Mostrar el registro sencillo del ítem
dc.contributor.author | Catalán-Martínez, David | es_ES |
dc.contributor.author | Santafé Moros, María Asunción | es_ES |
dc.contributor.author | Gozálvez-Zafrilla, José M. | es_ES |
dc.contributor.author | García-Fayos, Julio | es_ES |
dc.contributor.author | Serra Alfaro, José Manuel | es_ES |
dc.date.accessioned | 2021-05-04T03:31:58Z | |
dc.date.available | 2021-05-04T03:31:58Z | |
dc.date.issued | 2020-05-01 | es_ES |
dc.identifier.issn | 1385-8947 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165904 | |
dc.description.abstract | [EN] The influence of fluid dynamic conditions on the oxygen transport through mixed ionic-electronic membranes was studied experimentally and numerically. A set of permeation experiments was performed in a wide range of operating conditions combining temperature, driving force and flow rate of air feed and sweep streams. A computational model was built and enabled to systematically evaluate the effect of the fluid dynamic conditions on O-2 separation process. This model includes the surface resistance (gas exchange kinetics) and bulk oxygen-ion diffusion. The experimental set was used to obtain the model parameters by following a two-step fitting procedure: a first fitting of a simplified one-dimensional model using genetic algorithms and a subsequent refining of the parameters using the complete model implemented in COMSOL Multiphysics. The high-accuracy model allowed characterizing the O-2 transport phenomena and understanding the different factors governing the overall process, e.g. by using different membrane thicknesses, sweep gases or vacuum. Simulations of the fitted model revealed the importance of the sweep effect in the O-2 transport across the membrane and enabled to establish rules for both design of permeation experiments and up-scaling. | es_ES |
dc.description.sponsorship | This work was financially supported by Spanish Government (Grants SEV-2016-0683 and RTI2018-102161) and Generalitat Valenciana (PROMETEO/2018/006). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Chemical Engineering Journal | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | O2 MIEC membrane | es_ES |
dc.subject | BSCF | es_ES |
dc.subject | CFD | es_ES |
dc.subject | Permeation | es_ES |
dc.subject | Modelling | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Characterization of oxygen transport phenomena on BSCF membranes assisted by fluid dynamic simulations including surface exchange | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cej.2020.124069 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F006/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102161-B-I00/ES/CONVERSION DIRECTA DE CO2 EN PORTADORES DE ENERGIA QUIMICA UTILIZANDO REACTORES ELECTROCATALITICOS DE MEMBRANA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Catalán-Martínez, D.; Santafé Moros, MA.; Gozálvez-Zafrilla, JM.; García-Fayos, J.; Serra Alfaro, JM. (2020). Characterization of oxygen transport phenomena on BSCF membranes assisted by fluid dynamic simulations including surface exchange. Chemical Engineering Journal. 387:1-15. https://doi.org/10.1016/j.cej.2020.124069 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cej.2020.124069 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 387 | es_ES |
dc.relation.pasarela | S\401714 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Habib, M. A., Badr, H. M., Ahmed, S. F., Ben-Mansour, R., Mezghani, K., Imashuku, S., … Ghoneim, A. F. (2010). A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. International Journal of Energy Research, 35(9), 741-764. doi:10.1002/er.1798 | es_ES |
dc.description.references | Hashim, S. S., Mohamed, A. R., & Bhatia, S. (2011). Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renewable and Sustainable Energy Reviews, 15(2), 1284-1293. doi:10.1016/j.rser.2010.10.002 | es_ES |
