Mostrar el registro sencillo del ítem
dc.contributor.author | Liang, Y. | es_ES |
dc.contributor.author | Alharthi, A.S. | es_ES |
dc.contributor.author | Bucktrout, R. | es_ES |
dc.contributor.author | Elolimy, A.A. | es_ES |
dc.contributor.author | Lopreiato, V. | es_ES |
dc.contributor.author | Martinez-Cortes, I. | es_ES |
dc.contributor.author | Xu, C. | es_ES |
dc.contributor.author | Fernández Martínez, Carlos Javier | es_ES |
dc.contributor.author | Trevisi, E. | es_ES |
dc.contributor.author | Loor, J.J. | es_ES |
dc.date.accessioned | 2021-05-04T03:31:55Z | |
dc.date.available | 2021-05-04T03:31:55Z | |
dc.date.issued | 2020-07 | es_ES |
dc.identifier.issn | 0022-0302 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165903 | |
dc.description.abstract | [EN] Dairy cows with high body condition score (BCS) in late prepartum are more susceptible to oxidative stress (OS). Nuclear factor erythroid 2-like 2 (NFE2L2) is a major antioxidant transcription factor. We investigated the effect of precalving BCS on blood biomarkers associated with OS, inflammation, and liver function, along with mRNA and protein abundance of targets related to NFE2L2 and glutathione (GSH) metabolism in s.c. adipose tissue (SAT) of periparturient dairy cows. Twenty-two multiparous Holstein cows were retrospectively classified into a high BCS (HBCS; n = 11, BCS ¿3.5) or normal BCS (NBCS; n = 11, BCS ¿3.17) on d 28 before parturition. Cows were fed a corn silage- and wheat straw-based total mixed ration during late prepartum, and a corn silage- and alfalfa hay-based total mixed ration postpartum. Blood samples obtained at ¿10, 7, 15, and 30 d relative to parturition were used for analyses of biomarkers associated with inflammation, including albumin, ceruloplasmin, haptoglobin, and myeloperoxidase, as well as OS, including ferric reducing ability of plasma (FRAP), reactive oxygen species (ROS), and ß-carotene. Adipose biopsies harvested at ¿15, 7, and 30 d relative to parturition were analyzed for mRNA (real-time quantitative PCR) and protein abundance (Western blotting) of targets associated with the antioxidant transcription regulator nuclear factor, NFE2L2, and GSH metabolism pathway. In addition, concentrations of GSH, ROS and malondialdehyde were measured. High BCS cows had lower prepartum dry matter intake expressed as a percentage of body weight along with greater BCS loss between ¿4 and 4 wk relative to parturition. Plasma concentrations of ROS and FRAP increased after parturition regardless of treatment. Compared with NBCS, HBCS cows had greater concentrations of FRAP at d 7 postpartum, which coincided with peak values in those cows. In addition, NBCS cows experienced a marked decrease in plasma ROS after d 7 postpartum, while HBCS cows maintained a constant concentration by d 30 postpartum. Overall, ROS concentrations in SAT were greater in HBCS cows. However, overall mRNA abundance of NFE2L2 was lower and cullin 3 (CUL3), a negative regulator of NFE2L2, was greater in HBCS cows. Although HBCS cows had greater overall total protein abundance of NFE2L2 in SAT, ratio of phosphorylated NFE2L2 to total NFE2L2 was lower, suggesting a decrease in the activity of this antioxidant system. Overall, mRNA abundance of the GSH metabolism-related genes glutathione reductase (GSR), glutathione peroxidase 1 (GPX1), and transaldolase 1 (TALDO1), along with protein abundance of glutathione S-transferase mu 1 (GSTM1), were greater in HBCS cows. Data suggest that HBCS cows might experience greater systemic OS after parturition, while increased abundance of mRNA and protein components of the GSH metabolism pathway in SAT might help alleviate tissue oxidant status. Data underscored the importance of antioxidant mechanisms at the tissue level. Thus, targeting these pathways in SAT during the periparturient period via nutrition might help control tissue remodeling while allowing optimal performance. | es_ES |
