Varela-Echavarria, A., Ruiz-López, F., During, A., & Mora, O. (2009). β-Carotene is incorporated or mobilized along with triglycerides in bovine adipose tissue in response to insulin or epinephrine. Journal of Animal Physiology and Animal Nutrition, 93(1), 83-93. doi:10.1111/j.1439-0396.2007.00783.x [+]
Alharthi, A., Zhou, Z., Lopreiato, V., Trevisi, E., & Loor, J. J. (2018). Body condition score prior to parturition is associated with plasma and adipose tissue biomarkers of lipid metabolism and inflammation in Holstein cows. Journal of Animal Science and Biotechnology, 9(1). doi:10.1186/s40104-017-0221-1

Aquilano, K., Baldelli, S., & Ciriolo, M. R. (2014). Glutathione: new roles in redox signaling for an old antioxidant. Frontiers in Pharmacology, 5. doi:10.3389/fphar.2014.00196

Arias, E., González, A., Shimada, A., Varela-Echavarria, A., Ruiz-López, F., During, A., & Mora, O. (2009). β-Carotene is incorporated or mobilized along with triglycerides in bovine adipose tissue in response to insulin or epinephrine. Journal of Animal Physiology and Animal Nutrition, 93(1), 83-93. doi:10.1111/j.1439-0396.2007.00783.x

Batistel, F., Arroyo, J. M., Bellingeri, A., Wang, L., Saremi, B., Parys, C., … Loor, J. J. (2017). Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 100(9), 7455-7467. doi:10.3168/jds.2017-12689

Batistel, F., Arroyo, J. M., Garces, C. I. M., Trevisi, E., Parys, C., Ballou, M. A., … Loor, J. J. (2018). Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 101(1), 480-490. doi:10.3168/jds.2017-13185

Bernabucci, U., Ronchi, B., Lacetera, N., & Nardone, A. (2005). Influence of Body Condition Score on Relationships Between Metabolic Status and Oxidative Stress in Periparturient Dairy Cows. Journal of Dairy Science, 88(6), 2017-2026. doi:10.3168/jds.s0022-0302(05)72878-2

Bertoni, G., Trevisi, E., Han, X., & Bionaz, M. (2008). Effects of Inflammatory Conditions on Liver Activity in Puerperium Period and Consequences for Performance in Dairy Cows. Journal of Dairy Science, 91(9), 3300-3310. doi:10.3168/jds.2008-0995

Bionaz, M., Trevisi, E., Calamari, L., Librandi, F., Ferrari, A., & Bertoni, G. (2007). Plasma Paraoxonase, Health, Inflammatory Conditions, and Liver Function in Transition Dairy Cows. Journal of Dairy Science, 90(4), 1740-1750. doi:10.3168/jds.2006-445

Bozinovski, S., Seow, H. J., Crack, P. J., Anderson, G. P., & Vlahos, R. (2012). Glutathione Peroxidase-1 Primes Pro-Inflammatory Cytokine Production after LPS Challenge In Vivo. PLoS ONE, 7(3), e33172. doi:10.1371/journal.pone.0033172

Buelna-Chontal, M., & Zazueta, C. (2013). Redox activation of Nrf2 & NF-κB: A double end sword? Cellular Signalling, 25(12), 2548-2557. doi:10.1016/j.cellsig.2013.08.007

Cerón,, J. J., Eckersall,, P. D., & Martínez-Subiela, S. (2005). Acute phase proteins in dogs and cats: current knowledge and future perspectives. Veterinary Clinical Pathology, 34(2), 85-99. doi:10.1111/j.1939-165x.2005.tb00019.x

Cohen, G., & Hochstein, P. (1963). Glutathione Peroxidase: The Primary Agent for the Elimination of Hydrogen Peroxide in Erythrocytes*. Biochemistry, 2(6), 1420-1428. doi:10.1021/bi00906a038

De Koster, J., Hostens, M., Van Eetvelde, M., Hermans, K., Moerman, S., Bogaert, H., … Opsomer, G. (2015). Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores. Journal of Dairy Science, 98(7), 4580-4592. doi:10.3168/jds.2015-9341

