- -

Characterization of oxygen transport phenomena on BSCF membranes assisted by fluid dynamic simulations including surface exchange

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Characterization of oxygen transport phenomena on BSCF membranes assisted by fluid dynamic simulations including surface exchange

Show full item record

Catalán-Martínez, D.; Santafé Moros, MA.; Gozálvez-Zafrilla, JM.; García-Fayos, J.; Serra Alfaro, JM. (2020). Characterization of oxygen transport phenomena on BSCF membranes assisted by fluid dynamic simulations including surface exchange. Chemical Engineering Journal. 387:1-15. https://doi.org/10.1016/j.cej.2020.124069

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165904

Files in this item

Item Metadata

Title: Characterization of oxygen transport phenomena on BSCF membranes assisted by fluid dynamic simulations including surface exchange
Author: Catalán-Martínez, David Santafé Moros, María Asunción Gozálvez-Zafrilla, José M. García-Fayos, Julio Serra Alfaro, José Manuel
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] The influence of fluid dynamic conditions on the oxygen transport through mixed ionic-electronic membranes was studied experimentally and numerically. A set of permeation experiments was performed in a wide range of ...[+]
Subjects: O2 MIEC membrane , BSCF , CFD , Permeation , Modelling
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Chemical Engineering Journal. (issn: 1385-8947 )
DOI: 10.1016/j.cej.2020.124069
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.cej.2020.124069
Project ID:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F006/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102161-B-I00/ES/CONVERSION DIRECTA DE CO2 EN PORTADORES DE ENERGIA QUIMICA UTILIZANDO REACTORES ELECTROCATALITICOS DE MEMBRANA/
Thanks:
This work was financially supported by Spanish Government (Grants SEV-2016-0683 and RTI2018-102161) and Generalitat Valenciana (PROMETEO/2018/006).
Type: Artículo

References

Habib, M. A., Badr, H. M., Ahmed, S. F., Ben-Mansour, R., Mezghani, K., Imashuku, S., … Ghoneim, A. F. (2010). A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. International Journal of Energy Research, 35(9), 741-764. doi:10.1002/er.1798

Hashim, S. S., Mohamed, A. R., & Bhatia, S. (2011). Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renewable and Sustainable Energy Reviews, 15(2), 1284-1293. doi:10.1016/j.rser.2010.10.002

Markewitz, P., Marx, J., Schreiber, A., & Zapp, P. (2013). Ecological Evaluation of Coal-fired Oxyfuel Power Plants -cryogenic Versus Membrane-based Air Separation-. Energy Procedia, 37, 2864-2876. doi:10.1016/j.egypro.2013.06.172 [+]
Habib, M. A., Badr, H. M., Ahmed, S. F., Ben-Mansour, R., Mezghani, K., Imashuku, S., … Ghoneim, A. F. (2010). A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. International Journal of Energy Research, 35(9), 741-764. doi:10.1002/er.1798

Hashim, S. S., Mohamed, A. R., & Bhatia, S. (2011). Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renewable and Sustainable Energy Reviews, 15(2), 1284-1293. doi:10.1016/j.rser.2010.10.002

Markewitz, P., Marx, J., Schreiber, A., & Zapp, P. (2013). Ecological Evaluation of Coal-fired Oxyfuel Power Plants -cryogenic Versus Membrane-based Air Separation-. Energy Procedia, 37, 2864-2876. doi:10.1016/j.egypro.2013.06.172

Puig-Arnavat, M., Soprani, S., Søgaard, M., Engelbrecht, K., Ahrenfeldt, J., Henriksen, U. B., & Hendriksen, P. V. (2013). Integration of mixed conducting membranes in an oxygen–steam biomass gasification process. RSC Advances, 3(43), 20843. doi:10.1039/c3ra44509g

Smart, S., Lin, C. X. C., Ding, L., Thambimuthu, K., & Diniz da Costa, J. C. (2010). Ceramic membranes for gas processing in coal gasification. Energy & Environmental Science, 3(3), 268. doi:10.1039/b924327e

Castillo, R. (2011). Thermodynamic analysis of a hard coal oxyfuel power plant with high temperature three-end membrane for air separation. Applied Energy, 88(5), 1480-1493. doi:10.1016/j.apenergy.2010.10.044

Baumann, S., Serra, J. M., Lobera, M. P., Escolástico, S., Schulze-Küppers, F., & Meulenberg, W. A. (2011). Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Journal of Membrane Science, 377(1-2), 198-205. doi:10.1016/j.memsci.2011.04.050

M.J. den Exter, W.G. Haije, et al., Viability of ITM Technology for Oxygen Production and Oxidation Processes: Material, System, and Process Aspects, in: Inorg. Membr. Energy Environ. Appl., Springer New York, New York, NY, 2009: pp. 27–51. doi: 10.1007/978-0-387-34526-0_2.

