- -

Characterization of oxygen transport phenomena on BSCF membranes assisted by fluid dynamic simulations including surface exchange

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization of oxygen transport phenomena on BSCF membranes assisted by fluid dynamic simulations including surface exchange

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Catalán-Martínez, David es_ES
dc.contributor.author Santafé Moros, María Asunción es_ES
dc.contributor.author Gozálvez-Zafrilla, José M. es_ES
dc.contributor.author García-Fayos, Julio es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2021-05-04T03:31:58Z
dc.date.available 2021-05-04T03:31:58Z
dc.date.issued 2020-05-01 es_ES
dc.identifier.issn 1385-8947 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165904
dc.description.abstract [EN] The influence of fluid dynamic conditions on the oxygen transport through mixed ionic-electronic membranes was studied experimentally and numerically. A set of permeation experiments was performed in a wide range of operating conditions combining temperature, driving force and flow rate of air feed and sweep streams. A computational model was built and enabled to systematically evaluate the effect of the fluid dynamic conditions on O-2 separation process. This model includes the surface resistance (gas exchange kinetics) and bulk oxygen-ion diffusion. The experimental set was used to obtain the model parameters by following a two-step fitting procedure: a first fitting of a simplified one-dimensional model using genetic algorithms and a subsequent refining of the parameters using the complete model implemented in COMSOL Multiphysics. The high-accuracy model allowed characterizing the O-2 transport phenomena and understanding the different factors governing the overall process, e.g. by using different membrane thicknesses, sweep gases or vacuum. Simulations of the fitted model revealed the importance of the sweep effect in the O-2 transport across the membrane and enabled to establish rules for both design of permeation experiments and up-scaling. es_ES
dc.description.sponsorship This work was financially supported by Spanish Government (Grants SEV-2016-0683 and RTI2018-102161) and Generalitat Valenciana (PROMETEO/2018/006). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemical Engineering Journal es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject O2 MIEC membrane es_ES
dc.subject BSCF es_ES
dc.subject CFD es_ES
dc.subject Permeation es_ES
dc.subject Modelling es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Characterization of oxygen transport phenomena on BSCF membranes assisted by fluid dynamic simulations including surface exchange es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cej.2020.124069 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F006/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102161-B-I00/ES/CONVERSION DIRECTA DE CO2 EN PORTADORES DE ENERGIA QUIMICA UTILIZANDO REACTORES ELECTROCATALITICOS DE MEMBRANA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Catalán-Martínez, D.; Santafé Moros, MA.; Gozálvez-Zafrilla, JM.; García-Fayos, J.; Serra Alfaro, JM. (2020). Characterization of oxygen transport phenomena on BSCF membranes assisted by fluid dynamic simulations including surface exchange. Chemical Engineering Journal. 387:1-15. https://doi.org/10.1016/j.cej.2020.124069 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cej.2020.124069 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 387 es_ES
dc.relation.pasarela S\401714 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Habib, M. A., Badr, H. M., Ahmed, S. F., Ben-Mansour, R., Mezghani, K., Imashuku, S., … Ghoneim, A. F. (2010). A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. International Journal of Energy Research, 35(9), 741-764. doi:10.1002/er.1798 es_ES
