- -

Analysis of norfloxacin ecotoxicity and the relation with its degradation by means of electrochemical oxidation using different anodes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Analysis of norfloxacin ecotoxicity and the relation with its degradation by means of electrochemical oxidation using different anodes

Show full item record

Montañés, M.; García Gabaldón, M.; Roca-Pérez, L.; Giner-Sanz, JJ.; Mora-Gómez, J.; Pérez-Herranz, V. (2020). Analysis of norfloxacin ecotoxicity and the relation with its degradation by means of electrochemical oxidation using different anodes. Ecotoxicology and Environmental Safety. 188:1-10. https://doi.org/10.1016/j.ecoenv.2019.109923

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165908

Files in this item

Item Metadata

Title: Analysis of norfloxacin ecotoxicity and the relation with its degradation by means of electrochemical oxidation using different anodes
Author: Montañés, Maria-Teresa García Gabaldón, Montserrat Roca-Pérez, Ll. Giner-Sanz, Juan José Mora-Gómez, Julia Pérez-Herranz, Valentín
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Issued date:
Abstract:
[EN] In this work, ecotoxicological bioassays based on Lactuca sativa seeds and bioluminescent bacterium (Vibrio fischeri) have been carried out in order to quantify the toxicity of Norfloxacin (NOR) and sodium sulfate ...[+]
Subjects: Electrochemical oxidation , Lactuca sativa , Norfloxacin , Sodium sulfate , Toxicity , Vibrio fischeri
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Ecotoxicology and Environmental Safety. (issn: 0147-6513 )
DOI: 10.1016/j.ecoenv.2019.109923
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.ecoenv.2019.109923
Project ID:
info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-1-R/ES/CARACTERIZACION ELECTROQUIMICA DE ELECTRODOS CERAMICOS Y APLICACION A PROCESOS ELECTROQUIMICOS DE OXIDACION AVANZADA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101341-B-C21/ES/ELECTROCHEMICAL CHARACTERIZATION OF CERAMIC ELECTRODES AND MEMBRANES AND APPLICATION TO PHOTOELECTROOXIDATION AND ELECTROFILTRATION PROCESSES/
Thanks:
The authors are very grateful to the Ministerio de Economia y Competitividad (Projects CTQ2015-65202-C2-1-R and RTI2018-101341-B-C21) for their economic support.
Type: Artículo

References

Banks, M. K., & Schultz, K. E. (2005). Comparison of Plants for Germination Toxicity Tests in Petroleum-Contaminated Soils. Water, Air, and Soil Pollution, 167(1-4), 211-219. doi:10.1007/s11270-005-8553-4

Barreto, J. P. d. P., Araujo, K. C. d. F., de Araujo, D. M., & Martinez-Huitle, C. A. (2015). Effect of sp3/sp2 Ratio on Boron Doped Diamond Films for Producing Persulfate. ECS Electrochemistry Letters, 4(12), E9-E11. doi:10.1149/2.0061512eel

Bueno, F., Borba, F. H., Pellenz, L., Schmitz, M., Godoi, B., Espinoza-Quiñones, F. R., … Módenes, A. N. (2018). Degradation of ciprofloxacin by the Electrochemical Peroxidation process using stainless steel electrodes. Journal of Environmental Chemical Engineering, 6(2), 2855-2864. doi:10.1016/j.jece.2018.04.033 [+]
Banks, M. K., & Schultz, K. E. (2005). Comparison of Plants for Germination Toxicity Tests in Petroleum-Contaminated Soils. Water, Air, and Soil Pollution, 167(1-4), 211-219. doi:10.1007/s11270-005-8553-4

Barreto, J. P. d. P., Araujo, K. C. d. F., de Araujo, D. M., & Martinez-Huitle, C. A. (2015). Effect of sp3/sp2 Ratio on Boron Doped Diamond Films for Producing Persulfate. ECS Electrochemistry Letters, 4(12), E9-E11. doi:10.1149/2.0061512eel