Engels, S., Beggel, F., Modigell, M., & Stadler, H. (2010). Simulation of a membrane unit for oxyfuel power plants under consideration of realistic BSCF membrane properties. Journal of Membrane Science, 359(1-2), 93-101. doi:10.1016/j.memsci.2010.01.048

Shao, Z. (2000). Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. Journal of Membrane Science, 172(1-2), 177-188. doi:10.1016/s0376-7388(00)00337-9

ARNOLD, M., WANG, H., & FELDHOFF, A. (2007). Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. Journal of Membrane Science, 293(1-2), 44-52. doi:10.1016/j.memsci.2007.01.032

Yi, J., & Schroeder, M. (2011). High temperature degradation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes in atmospheres containing concentrated carbon dioxide. Journal of Membrane Science, 378(1-2), 163-170. doi:10.1016/j.memsci.2011.04.044

Zhu, X., Liu, H., Cong, Y., & Yang, W. (2011). Permeation model and experimental investigation of mixed conducting membranes. AIChE Journal, 58(6), 1744-1754. doi:10.1002/aic.12710

GERDES, K., & LUSS, D. (2006). Oxygen transport model for layered MIEC composite membranes. Solid State Ionics, 177(33-34), 2931-2938. doi:10.1016/j.ssi.2006.09.002

Xie, H., Wei, Y., & Wang, H. (2017). Modeling of U-shaped Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3−δ hollow-fiber membrane for oxygen permeation. Chinese Journal of Chemical Engineering, 25(7), 892-897. doi:10.1016/j.cjche.2017.02.002

Zhu, Y., Li, W., Liu, Y., Zhu, X., & Yang, W. (2017). Selection of oxygen permeation models for different mixed ionic‐electronic conducting membranes. AIChE Journal, 63(9), 4043-4053. doi:10.1002/aic.15718

Li, C., Chew, J. J., Mahmoud, A., Liu, S., & Sunarso, J. (2018). Modelling of oxygen transport through mixed ionic-electronic conducting (MIEC) ceramic-based membranes: An overview. Journal of Membrane Science, 567, 228-260. doi:10.1016/j.memsci.2018.09.016

Lin, Y.-S., Wang, W., & Han, J. (1994). Oxygen permeation through thin mixed-conducting solid oxide membranes. AIChE Journal, 40(5), 786-798. doi:10.1002/aic.690400506

Xu, S. J., & Thomson, W. J. (1999). Oxygen permeation rates through ion-conducting perovskite membranes. Chemical Engineering Science, 54(17), 3839-3850. doi:10.1016/s0009-2509(99)00015-9

Zydorczak, B., Li, K., & Tan, X. (2010). Mixed conducting membranes - Macrostructure related oxygen permeation flux. AIChE Journal, 56(12), 3084-3090. doi:10.1002/aic.12216

Li, S. (1999). Synthesis and oxygen permeation properties of La0.2Sr0.8Co0.2Fe0.8O3−δ membranes. Solid State Ionics, 124(1-2), 161-170. doi:10.1016/s0167-2738(99)00136-8

Wang, Z., Liu, H., Tan, X., Jin, Y., & Liu, S. (2009). Improvement of the oxygen permeation through perovskite hollow fibre membranes by surface acid-modification. Journal of Membrane Science, 345(1-2), 65-73. doi:10.1016/j.memsci.2009.08.024

Pan, H., Li, L., Deng, X., Meng, B., Tan, X., & Li, K. (2013). Improvement of oxygen permeation in perovskite hollow fibre membranes by the enhanced surface exchange kinetics. Journal of Membrane Science, 428, 198-204. doi:10.1016/j.memsci.2012.10.020

A. Ghadimi, M.A. Alaee, et al., Oxygen permeation of BaxSr1 − xCo0.8Fe0.2O3 − δ perovskite-type membrane: Experimental and modeling, Desalination. 270 (2011) 64–75. doi: 10.1016/j.desal.2010.11.022.