dc.description.references Hashim, S. S., Mohamed, A. R., & Bhatia, S. (2011). Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renewable and Sustainable Energy Reviews, 15(2), 1284-1293. doi:10.1016/j.rser.2010.10.002 es_ES
dc.description.references Markewitz, P., Marx, J., Schreiber, A., & Zapp, P. (2013). Ecological Evaluation of Coal-fired Oxyfuel Power Plants -cryogenic Versus Membrane-based Air Separation-. Energy Procedia, 37, 2864-2876. doi:10.1016/j.egypro.2013.06.172 es_ES
dc.description.references Puig-Arnavat, M., Soprani, S., Søgaard, M., Engelbrecht, K., Ahrenfeldt, J., Henriksen, U. B., & Hendriksen, P. V. (2013). Integration of mixed conducting membranes in an oxygen–steam biomass gasification process. RSC Advances, 3(43), 20843. doi:10.1039/c3ra44509g es_ES
dc.description.references Smart, S., Lin, C. X. C., Ding, L., Thambimuthu, K., & Diniz da Costa, J. C. (2010). Ceramic membranes for gas processing in coal gasification. Energy & Environmental Science, 3(3), 268. doi:10.1039/b924327e es_ES
dc.description.references Castillo, R. (2011). Thermodynamic analysis of a hard coal oxyfuel power plant with high temperature three-end membrane for air separation. Applied Energy, 88(5), 1480-1493. doi:10.1016/j.apenergy.2010.10.044 es_ES
dc.description.references Baumann, S., Serra, J. M., Lobera, M. P., Escolástico, S., Schulze-Küppers, F., & Meulenberg, W. A. (2011). Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Journal of Membrane Science, 377(1-2), 198-205. doi:10.1016/j.memsci.2011.04.050 es_ES
dc.description.references M.J. den Exter, W.G. Haije, et al., Viability of ITM Technology for Oxygen Production and Oxidation Processes: Material, System, and Process Aspects, in: Inorg. Membr. Energy Environ. Appl., Springer New York, New York, NY, 2009: pp. 27–51. doi: 10.1007/978-0-387-34526-0_2. es_ES
dc.description.references Engels, S., Beggel, F., Modigell, M., & Stadler, H. (2010). Simulation of a membrane unit for oxyfuel power plants under consideration of realistic BSCF membrane properties. Journal of Membrane Science, 359(1-2), 93-101. doi:10.1016/j.memsci.2010.01.048 es_ES
dc.description.references Shao, Z. (2000). Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. Journal of Membrane Science, 172(1-2), 177-188. doi:10.1016/s0376-7388(00)00337-9 es_ES
dc.description.references ARNOLD, M., WANG, H., & FELDHOFF, A. (2007). Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. Journal of Membrane Science, 293(1-2), 44-52. doi:10.1016/j.memsci.2007.01.032 es_ES
dc.description.references Yi, J., & Schroeder, M. (2011). High temperature degradation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes in atmospheres containing concentrated carbon dioxide. Journal of Membrane Science, 378(1-2), 163-170. doi:10.1016/j.memsci.2011.04.044 es_ES
dc.description.references Zhu, X., Liu, H., Cong, Y., & Yang, W. (2011). Permeation model and experimental investigation of mixed conducting membranes. AIChE Journal, 58(6), 1744-1754. doi:10.1002/aic.12710 es_ES
dc.description.references GERDES, K., & LUSS, D. (2006). Oxygen transport model for layered MIEC composite membranes. Solid State Ionics, 177(33-34), 2931-2938. doi:10.1016/j.ssi.2006.09.002 es_ES
dc.description.references Xie, H., Wei, Y., & Wang, H. (2017). Modeling of U-shaped Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3−δ hollow-fiber membrane for oxygen permeation. Chinese Journal of Chemical Engineering, 25(7), 892-897. doi:10.1016/j.cjche.2017.02.002 es_ES
dc.description.references Zhu, Y., Li, W., Liu, Y., Zhu, X., & Yang, W. (2017). Selection of oxygen permeation models for different mixed ionic‐electronic conducting membranes. AIChE Journal, 63(9), 4043-4053. doi:10.1002/aic.15718 es_ES
dc.description.references Li, C., Chew, J. J., Mahmoud, A., Liu, S., & Sunarso, J. (2018). Modelling of oxygen transport through mixed ionic-electronic conducting (MIEC) ceramic-based membranes: An overview. Journal of Membrane Science, 567, 228-260. doi:10.1016/j.memsci.2018.09.016 es_ES