dc.description.sponsorship | Y. Liang is a recipient of a doctoral fellowship from China Scholarship Council (CSC, Beijing, China). A. S. Alharthi received a fellowship from King Saud University to perform his PhD studies at the University of Illinois (Urbana). A. A. Elolimy was recipient of a fellowship from Higher Education Ministry, Egypt to perform his Ph.D. studies at the University of Illinois (Urbana). We thank Perdue AgriBusiness (Salisbury, MD) for the donation of ProvAAL2 AADvantage during the course of the experiment. The authors have not stated any conflicts of interest. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Dairy Science Association | es_ES |
dc.relation.ispartof | Journal of Dairy Science | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Dairy-Cows | es_ES |
dc.subject | Oxidative stress | es_ES |
dc.subject | Condition score | es_ES |
dc.subject | Inflammatory conditions | es_ES |
dc.subject | Gene-Expression | es_ES |
dc.subject | Early lactation | es_ES |
dc.subject | Liver-Function | es_ES |
dc.subject | Beta-Carotene | es_ES |
dc.subject | Metabolism | es_ES |
dc.subject | Transition | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3168/jds.2019-17813 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.description.bibliographicCitation | Liang, Y.; Alharthi, A.; Bucktrout, R.; Elolimy, A.; Lopreiato, V.; Martinez-Cortes, I.; Xu, C.... (2020). Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows. Journal of Dairy Science. 103(7):6439-6453. https://doi.org/10.3168/jds.2019-17813 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3168/jds.2019-17813 | es_ES |
dc.description.upvformatpinicio | 6439 | es_ES |
dc.description.upvformatpfin | 6453 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 103 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.pmid | 32359988 | es_ES |
dc.relation.pasarela | S\430261 | es_ES |
dc.contributor.funder | China Scholarship Council | es_ES |
dc.contributor.funder | King Saud University, Arabia Saudí | es_ES |
dc.contributor.funder | Egyptian Ministry of Higher Education | es_ES |
dc.description.references | Alharthi, A., Zhou, Z., Lopreiato, V., Trevisi, E., & Loor, J. J. (2018). Body condition score prior to parturition is associated with plasma and adipose tissue biomarkers of lipid metabolism and inflammation in Holstein cows. Journal of Animal Science and Biotechnology, 9(1). doi:10.1186/s40104-017-0221-1 | es_ES |
dc.description.references | Aquilano, K., Baldelli, S., & Ciriolo, M. R. (2014). Glutathione: new roles in redox signaling for an old antioxidant. Frontiers in Pharmacology, 5. doi:10.3389/fphar.2014.00196 | es_ES |
dc.description.references | Arias, E., González, A., Shimada, A., Varela-Echavarria, A., Ruiz-López, F., During, A., & Mora, O. (2009). β-Carotene is incorporated or mobilized along with triglycerides in bovine adipose tissue in response to insulin or epinephrine. Journal of Animal Physiology and Animal Nutrition, 93(1), 83-93. doi:10.1111/j.1439-0396.2007.00783.x | es_ES |
dc.description.references | Batistel, F., Arroyo, J. M., Bellingeri, A., Wang, L., Saremi, B., Parys, C., … Loor, J. J. (2017). Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 100(9), 7455-7467. doi:10.3168/jds.2017-12689 | es_ES |
dc.description.references | Batistel, F., Arroyo, J. M., Garces, C. I. M., Trevisi, E., Parys, C., Ballou, M. A., … Loor, J. J. (2018). Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 101(1), 480-490. doi:10.3168/jds.2017-13185 | es_ES |