dc.description.references | Markewitz, P., Marx, J., Schreiber, A., & Zapp, P. (2013). Ecological Evaluation of Coal-fired Oxyfuel Power Plants -cryogenic Versus Membrane-based Air Separation-. Energy Procedia, 37, 2864-2876. doi:10.1016/j.egypro.2013.06.172 | es_ES |
dc.description.references | Puig-Arnavat, M., Soprani, S., Søgaard, M., Engelbrecht, K., Ahrenfeldt, J., Henriksen, U. B., & Hendriksen, P. V. (2013). Integration of mixed conducting membranes in an oxygen–steam biomass gasification process. RSC Advances, 3(43), 20843. doi:10.1039/c3ra44509g | es_ES |
dc.description.references | Smart, S., Lin, C. X. C., Ding, L., Thambimuthu, K., & Diniz da Costa, J. C. (2010). Ceramic membranes for gas processing in coal gasification. Energy & Environmental Science, 3(3), 268. doi:10.1039/b924327e | es_ES |
dc.description.references | Castillo, R. (2011). Thermodynamic analysis of a hard coal oxyfuel power plant with high temperature three-end membrane for air separation. Applied Energy, 88(5), 1480-1493. doi:10.1016/j.apenergy.2010.10.044 | es_ES |
dc.description.references | Baumann, S., Serra, J. M., Lobera, M. P., Escolástico, S., Schulze-Küppers, F., & Meulenberg, W. A. (2011). Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Journal of Membrane Science, 377(1-2), 198-205. doi:10.1016/j.memsci.2011.04.050 | es_ES |
dc.description.references | M.J. den Exter, W.G. Haije, et al., Viability of ITM Technology for Oxygen Production and Oxidation Processes: Material, System, and Process Aspects, in: Inorg. Membr. Energy Environ. Appl., Springer New York, New York, NY, 2009: pp. 27–51. doi: 10.1007/978-0-387-34526-0_2. | es_ES |
dc.description.references | Engels, S., Beggel, F., Modigell, M., & Stadler, H. (2010). Simulation of a membrane unit for oxyfuel power plants under consideration of realistic BSCF membrane properties. Journal of Membrane Science, 359(1-2), 93-101. doi:10.1016/j.memsci.2010.01.048 | es_ES |
dc.description.references | Shao, Z. (2000). Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. Journal of Membrane Science, 172(1-2), 177-188. doi:10.1016/s0376-7388(00)00337-9 | es_ES |
dc.description.references | ARNOLD, M., WANG, H., & FELDHOFF, A. (2007). Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. Journal of Membrane Science, 293(1-2), 44-52. doi:10.1016/j.memsci.2007.01.032 | es_ES |
dc.description.references | Yi, J., & Schroeder, M. (2011). High temperature degradation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes in atmospheres containing concentrated carbon dioxide. Journal of Membrane Science, 378(1-2), 163-170. doi:10.1016/j.memsci.2011.04.044 | es_ES |
dc.description.references | Zhu, X., Liu, H., Cong, Y., & Yang, W. (2011). Permeation model and experimental investigation of mixed conducting membranes. AIChE Journal, 58(6), 1744-1754. doi:10.1002/aic.12710 | es_ES |
dc.description.references | GERDES, K., & LUSS, D. (2006). Oxygen transport model for layered MIEC composite membranes. Solid State Ionics, 177(33-34), 2931-2938. doi:10.1016/j.ssi.2006.09.002 | es_ES |
dc.description.references | Xie, H., Wei, Y., & Wang, H. (2017). Modeling of U-shaped Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3−δ hollow-fiber membrane for oxygen permeation. Chinese Journal of Chemical Engineering, 25(7), 892-897. doi:10.1016/j.cjche.2017.02.002 | es_ES |
dc.description.references | Zhu, Y., Li, W., Liu, Y., Zhu, X., & Yang, W. (2017). Selection of oxygen permeation models for different mixed ionic‐electronic conducting membranes. AIChE Journal, 63(9), 4043-4053. doi:10.1002/aic.15718 | es_ES |
dc.description.references | Li, C., Chew, J. J., Mahmoud, A., Liu, S., & Sunarso, J. (2018). Modelling of oxygen transport through mixed ionic-electronic conducting (MIEC) ceramic-based membranes: An overview. Journal of Membrane Science, 567, 228-260. doi:10.1016/j.memsci.2018.09.016 | es_ES |
dc.description.references | Lin, Y.-S., Wang, W., & Han, J. (1994). Oxygen permeation through thin mixed-conducting solid oxide membranes. AIChE Journal, 40(5), 786-798. doi:10.1002/aic.690400506 | es_ES |
dc.description.references | Xu, S. J., & Thomson, W. J. (1999). Oxygen permeation rates through ion-conducting perovskite membranes. Chemical Engineering Science, 54(17), 3839-3850. doi:10.1016/s0009-2509(99)00015-9 | es_ES |
dc.description.references | Zydorczak, B., Li, K., & Tan, X. (2010). Mixed conducting membranes - Macrostructure related oxygen permeation flux. AIChE Journal, 56(12), 3084-3090. doi:10.1002/aic.12216 | es_ES |
dc.description.references | Li, S. (1999). Synthesis and oxygen permeation properties of La0.2Sr0.8Co0.2Fe0.8O3−δ membranes. Solid State Ionics, 124(1-2), 161-170. doi:10.1016/s0167-2738(99)00136-8 | es_ES |
dc.description.references | Wang, Z., Liu, H., Tan, X., Jin, Y., & Liu, S. (2009). Improvement of the oxygen permeation through perovskite hollow fibre membranes by surface acid-modification. Journal of Membrane Science, 345(1-2), 65-73. doi:10.1016/j.memsci.2009.08.024 | es_ES |
dc.description.references | Pan, H., Li, L., Deng, X., Meng, B., Tan, X., & Li, K. (2013). Improvement of oxygen permeation in perovskite hollow fibre membranes by the enhanced surface exchange kinetics. Journal of Membrane Science, 428, 198-204. doi:10.1016/j.memsci.2012.10.020 | es_ES |
dc.description.references | A. Ghadimi, M.A. Alaee, et al., Oxygen permeation of BaxSr1 − xCo0.8Fe0.2O3 − δ perovskite-type membrane: Experimental and modeling, Desalination. 270 (2011) 64–75. doi: 10.1016/j.desal.2010.11.022. | es_ES |
dc.description.references | Kim, S. (1999). Oxygen surface exchange in mixed ionic electronic conductor membranes. Solid State Ionics, 121(1-4), 31-36. doi:10.1016/s0167-2738(98)00389-0 | es_ES |
dc.description.references | Jin, Y., Rui, Z., Tian, Y., Lin, Y., & Li, Y. (2010). Sequential simulation of dense oxygen permeation membrane reactor for hydrogen production from oxidative steam reforming of ethanol with ASPEN PLUS. International Journal of Hydrogen Energy, 35(13), 6691-6698. doi:10.1016/j.ijhydene.2010.04.042 | es_ES |
dc.description.references | Mancini, N. D., Gunasekaran, S., & Mitsos, A. (2012). A Multiple-Compartment Ion-Transport-Membrane Reactive Oxygen Separator. Industrial & Engineering Chemistry Research, 51(23), 7988-7997. doi:10.1021/ie202433g | es_ES |
dc.description.references | Turi, D. M., Chiesa, P., Macchi, E., & Ghoniem, A. F. (2016). High fidelity model of the oxygen flux across ion transport membrane reactor: Mechanism characterization using experimental data. Energy, 96, 127-141. doi:10.1016/j.energy.2015.12.055 | es_ES |
dc.description.references | Mancini, N. D., & Mitsos, A. (2011). Ion transport membrane reactors for oxy-combustion – Part I: intermediate-fidelity modeling. Energy, 36(8), 4701-4720. doi:10.1016/j.energy.2011.05.023 | es_ES |
dc.description.references | Spallina, V., Melchiori, T., Gallucci, F., & van Sint Annaland, M. (2015). Auto-Thermal Reforming Using Mixed Ion-Electronic Conducting Ceramic Membranes for a Small-Scale H2 Production Plant. Molecules, 20(3), 4998-5023. doi:10.3390/molecules20034998 | es_ES |
dc.description.references | Fischer, C. D., & Iribarren, O. A. (2016). Oxygen integration between a gasification process and oxygen production using a mass exchange heuristic. International Journal of Hydrogen Energy, 41(4), 2399-2410. doi:10.1016/j.ijhydene.2015.12.124 | es_ES |