De Koster, J., Strieder-Barboza, C., de Souza, J., Lock, A. L., & Contreras, G. A. (2018). Short communication: Effects of body fat mobilization on macrophage infiltration in adipose tissue of early lactation dairy cows. Journal of Dairy Science, 101(8), 7608-7613. doi:10.3168/jds.2017-14318

De Koster, J., Van den Broeck, W., Hulpio, L., Claeys, E., Van Eetvelde, M., Hermans, K., … Opsomer, G. (2016). Influence of adipocyte size and adipose depot on the in vitro lipolytic activity and insulin sensitivity of adipose tissue in dairy cows at the end of the dry period. Journal of Dairy Science, 99(3), 2319-2328. doi:10.3168/jds.2015-10440

Depreester, E., De Koster, J., Van Poucke, M., Hostens, M., Van den Broeck, W., Peelman, L., … Opsomer, G. (2018). Influence of adipocyte size and adipose depot on the number of adipose tissue macrophages and the expression of adipokines in dairy cows at the end of pregnancy. Journal of Dairy Science, 101(7), 6542-6555. doi:10.3168/jds.2017-13777

Depreester, E., Meyer, E., Demeyere, K., Van Eetvelde, M., Hostens, M., & Opsomer, G. (2017). Flow cytometric assessment of myeloperoxidase in bovine blood neutrophils and monocytes. Journal of Dairy Science, 100(9), 7638-7647. doi:10.3168/jds.2016-12186

Dickinson, D. A., & Forman, H. J. (2002). Cellular glutathione and thiols metabolism. Biochemical Pharmacology, 64(5-6), 1019-1026. doi:10.1016/s0006-2952(02)01172-3

Drevet, J. R. (2006). The antioxidant glutathione peroxidase family and spermatozoa: A complex story. Molecular and Cellular Endocrinology, 250(1-2), 70-79. doi:10.1016/j.mce.2005.12.027

Edmonson, A. J., Lean, I. J., Weaver, L. D., Farver, T., & Webster, G. (1989). A Body Condition Scoring Chart for Holstein Dairy Cows. Journal of Dairy Science, 72(1), 68-78. doi:10.3168/jds.s0022-0302(89)79081-0

Frey, S. K., & Vogel, S. (2011). Vitamin A Metabolism and Adipose Tissue Biology. Nutrients, 3(1), 27-39. doi:10.3390/nu3010027

Gessner, D. K., Schlegel, G., Keller, J., Schwarz, F. J., Ringseis, R., & Eder, K. (2013). Expression of target genes of nuclear factor E2-related factor 2 in the liver of dairy cows in the transition period and at different stages of lactation. Journal of Dairy Science, 96(2), 1038-1043. doi:10.3168/jds.2012-5967

Graugnard, D. E., Moyes, K. M., Trevisi, E., Khan, M. J., Keisler, D., Drackley, J. K., … Loor, J. J. (2013). Liver lipid content and inflammometabolic indices in peripartal dairy cows are altered in response to prepartal energy intake and postpartal intramammary inflammatory challenge. Journal of Dairy Science, 96(2), 918-935. doi:10.3168/jds.2012-5676

Han, L., Batistel, F., Ma, Y., Alharthi, A. S. M., Parys, C., & Loor, J. J. (2018). Methionine supply alters mammary gland antioxidant gene networks via phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) protein in dairy cows during the periparturient period. Journal of Dairy Science, 101(9), 8505-8512. doi:10.3168/jds.2017-14206

Han, L. Q., Zhou, Z., Ma, Y., Batistel, F., Osorio, J. S., & Loor, J. J. (2018). Phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) in mammary tissue of Holstein cows during the periparturient period is associated with mRNA abundance of antioxidant gene networks. Journal of Dairy Science, 101(7), 6511-6522. doi:10.3168/jds.2017-14257

Harvey, C. J., Thimmulappa, R. K., Singh, A., Blake, D. J., Ling, G., Wakabayashi, N., … Biswal, S. (2009). Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radical Biology and Medicine, 46(4), 443-453. doi:10.1016/j.freeradbiomed.2008.10.040

Holtenius, K., Agenäs, S., Delavaud, C., & Chilliard, Y. (2003). Effects of Feeding Intensity During the Dry Period. 2. Metabolic and Hormonal Responses. Journal of Dairy Science, 86(3), 883-891. doi:10.3168/jds.s0022-0302(03)73671-6