dc.description.references | Bernabucci, U., Ronchi, B., Lacetera, N., & Nardone, A. (2005). Influence of Body Condition Score on Relationships Between Metabolic Status and Oxidative Stress in Periparturient Dairy Cows. Journal of Dairy Science, 88(6), 2017-2026. doi:10.3168/jds.s0022-0302(05)72878-2 | es_ES |
dc.description.references | Bertoni, G., Trevisi, E., Han, X., & Bionaz, M. (2008). Effects of Inflammatory Conditions on Liver Activity in Puerperium Period and Consequences for Performance in Dairy Cows. Journal of Dairy Science, 91(9), 3300-3310. doi:10.3168/jds.2008-0995 | es_ES |
dc.description.references | Bionaz, M., Trevisi, E., Calamari, L., Librandi, F., Ferrari, A., & Bertoni, G. (2007). Plasma Paraoxonase, Health, Inflammatory Conditions, and Liver Function in Transition Dairy Cows. Journal of Dairy Science, 90(4), 1740-1750. doi:10.3168/jds.2006-445 | es_ES |
dc.description.references | Bozinovski, S., Seow, H. J., Crack, P. J., Anderson, G. P., & Vlahos, R. (2012). Glutathione Peroxidase-1 Primes Pro-Inflammatory Cytokine Production after LPS Challenge In Vivo. PLoS ONE, 7(3), e33172. doi:10.1371/journal.pone.0033172 | es_ES |
dc.description.references | Buelna-Chontal, M., & Zazueta, C. (2013). Redox activation of Nrf2 & NF-κB: A double end sword? Cellular Signalling, 25(12), 2548-2557. doi:10.1016/j.cellsig.2013.08.007 | es_ES |
dc.description.references | Cerón,, J. J., Eckersall,, P. D., & Martínez-Subiela, S. (2005). Acute phase proteins in dogs and cats: current knowledge and future perspectives. Veterinary Clinical Pathology, 34(2), 85-99. doi:10.1111/j.1939-165x.2005.tb00019.x | es_ES |
dc.description.references | Cohen, G., & Hochstein, P. (1963). Glutathione Peroxidase: The Primary Agent for the Elimination of Hydrogen Peroxide in Erythrocytes*. Biochemistry, 2(6), 1420-1428. doi:10.1021/bi00906a038 | es_ES |
dc.description.references | De Koster, J., Hostens, M., Van Eetvelde, M., Hermans, K., Moerman, S., Bogaert, H., … Opsomer, G. (2015). Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores. Journal of Dairy Science, 98(7), 4580-4592. doi:10.3168/jds.2015-9341 | es_ES |
dc.description.references | De Koster, J., Strieder-Barboza, C., de Souza, J., Lock, A. L., & Contreras, G. A. (2018). Short communication: Effects of body fat mobilization on macrophage infiltration in adipose tissue of early lactation dairy cows. Journal of Dairy Science, 101(8), 7608-7613. doi:10.3168/jds.2017-14318 | es_ES |
dc.description.references | De Koster, J., Van den Broeck, W., Hulpio, L., Claeys, E., Van Eetvelde, M., Hermans, K., … Opsomer, G. (2016). Influence of adipocyte size and adipose depot on the in vitro lipolytic activity and insulin sensitivity of adipose tissue in dairy cows at the end of the dry period. Journal of Dairy Science, 99(3), 2319-2328. doi:10.3168/jds.2015-10440 | es_ES |
dc.description.references | Depreester, E., De Koster, J., Van Poucke, M., Hostens, M., Van den Broeck, W., Peelman, L., … Opsomer, G. (2018). Influence of adipocyte size and adipose depot on the number of adipose tissue macrophages and the expression of adipokines in dairy cows at the end of pregnancy. Journal of Dairy Science, 101(7), 6542-6555. doi:10.3168/jds.2017-13777 | es_ES |
dc.description.references | Depreester, E., Meyer, E., Demeyere, K., Van Eetvelde, M., Hostens, M., & Opsomer, G. (2017). Flow cytometric assessment of myeloperoxidase in bovine blood neutrophils and monocytes. Journal of Dairy Science, 100(9), 7638-7647. doi:10.3168/jds.2016-12186 | es_ES |
dc.description.references | Dickinson, D. A., & Forman, H. J. (2002). Cellular glutathione and thiols metabolism. Biochemical Pharmacology, 64(5-6), 1019-1026. doi:10.1016/s0006-2952(02)01172-3 | es_ES |