Kim, S. (1999). Oxygen surface exchange in mixed ionic electronic conductor membranes. Solid State Ionics, 121(1-4), 31-36. doi:10.1016/s0167-2738(98)00389-0

Jin, Y., Rui, Z., Tian, Y., Lin, Y., & Li, Y. (2010). Sequential simulation of dense oxygen permeation membrane reactor for hydrogen production from oxidative steam reforming of ethanol with ASPEN PLUS. International Journal of Hydrogen Energy, 35(13), 6691-6698. doi:10.1016/j.ijhydene.2010.04.042

Mancini, N. D., Gunasekaran, S., & Mitsos, A. (2012). A Multiple-Compartment Ion-Transport-Membrane Reactive Oxygen Separator. Industrial & Engineering Chemistry Research, 51(23), 7988-7997. doi:10.1021/ie202433g

Turi, D. M., Chiesa, P., Macchi, E., & Ghoniem, A. F. (2016). High fidelity model of the oxygen flux across ion transport membrane reactor: Mechanism characterization using experimental data. Energy, 96, 127-141. doi:10.1016/j.energy.2015.12.055

Mancini, N. D., & Mitsos, A. (2011). Ion transport membrane reactors for oxy-combustion – Part I: intermediate-fidelity modeling. Energy, 36(8), 4701-4720. doi:10.1016/j.energy.2011.05.023

Spallina, V., Melchiori, T., Gallucci, F., & van Sint Annaland, M. (2015). Auto-Thermal Reforming Using Mixed Ion-Electronic Conducting Ceramic Membranes for a Small-Scale H2 Production Plant. Molecules, 20(3), 4998-5023. doi:10.3390/molecules20034998

Fischer, C. D., & Iribarren, O. A. (2016). Oxygen integration between a gasification process and oxygen production using a mass exchange heuristic. International Journal of Hydrogen Energy, 41(4), 2399-2410. doi:10.1016/j.ijhydene.2015.12.124

Hunt, A., Dimitrakopoulos, G., Kirchen, P., & Ghoniem, A. F. (2014). Measuring the oxygen profile and permeation flux across an ion transport <mml:math altimg=«si0029.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd» xmlns:sa=«http://www.elsevier.com/xml/common/struct-aff/dtd»><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>La</mml:mi></mml:mrow><mml:mrow><mml:mn>0.9</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>Ca</mml:mi></mml:mrow><mml:mrow><mml:mn>0.1</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>FeO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo>−</mml:mo><mml:mi>δ</mml:mi></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:math> membrane and the development and validation of a multistep surface exchange model. Journal of Membrane Science, 468, 62-72. doi:10.1016/j.memsci.2014.05.043

Hong, J., Kirchen, P., & Ghoniem, A. F. (2012). Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion. Journal of Membrane Science, 407-408, 71-85. doi:10.1016/j.memsci.2012.03.018

Habib, M. A., Ben Mansour, R., & Nemit-allah, M. A. (2013). Modeling of oxygen permeation through a LSCF ion transport membrane. Computers & Fluids, 76, 1-10. doi:10.1016/j.compfluid.2013.01.007

Ji, G., Zhao, M., & Wang, G. (2018). Computational fluid dynamic simulation of a sorption-enhanced palladium membrane reactor for enhancing hydrogen production from methane steam reforming. Energy, 147, 884-895. doi:10.1016/j.energy.2018.01.092

Wang, J., Gao, X., Ji, G., & Gu, X. (2019). CFD simulation of hollow fiber supported NaA zeolite membrane modules. Separation and Purification Technology, 213, 1-10. doi:10.1016/j.seppur.2018.12.017

Ji, G., Wang, G., Hooman, K., Bhatia, S., & Diniz da Costa, J. C. (2014). The fluid dynamic effect on the driving force for a cobalt oxide silica membrane module at high temperatures. Chemical Engineering Science, 111, 142-152. doi:10.1016/j.ces.2014.02.006

Nemitallah, M. A. (2016). A study of methane oxy-combustion characteristics inside a modified design button-cell membrane reactor utilizing a modified oxygen permeation model for reacting flows. Journal of Natural Gas Science and Engineering, 28, 61-73. doi:10.1016/j.jngse.2015.11.041

Nemitallah, M. A., Habib, M. A., & Mezghani, K. (2015). Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor. Energy, 84, 600-611. doi:10.1016/j.energy.2015.03.022

Ahmed, P., Habib, M. A., Ben-Mansour, R., & Jamal, A. (2016). Investigation of oxygen permeation through disc-shaped BSCF ion transport membrane under reactive conditions. International Journal of Energy Research, 41(7), 1049-1062. doi:10.1002/er.3696

Kawachale, N., Kumar, A., & Kirpalani, D. M. (2009). A flow distribution study of laboratory scale membrane gas separation cells. Journal of Membrane Science, 332(1-2), 81-88. doi:10.1016/j.memsci.2009.01.042