dc.description.references Lin, Y.-S., Wang, W., & Han, J. (1994). Oxygen permeation through thin mixed-conducting solid oxide membranes. AIChE Journal, 40(5), 786-798. doi:10.1002/aic.690400506 es_ES
dc.description.references Xu, S. J., & Thomson, W. J. (1999). Oxygen permeation rates through ion-conducting perovskite membranes. Chemical Engineering Science, 54(17), 3839-3850. doi:10.1016/s0009-2509(99)00015-9 es_ES
dc.description.references Zydorczak, B., Li, K., & Tan, X. (2010). Mixed conducting membranes - Macrostructure related oxygen permeation flux. AIChE Journal, 56(12), 3084-3090. doi:10.1002/aic.12216 es_ES
dc.description.references Li, S. (1999). Synthesis and oxygen permeation properties of La0.2Sr0.8Co0.2Fe0.8O3−δ membranes. Solid State Ionics, 124(1-2), 161-170. doi:10.1016/s0167-2738(99)00136-8 es_ES
dc.description.references Wang, Z., Liu, H., Tan, X., Jin, Y., & Liu, S. (2009). Improvement of the oxygen permeation through perovskite hollow fibre membranes by surface acid-modification. Journal of Membrane Science, 345(1-2), 65-73. doi:10.1016/j.memsci.2009.08.024 es_ES
dc.description.references Pan, H., Li, L., Deng, X., Meng, B., Tan, X., & Li, K. (2013). Improvement of oxygen permeation in perovskite hollow fibre membranes by the enhanced surface exchange kinetics. Journal of Membrane Science, 428, 198-204. doi:10.1016/j.memsci.2012.10.020 es_ES
dc.description.references A. Ghadimi, M.A. Alaee, et al., Oxygen permeation of BaxSr1 − xCo0.8Fe0.2O3 − δ perovskite-type membrane: Experimental and modeling, Desalination. 270 (2011) 64–75. doi: 10.1016/j.desal.2010.11.022. es_ES
dc.description.references Kim, S. (1999). Oxygen surface exchange in mixed ionic electronic conductor membranes. Solid State Ionics, 121(1-4), 31-36. doi:10.1016/s0167-2738(98)00389-0 es_ES
dc.description.references Jin, Y., Rui, Z., Tian, Y., Lin, Y., & Li, Y. (2010). Sequential simulation of dense oxygen permeation membrane reactor for hydrogen production from oxidative steam reforming of ethanol with ASPEN PLUS. International Journal of Hydrogen Energy, 35(13), 6691-6698. doi:10.1016/j.ijhydene.2010.04.042 es_ES
dc.description.references Mancini, N. D., Gunasekaran, S., & Mitsos, A. (2012). A Multiple-Compartment Ion-Transport-Membrane Reactive Oxygen Separator. Industrial & Engineering Chemistry Research, 51(23), 7988-7997. doi:10.1021/ie202433g es_ES
dc.description.references Turi, D. M., Chiesa, P., Macchi, E., & Ghoniem, A. F. (2016). High fidelity model of the oxygen flux across ion transport membrane reactor: Mechanism characterization using experimental data. Energy, 96, 127-141. doi:10.1016/j.energy.2015.12.055 es_ES
dc.description.references Mancini, N. D., & Mitsos, A. (2011). Ion transport membrane reactors for oxy-combustion – Part I: intermediate-fidelity modeling. Energy, 36(8), 4701-4720. doi:10.1016/j.energy.2011.05.023 es_ES
dc.description.references Spallina, V., Melchiori, T., Gallucci, F., & van Sint Annaland, M. (2015). Auto-Thermal Reforming Using Mixed Ion-Electronic Conducting Ceramic Membranes for a Small-Scale H2 Production Plant. Molecules, 20(3), 4998-5023. doi:10.3390/molecules20034998 es_ES
dc.description.references Fischer, C. D., & Iribarren, O. A. (2016). Oxygen integration between a gasification process and oxygen production using a mass exchange heuristic. International Journal of Hydrogen Energy, 41(4), 2399-2410. doi:10.1016/j.ijhydene.2015.12.124 es_ES