dc.description.references | Drevet, J. R. (2006). The antioxidant glutathione peroxidase family and spermatozoa: A complex story. Molecular and Cellular Endocrinology, 250(1-2), 70-79. doi:10.1016/j.mce.2005.12.027 | es_ES |
dc.description.references | Edmonson, A. J., Lean, I. J., Weaver, L. D., Farver, T., & Webster, G. (1989). A Body Condition Scoring Chart for Holstein Dairy Cows. Journal of Dairy Science, 72(1), 68-78. doi:10.3168/jds.s0022-0302(89)79081-0 | es_ES |
dc.description.references | Frey, S. K., & Vogel, S. (2011). Vitamin A Metabolism and Adipose Tissue Biology. Nutrients, 3(1), 27-39. doi:10.3390/nu3010027 | es_ES |
dc.description.references | Gessner, D. K., Schlegel, G., Keller, J., Schwarz, F. J., Ringseis, R., & Eder, K. (2013). Expression of target genes of nuclear factor E2-related factor 2 in the liver of dairy cows in the transition period and at different stages of lactation. Journal of Dairy Science, 96(2), 1038-1043. doi:10.3168/jds.2012-5967 | es_ES |
dc.description.references | Graugnard, D. E., Moyes, K. M., Trevisi, E., Khan, M. J., Keisler, D., Drackley, J. K., … Loor, J. J. (2013). Liver lipid content and inflammometabolic indices in peripartal dairy cows are altered in response to prepartal energy intake and postpartal intramammary inflammatory challenge. Journal of Dairy Science, 96(2), 918-935. doi:10.3168/jds.2012-5676 | es_ES |
dc.description.references | Han, L., Batistel, F., Ma, Y., Alharthi, A. S. M., Parys, C., & Loor, J. J. (2018). Methionine supply alters mammary gland antioxidant gene networks via phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) protein in dairy cows during the periparturient period. Journal of Dairy Science, 101(9), 8505-8512. doi:10.3168/jds.2017-14206 | es_ES |
dc.description.references | Han, L. Q., Zhou, Z., Ma, Y., Batistel, F., Osorio, J. S., & Loor, J. J. (2018). Phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) in mammary tissue of Holstein cows during the periparturient period is associated with mRNA abundance of antioxidant gene networks. Journal of Dairy Science, 101(7), 6511-6522. doi:10.3168/jds.2017-14257 | es_ES |
dc.description.references | Harvey, C. J., Thimmulappa, R. K., Singh, A., Blake, D. J., Ling, G., Wakabayashi, N., … Biswal, S. (2009). Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radical Biology and Medicine, 46(4), 443-453. doi:10.1016/j.freeradbiomed.2008.10.040 | es_ES |
dc.description.references | Holtenius, K., Agenäs, S., Delavaud, C., & Chilliard, Y. (2003). Effects of Feeding Intensity During the Dry Period. 2. Metabolic and Hormonal Responses. Journal of Dairy Science, 86(3), 883-891. doi:10.3168/jds.s0022-0302(03)73671-6 | es_ES |
dc.description.references | Jaakson, H., Karis, P., Ling, K., Ilves-Luht, A., Samarütel, J., Henno, M., … Ots, M. (2018). Adipose tissue insulin receptor and glucose transporter 4 expression, and blood glucose and insulin responses during glucose tolerance tests in transition Holstein cows with different body condition. Journal of Dairy Science, 101(1), 752-766. doi:10.3168/jds.2017-12877 | es_ES |
dc.description.references | Ji, P., Osorio, J. S., Drackley, J. K., & Loor, J. J. (2012). Overfeeding a moderate energy diet prepartum does not impair bovine subcutaneous adipose tissue insulin signal transduction and induces marked changes in peripartal gene network expression. Journal of Dairy Science, 95(8), 4333-4351. doi:10.3168/jds.2011-5079 | es_ES |
dc.description.references | Kobayashi, H., Matsuda, M., Fukuhara, A., Komuro, R., & Shimomura, I. (2009). Dysregulated glutathione metabolism links to impaired insulin action in adipocytes. American Journal of Physiology-Endocrinology and Metabolism, 296(6), E1326-E1334. doi:10.1152/ajpendo.90921.2008 | es_ES |