Jaakson, H., Karis, P., Ling, K., Ilves-Luht, A., Samarütel, J., Henno, M., … Ots, M. (2018). Adipose tissue insulin receptor and glucose transporter 4 expression, and blood glucose and insulin responses during glucose tolerance tests in transition Holstein cows with different body condition. Journal of Dairy Science, 101(1), 752-766. doi:10.3168/jds.2017-12877

Ji, P., Osorio, J. S., Drackley, J. K., & Loor, J. J. (2012). Overfeeding a moderate energy diet prepartum does not impair bovine subcutaneous adipose tissue insulin signal transduction and induces marked changes in peripartal gene network expression. Journal of Dairy Science, 95(8), 4333-4351. doi:10.3168/jds.2011-5079

Kobayashi, H., Matsuda, M., Fukuhara, A., Komuro, R., & Shimomura, I. (2009). Dysregulated glutathione metabolism links to impaired insulin action in adipocytes. American Journal of Physiology-Endocrinology and Metabolism, 296(6), E1326-E1334. doi:10.1152/ajpendo.90921.2008

Lacetera, N., Scalia, D., Bernabucci, U., Ronchi, B., Pirazzi, D., & Nardone, A. (2005). Lymphocyte Functions in Overconditioned Cows Around Parturition. Journal of Dairy Science, 88(6), 2010-2016. doi:10.3168/jds.s0022-0302(05)72877-0

LeBlanc, S. J., Herdt, T. H., Seymour, W. M., Duffield, T. F., & Leslie, K. E. (2004). Peripartum Serum Vitamin E, Retinol, and Beta-Carotene in Dairy Cattle and Their Associations with Disease. Journal of Dairy Science, 87(3), 609-619. doi:10.3168/jds.s0022-0302(04)73203-8

Liang, Y., Batistel, F., Parys, C., & Loor, J. J. (2019). Glutathione metabolism and nuclear factor erythroid 2-like 2 (NFE2L2)-related proteins in adipose tissue are altered by supply of ethyl-cellulose rumen-protected methionine in peripartal Holstein cows. Journal of Dairy Science, 102(6), 5530-5541. doi:10.3168/jds.2018-15687

Loor, J. J. (2010). Genomics of metabolic adaptations in the peripartal cow. Animal, 4(7), 1110-1139. doi:10.1017/s1751731110000960

Loor, J. J., Bertoni, G., Hosseini, A., Roche, J. R., & Trevisi, E. (2013). Functional welfare – using biochemical and molecular technologies to understand better the welfare state of peripartal dairy cattle. Animal Production Science, 53(9), 931. doi:10.1071/an12344

Loor, J. J., Bionaz, M., & Drackley, J. K. (2013). Systems Physiology in Dairy Cattle: Nutritional Genomics and Beyond. Annual Review of Animal Biosciences, 1(1), 365-392. doi:10.1146/annurev-animal-031412-103728

Lopreiato, V., Minuti, A., Trimboli, F., Britti, D., Morittu, V. M., Cappelli, F. P., … Trevisi, E. (2019). Immunometabolic status and productive performance differences between periparturient Simmental and Holstein dairy cows in response to pegbovigrastim. Journal of Dairy Science, 102(10), 9312-9327. doi:10.3168/jds.2019-16323

Lu, S. C. (2009). Regulation of glutathione synthesis. Molecular Aspects of Medicine, 30(1-2), 42-59. doi:10.1016/j.mam.2008.05.005

Ma, Q. (2013). Role of Nrf2 in Oxidative Stress and Toxicity. Annual Review of Pharmacology and Toxicology, 53(1), 401-426. doi:10.1146/annurev-pharmtox-011112-140320

Ma, Y. F., Wu, Z. H., Gao, M., & Loor, J. J. (2018). Nuclear factor erythroid 2-related factor 2 antioxidant response element pathways protect bovine mammary epithelial cells against H2O2-induced oxidative damage in vitro. Journal of Dairy Science, 101(6), 5329-5344. doi:10.3168/jds.2017-14128