dc.description.references Hunt, A., Dimitrakopoulos, G., Kirchen, P., & Ghoniem, A. F. (2014). Measuring the oxygen profile and permeation flux across an ion transport <mml:math altimg=«si0029.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd» xmlns:sa=«http://www.elsevier.com/xml/common/struct-aff/dtd»><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>La</mml:mi></mml:mrow><mml:mrow><mml:mn>0.9</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>Ca</mml:mi></mml:mrow><mml:mrow><mml:mn>0.1</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>FeO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo>−</mml:mo><mml:mi>δ</mml:mi></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:math> membrane and the development and validation of a multistep surface exchange model. Journal of Membrane Science, 468, 62-72. doi:10.1016/j.memsci.2014.05.043 es_ES
dc.description.references Hong, J., Kirchen, P., & Ghoniem, A. F. (2012). Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion. Journal of Membrane Science, 407-408, 71-85. doi:10.1016/j.memsci.2012.03.018 es_ES
dc.description.references Habib, M. A., Ben Mansour, R., & Nemit-allah, M. A. (2013). Modeling of oxygen permeation through a LSCF ion transport membrane. Computers & Fluids, 76, 1-10. doi:10.1016/j.compfluid.2013.01.007 es_ES
dc.description.references Ji, G., Zhao, M., & Wang, G. (2018). Computational fluid dynamic simulation of a sorption-enhanced palladium membrane reactor for enhancing hydrogen production from methane steam reforming. Energy, 147, 884-895. doi:10.1016/j.energy.2018.01.092 es_ES
dc.description.references Wang, J., Gao, X., Ji, G., & Gu, X. (2019). CFD simulation of hollow fiber supported NaA zeolite membrane modules. Separation and Purification Technology, 213, 1-10. doi:10.1016/j.seppur.2018.12.017 es_ES
dc.description.references Ji, G., Wang, G., Hooman, K., Bhatia, S., & Diniz da Costa, J. C. (2014). The fluid dynamic effect on the driving force for a cobalt oxide silica membrane module at high temperatures. Chemical Engineering Science, 111, 142-152. doi:10.1016/j.ces.2014.02.006 es_ES
dc.description.references Nemitallah, M. A. (2016). A study of methane oxy-combustion characteristics inside a modified design button-cell membrane reactor utilizing a modified oxygen permeation model for reacting flows. Journal of Natural Gas Science and Engineering, 28, 61-73. doi:10.1016/j.jngse.2015.11.041 es_ES
dc.description.references Nemitallah, M. A., Habib, M. A., & Mezghani, K. (2015). Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor. Energy, 84, 600-611. doi:10.1016/j.energy.2015.03.022 es_ES
dc.description.references Ahmed, P., Habib, M. A., Ben-Mansour, R., & Jamal, A. (2016). Investigation of oxygen permeation through disc-shaped BSCF ion transport membrane under reactive conditions. International Journal of Energy Research, 41(7), 1049-1062. doi:10.1002/er.3696 es_ES
dc.description.references Kawachale, N., Kumar, A., & Kirpalani, D. M. (2009). A flow distribution study of laboratory scale membrane gas separation cells. Journal of Membrane Science, 332(1-2), 81-88. doi:10.1016/j.memsci.2009.01.042 es_ES
dc.description.references Coroneo, M., Montante, G., Catalano, J., & Paglianti, A. (2009). Modelling the effect of operating conditions on hydrodynamics and mass transfer in a Pd–Ag membrane module for H2 purification. Journal of Membrane Science, 343(1-2), 34-41. doi:10.1016/j.memsci.2009.07.008 es_ES
dc.description.references Coroneo, M., Montante, G., & Paglianti, A. (2010). Numerical and Experimental Fluid-Dynamic Analysis To Improve the Mass Transfer Performances of Pd−Ag Membrane Modules for Hydrogen Purification. Industrial & Engineering Chemistry Research, 49(19), 9300-9309. doi:10.1021/ie100840z es_ES
dc.description.references Ji, G., Wang, G., Hooman, K., Bhatia, S., & Diniz da Costa, J. C. (2012). Computational fluid dynamics applied to high temperature hydrogen separation membranes. Frontiers of Chemical Science and Engineering, 6(1), 3-12. doi:10.1007/s11705-011-1161-5 es_ES