dc.description.references | Lacetera, N., Scalia, D., Bernabucci, U., Ronchi, B., Pirazzi, D., & Nardone, A. (2005). Lymphocyte Functions in Overconditioned Cows Around Parturition. Journal of Dairy Science, 88(6), 2010-2016. doi:10.3168/jds.s0022-0302(05)72877-0 | es_ES |
dc.description.references | LeBlanc, S. J., Herdt, T. H., Seymour, W. M., Duffield, T. F., & Leslie, K. E. (2004). Peripartum Serum Vitamin E, Retinol, and Beta-Carotene in Dairy Cattle and Their Associations with Disease. Journal of Dairy Science, 87(3), 609-619. doi:10.3168/jds.s0022-0302(04)73203-8 | es_ES |
dc.description.references | Liang, Y., Batistel, F., Parys, C., & Loor, J. J. (2019). Glutathione metabolism and nuclear factor erythroid 2-like 2 (NFE2L2)-related proteins in adipose tissue are altered by supply of ethyl-cellulose rumen-protected methionine in peripartal Holstein cows. Journal of Dairy Science, 102(6), 5530-5541. doi:10.3168/jds.2018-15687 | es_ES |
dc.description.references | Loor, J. J. (2010). Genomics of metabolic adaptations in the peripartal cow. Animal, 4(7), 1110-1139. doi:10.1017/s1751731110000960 | es_ES |
dc.description.references | Loor, J. J., Bertoni, G., Hosseini, A., Roche, J. R., & Trevisi, E. (2013). Functional welfare – using biochemical and molecular technologies to understand better the welfare state of peripartal dairy cattle. Animal Production Science, 53(9), 931. doi:10.1071/an12344 | es_ES |
dc.description.references | Loor, J. J., Bionaz, M., & Drackley, J. K. (2013). Systems Physiology in Dairy Cattle: Nutritional Genomics and Beyond. Annual Review of Animal Biosciences, 1(1), 365-392. doi:10.1146/annurev-animal-031412-103728 | es_ES |
dc.description.references | Lopreiato, V., Minuti, A., Trimboli, F., Britti, D., Morittu, V. M., Cappelli, F. P., … Trevisi, E. (2019). Immunometabolic status and productive performance differences between periparturient Simmental and Holstein dairy cows in response to pegbovigrastim. Journal of Dairy Science, 102(10), 9312-9327. doi:10.3168/jds.2019-16323 | es_ES |
dc.description.references | Lu, S. C. (2009). Regulation of glutathione synthesis. Molecular Aspects of Medicine, 30(1-2), 42-59. doi:10.1016/j.mam.2008.05.005 | es_ES |
dc.description.references | Ma, Q. (2013). Role of Nrf2 in Oxidative Stress and Toxicity. Annual Review of Pharmacology and Toxicology, 53(1), 401-426. doi:10.1146/annurev-pharmtox-011112-140320 | es_ES |
dc.description.references | Ma, Y. F., Wu, Z. H., Gao, M., & Loor, J. J. (2018). Nuclear factor erythroid 2-related factor 2 antioxidant response element pathways protect bovine mammary epithelial cells against H2O2-induced oxidative damage in vitro. Journal of Dairy Science, 101(6), 5329-5344. doi:10.3168/jds.2017-14128 | es_ES |
dc.description.references | Ma, Y. F., Zhao, L., Coleman, D. N., Gao, M., & Loor, J. J. (2019). Tea polyphenols protect bovine mammary epithelial cells from hydrogen peroxide-induced oxidative damage in vitro by activating NFE2L2/HMOX1 pathways. Journal of Dairy Science, 102(2), 1658-1670. doi:10.3168/jds.2018-15047 | es_ES |
dc.description.references | Newman, A. W., Miller, A., Leal Yepes, F. A., Bitsko, E., Nydam, D., & Mann, S. (2019). The effect of the transition period and postpartum body weight loss on macrophage infiltrates in bovine subcutaneous adipose tissue. Journal of Dairy Science, 102(2), 1693-1701. doi:10.3168/jds.2018-15362 | es_ES |
dc.description.references | Onaran, İ., Güven, G., Ozaydin, A., & Ulutin, T. (2001). The influence of GSTM1 null genotype on susceptibility to in vitro oxidative stress. Toxicology, 157(3), 195-205. doi:10.1016/s0300-483x(00)00358-9 | es_ES |