dc.description.references | Hunt, A., Dimitrakopoulos, G., Kirchen, P., & Ghoniem, A. F. (2014). Measuring the oxygen profile and permeation flux across an ion transport <mml:math altimg=«si0029.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd» xmlns:sa=«http://www.elsevier.com/xml/common/struct-aff/dtd»><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>La</mml:mi></mml:mrow><mml:mrow><mml:mn>0.9</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>Ca</mml:mi></mml:mrow><mml:mrow><mml:mn>0.1</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>FeO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo>−</mml:mo><mml:mi>δ</mml:mi></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:math> membrane and the development and validation of a multistep surface exchange model. Journal of Membrane Science, 468, 62-72. doi:10.1016/j.memsci.2014.05.043 | es_ES |
dc.description.references | Hong, J., Kirchen, P., & Ghoniem, A. F. (2012). Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion. Journal of Membrane Science, 407-408, 71-85. doi:10.1016/j.memsci.2012.03.018 | es_ES |
dc.description.references | Habib, M. A., Ben Mansour, R., & Nemit-allah, M. A. (2013). Modeling of oxygen permeation through a LSCF ion transport membrane. Computers & Fluids, 76, 1-10. doi:10.1016/j.compfluid.2013.01.007 | es_ES |
dc.description.references | Ji, G., Zhao, M., & Wang, G. (2018). Computational fluid dynamic simulation of a sorption-enhanced palladium membrane reactor for enhancing hydrogen production from methane steam reforming. Energy, 147, 884-895. doi:10.1016/j.energy.2018.01.092 | es_ES |
dc.description.references | Wang, J., Gao, X., Ji, G., & Gu, X. (2019). CFD simulation of hollow fiber supported NaA zeolite membrane modules. Separation and Purification Technology, 213, 1-10. doi:10.1016/j.seppur.2018.12.017 | es_ES |
dc.description.references | Ji, G., Wang, G., Hooman, K., Bhatia, S., & Diniz da Costa, J. C. (2014). The fluid dynamic effect on the driving force for a cobalt oxide silica membrane module at high temperatures. Chemical Engineering Science, 111, 142-152. doi:10.1016/j.ces.2014.02.006 | es_ES |
dc.description.references | Nemitallah, M. A. (2016). A study of methane oxy-combustion characteristics inside a modified design button-cell membrane reactor utilizing a modified oxygen permeation model for reacting flows. Journal of Natural Gas Science and Engineering, 28, 61-73. doi:10.1016/j.jngse.2015.11.041 | es_ES |
dc.description.references | Nemitallah, M. A., Habib, M. A., & Mezghani, K. (2015). Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor. Energy, 84, 600-611. doi:10.1016/j.energy.2015.03.022 | es_ES |
dc.description.references | Ahmed, P., Habib, M. A., Ben-Mansour, R., & Jamal, A. (2016). Investigation of oxygen permeation through disc-shaped BSCF ion transport membrane under reactive conditions. International Journal of Energy Research, 41(7), 1049-1062. doi:10.1002/er.3696 | es_ES |
dc.description.references | Kawachale, N., Kumar, A., & Kirpalani, D. M. (2009). A flow distribution study of laboratory scale membrane gas separation cells. Journal of Membrane Science, 332(1-2), 81-88. doi:10.1016/j.memsci.2009.01.042 | es_ES |
dc.description.references | Coroneo, M., Montante, G., Catalano, J., & Paglianti, A. (2009). Modelling the effect of operating conditions on hydrodynamics and mass transfer in a Pd–Ag membrane module for H2 purification. Journal of Membrane Science, 343(1-2), 34-41. doi:10.1016/j.memsci.2009.07.008 | es_ES |
dc.description.references | Coroneo, M., Montante, G., & Paglianti, A. (2010). Numerical and Experimental Fluid-Dynamic Analysis To Improve the Mass Transfer Performances of Pd−Ag Membrane Modules for Hydrogen Purification. Industrial & Engineering Chemistry Research, 49(19), 9300-9309. doi:10.1021/ie100840z | es_ES |
dc.description.references | Ji, G., Wang, G., Hooman, K., Bhatia, S., & Diniz da Costa, J. C. (2012). Computational fluid dynamics applied to high temperature hydrogen separation membranes. Frontiers of Chemical Science and Engineering, 6(1), 3-12. doi:10.1007/s11705-011-1161-5 | es_ES |
dc.description.references | Ji, G., Yao, J. G., Clough, P. T., da Costa, J. C. D., Anthony, E. J., Fennell, P. S., … Zhao, M. (2018). Enhanced hydrogen production from thermochemical processes. Energy & Environmental Science, 11(10), 2647-2672. doi:10.1039/c8ee01393d | es_ES |