dc.description.references Ji, G., Yao, J. G., Clough, P. T., da Costa, J. C. D., Anthony, E. J., Fennell, P. S., … Zhao, M. (2018). Enhanced hydrogen production from thermochemical processes. Energy & Environmental Science, 11(10), 2647-2672. doi:10.1039/c8ee01393d es_ES
dc.description.references Gozálvez-Zafrilla, J. M., Santafé-Moros, A., Escolástico, S., & Serra, J. M. (2011). Fluid dynamic modeling of oxygen permeation through mixed ionic–electronic conducting membranes. Journal of Membrane Science, 378(1-2), 290-300. doi:10.1016/j.memsci.2011.05.016 es_ES
dc.description.references Kriegel, R., Kircheisen, R., & Töpfer, J. (2010). Oxygen stoichiometry and expansion behavior of Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ionics, 181(1-2), 64-70. doi:10.1016/j.ssi.2009.11.012 es_ES
dc.description.references Yi, J., Schroeder, M., Weirich, T., & Mayer, J. (2010). Behavior of Ba(Co, Fe, Nb)O3-δ Perovskite in CO2-Containing Atmospheres: Degradation Mechanism and Materials Design. Chemistry of Materials, 22(23), 6246-6253. doi:10.1021/cm101665r es_ES
dc.description.references Leo, A., Liu, S., & Diniz da Costa, J. C. (2011). Production of pure oxygen from BSCF hollow fiber membranes using steam sweep. Separation and Purification Technology, 78(2), 220-227. doi:10.1016/j.seppur.2011.02.006 es_ES
dc.description.references LEE, S. (2004). Applicability of Sherwood correlations for natural organic matter (NOM) transport in nanofiltration (NF) membranes. Journal of Membrane Science, 240(1-2), 49-65. doi:10.1016/j.memsci.2004.04.011 es_ES
dc.description.references Makaka, S., Aziz, M., & Nesbitt, A. (2010). Copper recovery in a bench-scale carrier facilitated tubular supported liquid membrane system. Journal of Mining and Metallurgy, Section B: Metallurgy, 46(1), 67-73. doi:10.2298/jmmb1001067m es_ES
dc.description.references Catalano, J., Giacinti Baschetti, M., & Sarti, G. C. (2009). Influence of the gas phase resistance on hydrogen flux through thin palladium–silver membranes. Journal of Membrane Science, 339(1-2), 57-67. doi:10.1016/j.memsci.2009.04.032 es_ES
dc.description.references Giani, L., Groppi, G., & Tronconi, E. (2005). Mass-Transfer Characterization of Metallic Foams as Supports for Structured Catalysts. Industrial & Engineering Chemistry Research, 44(14), 4993-5002. doi:10.1021/ie0490886 es_ES
dc.description.references Groppi, G., Giani, L., & Tronconi, E. (2007). Generalized Correlation for Gas/Solid Mass-Transfer Coefficients in Metallic and Ceramic Foams. Industrial & Engineering Chemistry Research, 46(12), 3955-3958. doi:10.1021/ie061330g es_ES
dc.description.references A. Berenov, A. Atkinson, et al., Oxygen tracer diffusion and surface exchange kinetics in Ba0.5Sr0.5Co0.8Fe0.2O3 − δ, Solid State Ionics. 268, Part (2014) 102–109. doi:10.1016/j.ssi.2014.09.031. es_ES
dc.description.references Kessel, M., De Souza, R. A., & Martin, M. (2015). Oxygen diffusion in single crystal barium titanate. Physical Chemistry Chemical Physics, 17(19), 12587-12597. doi:10.1039/c5cp01187f es_ES
dc.description.references Antonini, T., Gallucci, K., Anzoletti, V., Stendardo, S., & Foscolo, P. U. (2015). Oxygen transport by ionic membranes: Correlation of permeation data and prediction of char burning in a membrane-assisted biomass gasification process. Chemical Engineering and Processing - Process Intensification, 94, 39-52. doi:10.1016/j.cep.2014.11.009 es_ES
dc.description.references Behrouzifar, A., Asadi, A. A., Mohammadi, T., & Pak, A. (2012). Experimental investigation and mathematical modeling of oxygen permeation through dense Ba0.5Sr0.5Co0.8Fe0.2O3− (BSCF) perovskite-type ceramic membranes. Ceramics International, 38(6), 4797-4811. doi:10.1016/j.ceramint.2012.02.068 es_ES
dc.description.references Chen, D., & Shao, Z. (2011). Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ mixed conductor. International Journal of Hydrogen Energy, 36(11), 6948-6956. doi:10.1016/j.ijhydene.2011.02.087 es_ES