dc.description.references | Osorio, J. S., Ji, P., Drackley, J. K., Luchini, D., & Loor, J. J. (2014). Smartamine M and MetaSmart supplementation during the peripartal period alter hepatic expression of gene networks in 1-carbon metabolism, inflammation, oxidative stress, and the growth hormone–insulin-like growth factor 1 axis pathways. Journal of Dairy Science, 97(12), 7451-7464. doi:10.3168/jds.2014-8680 | es_ES |
dc.description.references | Östh, M., Öst, A., Kjolhede, P., & Strålfors, P. (2014). The Concentration of β-Carotene in Human Adipocytes, but Not the Whole-Body Adipocyte Stores, Is Reduced in Obesity. PLoS ONE, 9(1), e85610. doi:10.1371/journal.pone.0085610 | es_ES |
dc.description.references | Pires, J. A. A., Delavaud, C., Faulconnier, Y., Pomiès, D., & Chilliard, Y. (2013). Effects of body condition score at calving on indicators of fat and protein mobilization of periparturient Holstein-Friesian cows. Journal of Dairy Science, 96(10), 6423-6439. doi:10.3168/jds.2013-6801 | es_ES |
dc.description.references | Ray, P. D., Huang, B.-W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24(5), 981-990. doi:10.1016/j.cellsig.2012.01.008 | es_ES |
dc.description.references | Reid, I. M., Roberts, C. J., Treacher, R. J., & Williams, L. A. (1986). Effect of body condition at calving on tissue mobilization, development of fatty liver and blood chemistry of dairy cows. Animal Science, 43(1), 7-15. doi:10.1017/s0003356100018298 | es_ES |
dc.description.references | Reynolds, C. K., Aikman, P. C., Lupoli, B., Humphries, D. J., & Beever, D. E. (2003). Splanchnic Metabolism of Dairy Cows During the Transition From Late Gestation Through Early Lactation. Journal of Dairy Science, 86(4), 1201-1217. doi:10.3168/jds.s0022-0302(03)73704-7 | es_ES |
dc.description.references | Rocco, S. M., & McNamara, J. P. (2013). Regulation of bovine adipose tissue metabolism during lactation. 7. Metabolism and gene expression as a function of genetic merit and dietary energy intake. Journal of Dairy Science, 96(5), 3108-3119. doi:10.3168/jds.2012-6097 | es_ES |
dc.description.references | Roche, J. R., Friggens, N. C., Kay, J. K., Fisher, M. W., Stafford, K. J., & Berry, D. P. (2009). Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. Journal of Dairy Science, 92(12), 5769-5801. doi:10.3168/jds.2009-2431 | es_ES |
dc.description.references | Roche, J. R., Kay, J. K., Friggens, N. C., Loor, J. J., & Berry, D. P. (2013). Assessing and Managing Body Condition Score for the Prevention of Metabolic Disease in Dairy Cows. Veterinary Clinics of North America: Food Animal Practice, 29(2), 323-336. doi:10.1016/j.cvfa.2013.03.003 | es_ES |
dc.description.references | Schneider, K. S., & Chan, J. Y. (2013). Emerging Role of Nrf2 in Adipocytes and Adipose Biology. Advances in Nutrition, 4(1), 62-66. doi:10.3945/an.112.003103 | es_ES |
dc.description.references | Seo, H.-A., & Lee, I.-K. (2013). The Role of Nrf2: Adipocyte Differentiation, Obesity, and Insulin Resistance. Oxidative Medicine and Cellular Longevity, 2013, 1-7. doi:10.1155/2013/184598 | es_ES |
dc.description.references | Sordillo, L. M., & Raphael, W. (2013). Significance of Metabolic Stress, Lipid Mobilization, and Inflammation on Transition Cow Disorders. Veterinary Clinics of North America: Food Animal Practice, 29(2), 267-278. doi:10.1016/j.cvfa.2013.03.002 | es_ES |
dc.description.references | Spears, J. W., & Weiss, W. P. (2008). Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal, 176(1), 70-76. doi:10.1016/j.tvjl.2007.12.015 | es_ES |