dc.description.references | Gozálvez-Zafrilla, J. M., Santafé-Moros, A., Escolástico, S., & Serra, J. M. (2011). Fluid dynamic modeling of oxygen permeation through mixed ionic–electronic conducting membranes. Journal of Membrane Science, 378(1-2), 290-300. doi:10.1016/j.memsci.2011.05.016 | es_ES |
dc.description.references | Kriegel, R., Kircheisen, R., & Töpfer, J. (2010). Oxygen stoichiometry and expansion behavior of Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ionics, 181(1-2), 64-70. doi:10.1016/j.ssi.2009.11.012 | es_ES |
dc.description.references | Yi, J., Schroeder, M., Weirich, T., & Mayer, J. (2010). Behavior of Ba(Co, Fe, Nb)O3-δ Perovskite in CO2-Containing Atmospheres: Degradation Mechanism and Materials Design. Chemistry of Materials, 22(23), 6246-6253. doi:10.1021/cm101665r | es_ES |
dc.description.references | Leo, A., Liu, S., & Diniz da Costa, J. C. (2011). Production of pure oxygen from BSCF hollow fiber membranes using steam sweep. Separation and Purification Technology, 78(2), 220-227. doi:10.1016/j.seppur.2011.02.006 | es_ES |
dc.description.references | LEE, S. (2004). Applicability of Sherwood correlations for natural organic matter (NOM) transport in nanofiltration (NF) membranes. Journal of Membrane Science, 240(1-2), 49-65. doi:10.1016/j.memsci.2004.04.011 | es_ES |
dc.description.references | Makaka, S., Aziz, M., & Nesbitt, A. (2010). Copper recovery in a bench-scale carrier facilitated tubular supported liquid membrane system. Journal of Mining and Metallurgy, Section B: Metallurgy, 46(1), 67-73. doi:10.2298/jmmb1001067m | es_ES |
dc.description.references | Catalano, J., Giacinti Baschetti, M., & Sarti, G. C. (2009). Influence of the gas phase resistance on hydrogen flux through thin palladium–silver membranes. Journal of Membrane Science, 339(1-2), 57-67. doi:10.1016/j.memsci.2009.04.032 | es_ES |
dc.description.references | Giani, L., Groppi, G., & Tronconi, E. (2005). Mass-Transfer Characterization of Metallic Foams as Supports for Structured Catalysts. Industrial & Engineering Chemistry Research, 44(14), 4993-5002. doi:10.1021/ie0490886 | es_ES |
dc.description.references | Groppi, G., Giani, L., & Tronconi, E. (2007). Generalized Correlation for Gas/Solid Mass-Transfer Coefficients in Metallic and Ceramic Foams. Industrial & Engineering Chemistry Research, 46(12), 3955-3958. doi:10.1021/ie061330g | es_ES |
dc.description.references | A. Berenov, A. Atkinson, et al., Oxygen tracer diffusion and surface exchange kinetics in Ba0.5Sr0.5Co0.8Fe0.2O3 − δ, Solid State Ionics. 268, Part (2014) 102–109. doi:10.1016/j.ssi.2014.09.031. | es_ES |
dc.description.references | Kessel, M., De Souza, R. A., & Martin, M. (2015). Oxygen diffusion in single crystal barium titanate. Physical Chemistry Chemical Physics, 17(19), 12587-12597. doi:10.1039/c5cp01187f | es_ES |
dc.description.references | Antonini, T., Gallucci, K., Anzoletti, V., Stendardo, S., & Foscolo, P. U. (2015). Oxygen transport by ionic membranes: Correlation of permeation data and prediction of char burning in a membrane-assisted biomass gasification process. Chemical Engineering and Processing - Process Intensification, 94, 39-52. doi:10.1016/j.cep.2014.11.009 | es_ES |
dc.description.references | Behrouzifar, A., Asadi, A. A., Mohammadi, T., & Pak, A. (2012). Experimental investigation and mathematical modeling of oxygen permeation through dense Ba0.5Sr0.5Co0.8Fe0.2O3− (BSCF) perovskite-type ceramic membranes. Ceramics International, 38(6), 4797-4811. doi:10.1016/j.ceramint.2012.02.068 | es_ES |
dc.description.references | Chen, D., & Shao, Z. (2011). Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ mixed conductor. International Journal of Hydrogen Energy, 36(11), 6948-6956. doi:10.1016/j.ijhydene.2011.02.087 | es_ES |