dc.description.references H. Wang, W. Yang, et al., Diffusion Fundamentals, Diffus. Fundam. (Online Journal). 1, 2005. 1–17. http://www.uni-leipzig.de/diffusion/contents_vol1.html. es_ES
dc.description.references Gao, D., Zhao, J., Zhou, W., Ran, R., & Shao, Z. (2011). Influence of high-energy ball milling of the starting powder on the sintering; microstructure and oxygen permeability of Ba0.5Sr0.5Co0.5Fe0.5O3−δ membranes. Journal of Membrane Science, 366(1-2), 203-211. doi:10.1016/j.memsci.2010.10.001 es_ES
dc.description.references Wang, H., Wang, R., Liang, D. T., & Yang, W. (2004). Experimental and modeling studies on Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) tubular membranes for air separation. Journal of Membrane Science, 243(1-2), 405-415. doi:10.1016/j.memsci.2004.07.003 es_ES
dc.description.references Baumann, S., Schulze-Küppers, F., Roitsch, S., Betz, M., Zwick, M., Pfaff, E. M., … Stöver, D. (2010). Influence of sintering conditions on microstructure and oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) oxygen transport membranes. Journal of Membrane Science, 359(1-2), 102-109. doi:10.1016/j.memsci.2010.02.002 es_ES
dc.description.references Tan, L., Gu, X., Yang, L., Jin, W., Zhang, L., & Xu, N. (2003). Influence of powder synthesis methods on microstructure and oxygen permeation performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite-type membranes. Journal of Membrane Science, 212(1-2), 157-165. doi:10.1016/s0376-7388(02)00494-5 es_ES
dc.description.references Vente, J. F., McIntosh, S., Haije, W. G., & Bouwmeester, H. J. M. (2006). Properties and performance of BaxSr1−xCo0.8Fe0.2O3−δ materials for oxygen transport membranes. Journal of Solid State Electrochemistry, 10(8), 581-588. doi:10.1007/s10008-006-0130-2 es_ES
dc.description.references Popov, M. P., Starkov, I. A., Bychkov, S. F., & Nemudry, A. P. (2014). Improvement of Ba0.5Sr0.5Co0.8Fe0.2O3−δ functional properties by partial substitution of cobalt with tungsten. Journal of Membrane Science, 469, 88-94. doi:10.1016/j.memsci.2014.06.022 es_ES
dc.description.references Mahato, N., Banerjee, A., Gupta, A., Omar, S., & Balani, K. (2015). Progress in material selection for solid oxide fuel cell technology: A review. Progress in Materials Science, 72, 141-337. doi:10.1016/j.pmatsci.2015.01.001 es_ES
dc.description.references Gao, Z., Mogni, L. V., Miller, E. C., Railsback, J. G., & Barnett, S. A. (2016). A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science, 9(5), 1602-1644. doi:10.1039/c5ee03858h es_ES
dc.description.references Zhang, X., Liu, L., Zhao, Z., Tu, B., Ou, D., Cui, D., … Cheng, M. (2015). Enhanced Oxygen Reduction Activity and Solid Oxide Fuel Cell Performance with a Nanoparticles-Loaded Cathode. Nano Letters, 15(3), 1703-1709. doi:10.1021/nl5043566 es_ES
dc.description.references Sun, C., Hui, R., & Roller, J. (2009). Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 14(7), 1125-1144. doi:10.1007/s10008-009-0932-0 es_ES
dc.description.references Hoffmann, R., Pippardt, U., & Kriegel, R. (2019). Impact of sintering temperature on permeation and long-term development of support structure and stability for asymmetric oxygen transporting BSCF membranes. Journal of Membrane Science, 581, 270-282. doi:10.1016/j.memsci.2019.03.066 es_ES
dc.description.references Lobera, M. P., Balaguer, M., García-Fayos, J., & Serra, J. M. (2017). Catalytic Oxide-Ion Conducting Materials for Surface Activation of Ba0.5Sr0.5Co0.8Fe0.2O3-δMembranes. ChemistrySelect, 2(10), 2949-2955. doi:10.1002/slct.201700530 es_ES
dc.description.references Serra, J. M., Garcia-Fayos, J., Baumann, S., Schulze-Küppers, F., & Meulenberg, W. A. (2013). Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. Journal of Membrane Science, 447, 297-305. doi:10.1016/j.memsci.2013.07.030 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem