Banks, M. K., & Schultz, K. E. (2005). Comparison of Plants for Germination Toxicity Tests in Petroleum-Contaminated Soils. Water, Air, and Soil Pollution, 167(1-4), 211-219. doi:10.1007/s11270-005-8553-4
Barreto, J. P. d. P., Araujo, K. C. d. F., de Araujo, D. M., & Martinez-Huitle, C. A. (2015). Effect of sp3/sp2 Ratio on Boron Doped Diamond Films for Producing Persulfate. ECS Electrochemistry Letters, 4(12), E9-E11. doi:10.1149/2.0061512eel
Bueno, F., Borba, F. H., Pellenz, L., Schmitz, M., Godoi, B., Espinoza-Quiñones, F. R., … Módenes, A. N. (2018). Degradation of ciprofloxacin by the Electrochemical Peroxidation process using stainless steel electrodes. Journal of Environmental Chemical Engineering, 6(2), 2855-2864. doi:10.1016/j.jece.2018.04.033
[+]
Banks, M. K., & Schultz, K. E. (2005). Comparison of Plants for Germination Toxicity Tests in Petroleum-Contaminated Soils. Water, Air, and Soil Pollution, 167(1-4), 211-219. doi:10.1007/s11270-005-8553-4
Barreto, J. P. d. P., Araujo, K. C. d. F., de Araujo, D. M., & Martinez-Huitle, C. A. (2015). Effect of sp3/sp2 Ratio on Boron Doped Diamond Films for Producing Persulfate. ECS Electrochemistry Letters, 4(12), E9-E11. doi:10.1149/2.0061512eel
Bueno, F., Borba, F. H., Pellenz, L., Schmitz, M., Godoi, B., Espinoza-Quiñones, F. R., … Módenes, A. N. (2018). Degradation of ciprofloxacin by the Electrochemical Peroxidation process using stainless steel electrodes. Journal of Environmental Chemical Engineering, 6(2), 2855-2864. doi:10.1016/j.jece.2018.04.033
Carlesi Jara, C., Fino, D., Specchia, V., Saracco, G., & Spinelli, P. (2007). Electrochemical removal of antibiotics from wastewaters. Applied Catalysis B: Environmental, 70(1-4), 479-487. doi:10.1016/j.apcatb.2005.11.035
Charles, J., Crini, G., Degiorgi, F., Sancey, B., Morin-Crini, N., & Badot, P.-M. (2013). Unexpected toxic interactions in the freshwater amphipod Gammarus pulex (L.) exposed to binary copper and nickel mixtures. Environmental Science and Pollution Research, 21(2), 1099-1111. doi:10.1007/s11356-013-1978-1
Chen, M., & Chu, W. (2012). Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis. Journal of Hazardous Materials, 219-220, 183-189. doi:10.1016/j.jhazmat.2012.03.074
Coledam, D. A. C., Aquino, J. M., Silva, B. F., Silva, A. J., & Rocha-Filho, R. C. (2016). Electrochemical mineralization of norfloxacin using distinct boron-doped diamond anodes in a filter-press reactor, with investigations of toxicity and oxidation by-products. Electrochimica Acta, 213, 856-864. doi:10.1016/j.electacta.2016.08.003
Da Silva, S. W., Navarro, E. M. O., Rodrigues, M. A. S., Bernardes, A. M., & Pérez-Herranz, V. (2019). Using p-Si/BDD anode for the electrochemical oxidation of norfloxacin. Journal of Electroanalytical Chemistry, 832, 112-120. doi:10.1016/j.jelechem.2018.10.049
Davis, J., Baygents, J. C., & Farrell, J. (2014). Understanding Persulfate Production at Boron Doped Diamond Film Anodes. Electrochimica Acta, 150, 68-74. doi:10.1016/j.electacta.2014.10.104
Oliveira, G. A. R. de, Leme, D. M., de Lapuente, J., Brito, L. B., Porredón, C., Rodrigues, L. de B., … Oliveira, D. P. de. (2018). A test battery for assessing the ecotoxic effects of textile dyes. Chemico-Biological Interactions, 291, 171-179. doi:10.1016/j.cbi.2018.06.026
Drèze, V., Monod, G., Cravedi, J.-P., Biagianti-Risbourg, S., & Le Gac, F. (2000). Ecotoxicology, 9(1/2), 93-103. doi:10.1023/a:1008976431227
Flaherty, C. M., & Dodson, S. I. (2005). Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere, 61(2), 200-207. doi:10.1016/j.chemosphere.2005.02.016
González-Pleiter, M., Gonzalo, S., Rodea-Palomares, I., Leganés, F., Rosal, R., Boltes, K., … Fernández-Piñas, F. (2013). Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Research, 47(6), 2050-2064. doi:10.1016/j.watres.2013.01.020
Gustavson, K. E., Sonsthagen, S. A., Crunkilton, R. A., & Harkin, J. M. (2000). Groundwater toxicity assessment using bioassay, chemical, and toxicity identification evaluation analyses. Environmental Toxicology, 15(5), 421-430. doi:10.1002/1522-7278(2000)15:5<421::aid-tox10>3.0.co;2-z
Heberle, A. N. A., Alves, M. E. P., da Silva, S. W., Klauck, C. R., Rodrigues, M. A. S., & Bernardes, A. M. (2019). Phytotoxicity and genotoxicity evaluation of 2,4,6-tribromophenol solution treated by UV-based oxidation processes. Environmental Pollution, 249, 354-361. doi:10.1016/j.envpol.2019.03.057