dc.description.references | H. Wang, W. Yang, et al., Diffusion Fundamentals, Diffus. Fundam. (Online Journal). 1, 2005. 1–17. http://www.uni-leipzig.de/diffusion/contents_vol1.html. | es_ES |
dc.description.references | Gao, D., Zhao, J., Zhou, W., Ran, R., & Shao, Z. (2011). Influence of high-energy ball milling of the starting powder on the sintering; microstructure and oxygen permeability of Ba0.5Sr0.5Co0.5Fe0.5O3−δ membranes. Journal of Membrane Science, 366(1-2), 203-211. doi:10.1016/j.memsci.2010.10.001 | es_ES |
dc.description.references | Wang, H., Wang, R., Liang, D. T., & Yang, W. (2004). Experimental and modeling studies on Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) tubular membranes for air separation. Journal of Membrane Science, 243(1-2), 405-415. doi:10.1016/j.memsci.2004.07.003 | es_ES |
dc.description.references | Baumann, S., Schulze-Küppers, F., Roitsch, S., Betz, M., Zwick, M., Pfaff, E. M., … Stöver, D. (2010). Influence of sintering conditions on microstructure and oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) oxygen transport membranes. Journal of Membrane Science, 359(1-2), 102-109. doi:10.1016/j.memsci.2010.02.002 | es_ES |
dc.description.references | Tan, L., Gu, X., Yang, L., Jin, W., Zhang, L., & Xu, N. (2003). Influence of powder synthesis methods on microstructure and oxygen permeation performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite-type membranes. Journal of Membrane Science, 212(1-2), 157-165. doi:10.1016/s0376-7388(02)00494-5 | es_ES |
dc.description.references | Vente, J. F., McIntosh, S., Haije, W. G., & Bouwmeester, H. J. M. (2006). Properties and performance of BaxSr1−xCo0.8Fe0.2O3−δ materials for oxygen transport membranes. Journal of Solid State Electrochemistry, 10(8), 581-588. doi:10.1007/s10008-006-0130-2 | es_ES |
dc.description.references | Popov, M. P., Starkov, I. A., Bychkov, S. F., & Nemudry, A. P. (2014). Improvement of Ba0.5Sr0.5Co0.8Fe0.2O3−δ functional properties by partial substitution of cobalt with tungsten. Journal of Membrane Science, 469, 88-94. doi:10.1016/j.memsci.2014.06.022 | es_ES |
dc.description.references | Mahato, N., Banerjee, A., Gupta, A., Omar, S., & Balani, K. (2015). Progress in material selection for solid oxide fuel cell technology: A review. Progress in Materials Science, 72, 141-337. doi:10.1016/j.pmatsci.2015.01.001 | es_ES |
dc.description.references | Gao, Z., Mogni, L. V., Miller, E. C., Railsback, J. G., & Barnett, S. A. (2016). A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science, 9(5), 1602-1644. doi:10.1039/c5ee03858h | es_ES |
dc.description.references | Zhang, X., Liu, L., Zhao, Z., Tu, B., Ou, D., Cui, D., … Cheng, M. (2015). Enhanced Oxygen Reduction Activity and Solid Oxide Fuel Cell Performance with a Nanoparticles-Loaded Cathode. Nano Letters, 15(3), 1703-1709. doi:10.1021/nl5043566 | es_ES |
dc.description.references | Sun, C., Hui, R., & Roller, J. (2009). Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 14(7), 1125-1144. doi:10.1007/s10008-009-0932-0 | es_ES |
dc.description.references | Hoffmann, R., Pippardt, U., & Kriegel, R. (2019). Impact of sintering temperature on permeation and long-term development of support structure and stability for asymmetric oxygen transporting BSCF membranes. Journal of Membrane Science, 581, 270-282. doi:10.1016/j.memsci.2019.03.066 | es_ES |
dc.description.references | Lobera, M. P., Balaguer, M., García-Fayos, J., & Serra, J. M. (2017). Catalytic Oxide-Ion Conducting Materials for Surface Activation of Ba0.5Sr0.5Co0.8Fe0.2O3-δMembranes. ChemistrySelect, 2(10), 2949-2955. doi:10.1002/slct.201700530 | es_ES |
dc.description.references | Serra, J. M., Garcia-Fayos, J., Baumann, S., Schulze-Küppers, F., & Meulenberg, W. A. (2013). Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. Journal of Membrane Science, 447, 297-305. doi:10.1016/j.memsci.2013.07.030 | es_ES |