Ma, Y. F., Zhao, L., Coleman, D. N., Gao, M., & Loor, J. J. (2019). Tea polyphenols protect bovine mammary epithelial cells from hydrogen peroxide-induced oxidative damage in vitro by activating NFE2L2/HMOX1 pathways. Journal of Dairy Science, 102(2), 1658-1670. doi:10.3168/jds.2018-15047

Newman, A. W., Miller, A., Leal Yepes, F. A., Bitsko, E., Nydam, D., & Mann, S. (2019). The effect of the transition period and postpartum body weight loss on macrophage infiltrates in bovine subcutaneous adipose tissue. Journal of Dairy Science, 102(2), 1693-1701. doi:10.3168/jds.2018-15362

Onaran, İ., Güven, G., Ozaydin, A., & Ulutin, T. (2001). The influence of GSTM1 null genotype on susceptibility to in vitro oxidative stress. Toxicology, 157(3), 195-205. doi:10.1016/s0300-483x(00)00358-9

Osorio, J. S., Ji, P., Drackley, J. K., Luchini, D., & Loor, J. J. (2014). Smartamine M and MetaSmart supplementation during the peripartal period alter hepatic expression of gene networks in 1-carbon metabolism, inflammation, oxidative stress, and the growth hormone–insulin-like growth factor 1 axis pathways. Journal of Dairy Science, 97(12), 7451-7464. doi:10.3168/jds.2014-8680

Östh, M., Öst, A., Kjolhede, P., & Strålfors, P. (2014). The Concentration of β-Carotene in Human Adipocytes, but Not the Whole-Body Adipocyte Stores, Is Reduced in Obesity. PLoS ONE, 9(1), e85610. doi:10.1371/journal.pone.0085610

Pires, J. A. A., Delavaud, C., Faulconnier, Y., Pomiès, D., & Chilliard, Y. (2013). Effects of body condition score at calving on indicators of fat and protein mobilization of periparturient Holstein-Friesian cows. Journal of Dairy Science, 96(10), 6423-6439. doi:10.3168/jds.2013-6801

Ray, P. D., Huang, B.-W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24(5), 981-990. doi:10.1016/j.cellsig.2012.01.008

Reid, I. M., Roberts, C. J., Treacher, R. J., & Williams, L. A. (1986). Effect of body condition at calving on tissue mobilization, development of fatty liver and blood chemistry of dairy cows. Animal Science, 43(1), 7-15. doi:10.1017/s0003356100018298

Reynolds, C. K., Aikman, P. C., Lupoli, B., Humphries, D. J., & Beever, D. E. (2003). Splanchnic Metabolism of Dairy Cows During the Transition From Late Gestation Through Early Lactation. Journal of Dairy Science, 86(4), 1201-1217. doi:10.3168/jds.s0022-0302(03)73704-7

Rocco, S. M., & McNamara, J. P. (2013). Regulation of bovine adipose tissue metabolism during lactation. 7. Metabolism and gene expression as a function of genetic merit and dietary energy intake. Journal of Dairy Science, 96(5), 3108-3119. doi:10.3168/jds.2012-6097

Roche, J. R., Friggens, N. C., Kay, J. K., Fisher, M. W., Stafford, K. J., & Berry, D. P. (2009). Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. Journal of Dairy Science, 92(12), 5769-5801. doi:10.3168/jds.2009-2431

Roche, J. R., Kay, J. K., Friggens, N. C., Loor, J. J., & Berry, D. P. (2013). Assessing and Managing Body Condition Score for the Prevention of Metabolic Disease in Dairy Cows. Veterinary Clinics of North America: Food Animal Practice, 29(2), 323-336. doi:10.1016/j.cvfa.2013.03.003

Schneider, K. S., & Chan, J. Y. (2013). Emerging Role of Nrf2 in Adipocytes and Adipose Biology. Advances in Nutrition, 4(1), 62-66. doi:10.3945/an.112.003103

Seo, H.-A., & Lee, I.-K. (2013). The Role of Nrf2: Adipocyte Differentiation, Obesity, and Insulin Resistance. Oxidative Medicine and Cellular Longevity, 2013, 1-7. doi:10.1155/2013/184598