Iniesta, J. (2001). Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochimica Acta, 46(23), 3573-3578. doi:10.1016/s0013-4686(01)00630-2
Larsson, D. G. J., de Pedro, C., & Paxeus, N. (2007). Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, 148(3), 751-755. doi:10.1016/j.jhazmat.2007.07.008
Leme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: A review on its application. Mutation Research/Reviews in Mutation Research, 682(1), 71-81. doi:10.1016/j.mrrev.2009.06.002
Li, Y., Niu, J., & Wang, W. (2011). Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: Kinetics, mechanism and toxicity of photolysis products. Chemosphere, 85(5), 892-897. doi:10.1016/j.chemosphere.2011.07.008
Liu, P., Zhang, H., Feng, Y., Yang, F., & Zhang, J. (2014). Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chemical Engineering Journal, 240, 211-220. doi:10.1016/j.cej.2013.11.057
Mao, F., He, Y., & Gin, K. (2018). Evaluating the Joint Toxicity of Two Benzophenone-Type UV Filters on the Green Alga Chlamydomonas reinhardtii with Response Surface Methodology. Toxics, 6(1), 8. doi:10.3390/toxics6010008
Mora-Gómez, J., García-Gabaldón, M., Ortega, E., Sánchez-Rivera, M.-J., Mestre, S., & Pérez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 44(2), 2216-2222. doi:10.1016/j.ceramint.2017.10.178
Mora-Gomez, J., Ortega, E., Mestre, S., Pérez-Herranz, V., & García-Gabaldón, M. (2019). Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Separation and Purification Technology, 208, 68-75. doi:10.1016/j.seppur.2018.05.017
Özcan, A., Atılır Özcan, A., & Demirci, Y. (2016). Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment. Chemical Engineering Journal, 304, 518-526. doi:10.1016/j.cej.2016.06.105
Priac, A., Badot, P.-M., & Crini, G. (2017). Treated wastewater phytotoxicity assessment using Lactuca sativa : Focus on germination and root elongation test parameters. Comptes Rendus Biologies, 340(3), 188-194. doi:10.1016/j.crvi.2017.01.002
Radix, P., Léonard, M., Papantoniou, C., Roman, G., Saouter, E., Gallotti-Schmitt, S., … Vasseur, P. (2000). Comparison of Four Chronic Toxicity Tests Using Algae, Bacteria, and Invertebrates Assessed with Sixteen Chemicals. Ecotoxicology and Environmental Safety, 47(2), 186-194. doi:10.1006/eesa.2000.1966
Rizzo, L. (2011). Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research, 45(15), 4311-4340. doi:10.1016/j.watres.2011.05.035
Seco, J. I., Fernández-Pereira, C., & Vale, J. (2003). A study of the leachate toxicity of metal-containing solid wastes using Daphnia magna. Ecotoxicology and Environmental Safety, 56(3), 339-350. doi:10.1016/s0147-6513(03)00102-7
Uzu, G., Sobanska, S., Sarret, G., Muñoz, M., & Dumat, C. (2010). Foliar Lead Uptake by Lettuce Exposed to Atmospheric Fallouts. Environmental Science & Technology, 44(3), 1036-1042. doi:10.1021/es902190u
Vasconcelos, T. G., Henriques, D. M., König, A., Martins, A. F., & Kümmerer, K. (2009). Photo-degradation of the antimicrobial ciprofloxacin at high pH: Identification and biodegradability assessment of the primary by-products. Chemosphere, 76(4), 487-493. doi:10.1016/j.chemosphere.2009.03.022
Wang, W. C., & Freemark, K. (1995). The Use of Plants for Environmental Monitoring and Assessment. Ecotoxicology and Environmental Safety, 30(3), 289-301. doi:10.1006/eesa.1995.1033
Wang, X., Sun, C., Gao, S., Wang, L., & Shuokui, H. (2001). Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere, 44(8), 1711-1721. doi:10.1016/s0045-6535(00)00520-8
Yang, L.-H., Ying, G.-G., Su, H.-C., Stauber, J. L., Adams, M. S., & Binet, M. T. (2008). GROWTH-INHIBITING EFFECTS OF 12 ANTIBACTERIAL AGENTS AND THEIR MIXTURES ON THE FRESHWATER MICROALGA PSEUDOKIRCHNERIELLA SUBCAPITATA. Environmental Toxicology and Chemistry, 27(5), 1201. doi:10.1897/07-471.1
Yuan, F., Hu, C., Hu, X., Wei, D., Chen, Y., & Qu, J. (2011). Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. Journal of Hazardous Materials, 185(2-3), 1256-1263. doi:10.1016/j.jhazmat.2010.10.040
Zhou, Y., Xu, Y.-B., Xu, J.-X., Zhang, X.-H., Xu, S.-H., & Du, Q.-P. (2015). Combined Toxic Effects of Heavy Metals and Antibiotics on a Pseudomonas fluorescens Strain ZY2 Isolated from Swine Wastewater. International Journal of Molecular Sciences, 16(2), 2839-2850. doi:10.3390/ijms16022839
Zhu, L., Santiago-Schübel, B., Xiao, H., Hollert, H., & Kueppers, S. (2016). Electrochemical oxidation of fluoroquinolone antibiotics: Mechanism, residual antibacterial activity and toxicity change. Water Research, 102, 52-62. doi:10.1016/j.watres.2016.06.005
[-]