dc.description.references | Sun, X., Li, X., Jia, H., Loor, J. J., Bucktrout, R., Xu, Q., … Li, X. (2019). Effect of heat-shock protein B7 on oxidative stress in adipocytes from preruminant calves. Journal of Dairy Science, 102(6), 5673-5685. doi:10.3168/jds.2018-15726 | es_ES |
dc.description.references | Surmi, B. K., & Hasty, A. H. (2010). The role of chemokines in recruitment of immune cells to the artery wall and adipose tissue. Vascular Pharmacology, 52(1-2), 27-36. doi:10.1016/j.vph.2009.12.004 | es_ES |
dc.description.references | Suzuki, T., & Yamamoto, M. (2017). Stress-sensing mechanisms and the physiological roles of the Keap1–Nrf2 system during cellular stress. Journal of Biological Chemistry, 292(41), 16817-16824. doi:10.1074/jbc.r117.800169 | es_ES |
dc.description.references | Tourniaire, F., Gouranton, E., von Lintig, J., Keijer, J., Luisa Bonet, M., Amengual, J., … Landrier, J.-F. (2009). β-Carotene conversion products and their effects on adipose tissue. Genes & Nutrition, 4(3), 179-187. doi:10.1007/s12263-009-0128-3 | es_ES |
dc.description.references | Treacher, R. J., Reid, I. M., & Roberts, C. J. (1986). Effect of body condition at calving on the health and performance of dairy cows. Animal Science, 43(1), 1-6. doi:10.1017/s0003356100018286 | es_ES |
dc.description.references | Trevisi, E., Bertoni, G., Lombardelli, R., & Minuti, A. (2013). Relation of inflammation and liver function with the plasma cortisol response to adrenocorticotropin in early lactating dairy cows. Journal of Dairy Science, 96(9), 5712-5722. doi:10.3168/jds.2012-6375 | es_ES |
dc.description.references | Vailati-Riboni, M., Farina, G., Batistel, F., Heiser, A., Mitchell, M. D., Crookenden, M. A., … Loor, J. J. (2017). Far-off and close-up dry matter intake modulate indicators of immunometabolic adaptations to lactation in subcutaneous adipose tissue of pasture-based transition dairy cows. Journal of Dairy Science, 100(3), 2334-2350. doi:10.3168/jds.2016-11790 | es_ES |
dc.description.references | Vailati-Riboni, M., Kanwal, M., Bulgari, O., Meier, S., Priest, N. V., Burke, C. R., … Loor, J. J. (2016). Body condition score and plane of nutrition prepartum affect adipose tissue transcriptome regulators of metabolism and inflammation in grazing dairy cows during the transition period. Journal of Dairy Science, 99(1), 758-770. doi:10.3168/jds.2015-10046 | es_ES |
dc.description.references | Vailati Riboni, M., Meier, S., Priest, N. V., Burke, C. R., Kay, J. K., McDougall, S., … Loor, J. J. (2015). Adipose and liver gene expression profiles in response to treatment with a nonsteroidal antiinflammatory drug after calving in grazing dairy cows. Journal of Dairy Science, 98(5), 3079-3085. doi:10.3168/jds.2014-8579 | es_ES |
dc.description.references | Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44-84. doi:10.1016/j.biocel.2006.07.001 | es_ES |
dc.description.references | Wu, G., Fang, Y.-Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione Metabolism and Its Implications for Health. The Journal of Nutrition, 134(3), 489-492. doi:10.1093/jn/134.3.489 | es_ES |
dc.description.references | Xu, Q., Jia, H., Ma, L., Liu, G., Xu, C., Li, Y., … Li, X. (2019). All-trans retinoic acid inhibits lipopolysaccharide-induced inflammatory responses in bovine adipocytes via TGFβ1/Smad3 signaling pathway. BMC Veterinary Research, 15(1). doi:10.1186/s12917-019-1791-2 | es_ES |
dc.description.references | Zachut, M., Kra, G., Livshitz, L., Portnick, Y., Yakoby, S., Friedlander, G., & Levin, Y. (2017). Seasonal heat stress affects adipose tissue proteome toward enrichment of the Nrf2-mediated oxidative stress response in late-pregnant dairy cows. Journal of Proteomics, 158, 52-61. doi:10.1016/j.jprot.2017.02.011 | es_ES |