Coroneo, M., Montante, G., Catalano, J., & Paglianti, A. (2009). Modelling the effect of operating conditions on hydrodynamics and mass transfer in a Pd–Ag membrane module for H2 purification. Journal of Membrane Science, 343(1-2), 34-41. doi:10.1016/j.memsci.2009.07.008

Coroneo, M., Montante, G., & Paglianti, A. (2010). Numerical and Experimental Fluid-Dynamic Analysis To Improve the Mass Transfer Performances of Pd−Ag Membrane Modules for Hydrogen Purification. Industrial & Engineering Chemistry Research, 49(19), 9300-9309. doi:10.1021/ie100840z

Ji, G., Wang, G., Hooman, K., Bhatia, S., & Diniz da Costa, J. C. (2012). Computational fluid dynamics applied to high temperature hydrogen separation membranes. Frontiers of Chemical Science and Engineering, 6(1), 3-12. doi:10.1007/s11705-011-1161-5

Ji, G., Yao, J. G., Clough, P. T., da Costa, J. C. D., Anthony, E. J., Fennell, P. S., … Zhao, M. (2018). Enhanced hydrogen production from thermochemical processes. Energy & Environmental Science, 11(10), 2647-2672. doi:10.1039/c8ee01393d

Gozálvez-Zafrilla, J. M., Santafé-Moros, A., Escolástico, S., & Serra, J. M. (2011). Fluid dynamic modeling of oxygen permeation through mixed ionic–electronic conducting membranes. Journal of Membrane Science, 378(1-2), 290-300. doi:10.1016/j.memsci.2011.05.016

Kriegel, R., Kircheisen, R., & Töpfer, J. (2010). Oxygen stoichiometry and expansion behavior of Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ionics, 181(1-2), 64-70. doi:10.1016/j.ssi.2009.11.012

Yi, J., Schroeder, M., Weirich, T., & Mayer, J. (2010). Behavior of Ba(Co, Fe, Nb)O3-δ Perovskite in CO2-Containing Atmospheres: Degradation Mechanism and Materials Design. Chemistry of Materials, 22(23), 6246-6253. doi:10.1021/cm101665r

Leo, A., Liu, S., & Diniz da Costa, J. C. (2011). Production of pure oxygen from BSCF hollow fiber membranes using steam sweep. Separation and Purification Technology, 78(2), 220-227. doi:10.1016/j.seppur.2011.02.006

LEE, S. (2004). Applicability of Sherwood correlations for natural organic matter (NOM) transport in nanofiltration (NF) membranes. Journal of Membrane Science, 240(1-2), 49-65. doi:10.1016/j.memsci.2004.04.011

Makaka, S., Aziz, M., & Nesbitt, A. (2010). Copper recovery in a bench-scale carrier facilitated tubular supported liquid membrane system. Journal of Mining and Metallurgy, Section B: Metallurgy, 46(1), 67-73. doi:10.2298/jmmb1001067m

Catalano, J., Giacinti Baschetti, M., & Sarti, G. C. (2009). Influence of the gas phase resistance on hydrogen flux through thin palladium–silver membranes. Journal of Membrane Science, 339(1-2), 57-67. doi:10.1016/j.memsci.2009.04.032

Giani, L., Groppi, G., & Tronconi, E. (2005). Mass-Transfer Characterization of Metallic Foams as Supports for Structured Catalysts. Industrial & Engineering Chemistry Research, 44(14), 4993-5002. doi:10.1021/ie0490886

Groppi, G., Giani, L., & Tronconi, E. (2007). Generalized Correlation for Gas/Solid Mass-Transfer Coefficients in Metallic and Ceramic Foams. Industrial & Engineering Chemistry Research, 46(12), 3955-3958. doi:10.1021/ie061330g

A. Berenov, A. Atkinson, et al., Oxygen tracer diffusion and surface exchange kinetics in Ba0.5Sr0.5Co0.8Fe0.2O3 − δ, Solid State Ionics. 268, Part (2014) 102–109. doi:10.1016/j.ssi.2014.09.031.