Sordillo, L. M., & Raphael, W. (2013). Significance of Metabolic Stress, Lipid Mobilization, and Inflammation on Transition Cow Disorders. Veterinary Clinics of North America: Food Animal Practice, 29(2), 267-278. doi:10.1016/j.cvfa.2013.03.002

Spears, J. W., & Weiss, W. P. (2008). Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal, 176(1), 70-76. doi:10.1016/j.tvjl.2007.12.015

Sun, X., Li, X., Jia, H., Loor, J. J., Bucktrout, R., Xu, Q., … Li, X. (2019). Effect of heat-shock protein B7 on oxidative stress in adipocytes from preruminant calves. Journal of Dairy Science, 102(6), 5673-5685. doi:10.3168/jds.2018-15726

Surmi, B. K., & Hasty, A. H. (2010). The role of chemokines in recruitment of immune cells to the artery wall and adipose tissue. Vascular Pharmacology, 52(1-2), 27-36. doi:10.1016/j.vph.2009.12.004

Suzuki, T., & Yamamoto, M. (2017). Stress-sensing mechanisms and the physiological roles of the Keap1–Nrf2 system during cellular stress. Journal of Biological Chemistry, 292(41), 16817-16824. doi:10.1074/jbc.r117.800169

Tourniaire, F., Gouranton, E., von Lintig, J., Keijer, J., Luisa Bonet, M., Amengual, J., … Landrier, J.-F. (2009). β-Carotene conversion products and their effects on adipose tissue. Genes & Nutrition, 4(3), 179-187. doi:10.1007/s12263-009-0128-3

Treacher, R. J., Reid, I. M., & Roberts, C. J. (1986). Effect of body condition at calving on the health and performance of dairy cows. Animal Science, 43(1), 1-6. doi:10.1017/s0003356100018286

Trevisi, E., Bertoni, G., Lombardelli, R., & Minuti, A. (2013). Relation of inflammation and liver function with the plasma cortisol response to adrenocorticotropin in early lactating dairy cows. Journal of Dairy Science, 96(9), 5712-5722. doi:10.3168/jds.2012-6375

Vailati-Riboni, M., Farina, G., Batistel, F., Heiser, A., Mitchell, M. D., Crookenden, M. A., … Loor, J. J. (2017). Far-off and close-up dry matter intake modulate indicators of immunometabolic adaptations to lactation in subcutaneous adipose tissue of pasture-based transition dairy cows. Journal of Dairy Science, 100(3), 2334-2350. doi:10.3168/jds.2016-11790

Vailati-Riboni, M., Kanwal, M., Bulgari, O., Meier, S., Priest, N. V., Burke, C. R., … Loor, J. J. (2016). Body condition score and plane of nutrition prepartum affect adipose tissue transcriptome regulators of metabolism and inflammation in grazing dairy cows during the transition period. Journal of Dairy Science, 99(1), 758-770. doi:10.3168/jds.2015-10046

Vailati Riboni, M., Meier, S., Priest, N. V., Burke, C. R., Kay, J. K., McDougall, S., … Loor, J. J. (2015). Adipose and liver gene expression profiles in response to treatment with a nonsteroidal antiinflammatory drug after calving in grazing dairy cows. Journal of Dairy Science, 98(5), 3079-3085. doi:10.3168/jds.2014-8579

Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44-84. doi:10.1016/j.biocel.2006.07.001

Wu, G., Fang, Y.-Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione Metabolism and Its Implications for Health. The Journal of Nutrition, 134(3), 489-492. doi:10.1093/jn/134.3.489

Xu, Q., Jia, H., Ma, L., Liu, G., Xu, C., Li, Y., … Li, X. (2019). All-trans retinoic acid inhibits lipopolysaccharide-induced inflammatory responses in bovine adipocytes via TGFβ1/Smad3 signaling pathway. BMC Veterinary Research, 15(1). doi:10.1186/s12917-019-1791-2

Zachut, M., Kra, G., Livshitz, L., Portnick, Y., Yakoby, S., Friedlander, G., & Levin, Y. (2017). Seasonal heat stress affects adipose tissue proteome toward enrichment of the Nrf2-mediated oxidative stress response in late-pregnant dairy cows. Journal of Proteomics, 158, 52-61. doi:10.1016/j.jprot.2017.02.011

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record