Kessel, M., De Souza, R. A., & Martin, M. (2015). Oxygen diffusion in single crystal barium titanate. Physical Chemistry Chemical Physics, 17(19), 12587-12597. doi:10.1039/c5cp01187f

Antonini, T., Gallucci, K., Anzoletti, V., Stendardo, S., & Foscolo, P. U. (2015). Oxygen transport by ionic membranes: Correlation of permeation data and prediction of char burning in a membrane-assisted biomass gasification process. Chemical Engineering and Processing - Process Intensification, 94, 39-52. doi:10.1016/j.cep.2014.11.009

Behrouzifar, A., Asadi, A. A., Mohammadi, T., & Pak, A. (2012). Experimental investigation and mathematical modeling of oxygen permeation through dense Ba0.5Sr0.5Co0.8Fe0.2O3− (BSCF) perovskite-type ceramic membranes. Ceramics International, 38(6), 4797-4811. doi:10.1016/j.ceramint.2012.02.068

Chen, D., & Shao, Z. (2011). Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ mixed conductor. International Journal of Hydrogen Energy, 36(11), 6948-6956. doi:10.1016/j.ijhydene.2011.02.087

H. Wang, W. Yang, et al., Diffusion Fundamentals, Diffus. Fundam. (Online Journal). 1, 2005. 1–17. http://www.uni-leipzig.de/diffusion/contents_vol1.html.

Gao, D., Zhao, J., Zhou, W., Ran, R., & Shao, Z. (2011). Influence of high-energy ball milling of the starting powder on the sintering; microstructure and oxygen permeability of Ba0.5Sr0.5Co0.5Fe0.5O3−δ membranes. Journal of Membrane Science, 366(1-2), 203-211. doi:10.1016/j.memsci.2010.10.001

Wang, H., Wang, R., Liang, D. T., & Yang, W. (2004). Experimental and modeling studies on Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) tubular membranes for air separation. Journal of Membrane Science, 243(1-2), 405-415. doi:10.1016/j.memsci.2004.07.003

Baumann, S., Schulze-Küppers, F., Roitsch, S., Betz, M., Zwick, M., Pfaff, E. M., … Stöver, D. (2010). Influence of sintering conditions on microstructure and oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) oxygen transport membranes. Journal of Membrane Science, 359(1-2), 102-109. doi:10.1016/j.memsci.2010.02.002

Tan, L., Gu, X., Yang, L., Jin, W., Zhang, L., & Xu, N. (2003). Influence of powder synthesis methods on microstructure and oxygen permeation performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite-type membranes. Journal of Membrane Science, 212(1-2), 157-165. doi:10.1016/s0376-7388(02)00494-5

Vente, J. F., McIntosh, S., Haije, W. G., & Bouwmeester, H. J. M. (2006). Properties and performance of BaxSr1−xCo0.8Fe0.2O3−δ materials for oxygen transport membranes. Journal of Solid State Electrochemistry, 10(8), 581-588. doi:10.1007/s10008-006-0130-2

Popov, M. P., Starkov, I. A., Bychkov, S. F., & Nemudry, A. P. (2014). Improvement of Ba0.5Sr0.5Co0.8Fe0.2O3−δ functional properties by partial substitution of cobalt with tungsten. Journal of Membrane Science, 469, 88-94. doi:10.1016/j.memsci.2014.06.022

Mahato, N., Banerjee, A., Gupta, A., Omar, S., & Balani, K. (2015). Progress in material selection for solid oxide fuel cell technology: A review. Progress in Materials Science, 72, 141-337. doi:10.1016/j.pmatsci.2015.01.001

Gao, Z., Mogni, L. V., Miller, E. C., Railsback, J. G., & Barnett, S. A. (2016). A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science, 9(5), 1602-1644. doi:10.1039/c5ee03858h

Zhang, X., Liu, L., Zhao, Z., Tu, B., Ou, D., Cui, D., … Cheng, M. (2015). Enhanced Oxygen Reduction Activity and Solid Oxide Fuel Cell Performance with a Nanoparticles-Loaded Cathode. Nano Letters, 15(3), 1703-1709. doi:10.1021/nl5043566

Sun, C., Hui, R., & Roller, J. (2009). Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 14(7), 1125-1144. doi:10.1007/s10008-009-0932-0

Hoffmann, R., Pippardt, U., & Kriegel, R. (2019). Impact of sintering temperature on permeation and long-term development of support structure and stability for asymmetric oxygen transporting BSCF membranes. Journal of Membrane Science, 581, 270-282. doi:10.1016/j.memsci.2019.03.066

Lobera, M. P., Balaguer, M., García-Fayos, J., & Serra, J. M. (2017). Catalytic Oxide-Ion Conducting Materials for Surface Activation of Ba0.5Sr0.5Co0.8Fe0.2O3-δMembranes. ChemistrySelect, 2(10), 2949-2955. doi:10.1002/slct.201700530

Serra, J. M., Garcia-Fayos, J., Baumann, S., Schulze-Küppers, F., & Meulenberg, W. A. (2013). Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. Journal of Membrane Science, 447, 297-305. doi:10.1016/j.memsci.2013.07.030

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record