Bueno, F., Borba, F. H., Pellenz, L., Schmitz, M., Godoi, B., Espinoza-Quiñones, F. R., … Módenes, A. N. (2018). Degradation of ciprofloxacin by the Electrochemical Peroxidation process using stainless steel electrodes. Journal of Environmental Chemical Engineering, 6(2), 2855-2864. doi:10.1016/j.jece.2018.04.033

Carlesi Jara, C., Fino, D., Specchia, V., Saracco, G., & Spinelli, P. (2007). Electrochemical removal of antibiotics from wastewaters. Applied Catalysis B: Environmental, 70(1-4), 479-487. doi:10.1016/j.apcatb.2005.11.035

Charles, J., Crini, G., Degiorgi, F., Sancey, B., Morin-Crini, N., & Badot, P.-M. (2013). Unexpected toxic interactions in the freshwater amphipod Gammarus pulex (L.) exposed to binary copper and nickel mixtures. Environmental Science and Pollution Research, 21(2), 1099-1111. doi:10.1007/s11356-013-1978-1

Chen, M., & Chu, W. (2012). Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis. Journal of Hazardous Materials, 219-220, 183-189. doi:10.1016/j.jhazmat.2012.03.074

Coledam, D. A. C., Aquino, J. M., Silva, B. F., Silva, A. J., & Rocha-Filho, R. C. (2016). Electrochemical mineralization of norfloxacin using distinct boron-doped diamond anodes in a filter-press reactor, with investigations of toxicity and oxidation by-products. Electrochimica Acta, 213, 856-864. doi:10.1016/j.electacta.2016.08.003

Da Silva, S. W., Navarro, E. M. O., Rodrigues, M. A. S., Bernardes, A. M., & Pérez-Herranz, V. (2019). Using p-Si/BDD anode for the electrochemical oxidation of norfloxacin. Journal of Electroanalytical Chemistry, 832, 112-120. doi:10.1016/j.jelechem.2018.10.049

Davis, J., Baygents, J. C., & Farrell, J. (2014). Understanding Persulfate Production at Boron Doped Diamond Film Anodes. Electrochimica Acta, 150, 68-74. doi:10.1016/j.electacta.2014.10.104

Oliveira, G. A. R. de, Leme, D. M., de Lapuente, J., Brito, L. B., Porredón, C., Rodrigues, L. de B., … Oliveira, D. P. de. (2018). A test battery for assessing the ecotoxic effects of textile dyes. Chemico-Biological Interactions, 291, 171-179. doi:10.1016/j.cbi.2018.06.026

Drèze, V., Monod, G., Cravedi, J.-P., Biagianti-Risbourg, S., & Le Gac, F. (2000). Ecotoxicology, 9(1/2), 93-103. doi:10.1023/a:1008976431227

Flaherty, C. M., & Dodson, S. I. (2005). Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere, 61(2), 200-207. doi:10.1016/j.chemosphere.2005.02.016

González-Pleiter, M., Gonzalo, S., Rodea-Palomares, I., Leganés, F., Rosal, R., Boltes, K., … Fernández-Piñas, F. (2013). Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Research, 47(6), 2050-2064. doi:10.1016/j.watres.2013.01.020

Gustavson, K. E., Sonsthagen, S. A., Crunkilton, R. A., & Harkin, J. M. (2000). Groundwater toxicity assessment using bioassay, chemical, and toxicity identification evaluation analyses. Environmental Toxicology, 15(5), 421-430. doi:10.1002/1522-7278(2000)15:5<421::aid-tox10>3.0.co;2-z

Heberle, A. N. A., Alves, M. E. P., da Silva, S. W., Klauck, C. R., Rodrigues, M. A. S., & Bernardes, A. M. (2019). Phytotoxicity and genotoxicity evaluation of 2,4,6-tribromophenol solution treated by UV-based oxidation processes. Environmental Pollution, 249, 354-361. doi:10.1016/j.envpol.2019.03.057

Iniesta, J. (2001). Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochimica Acta, 46(23), 3573-3578. doi:10.1016/s0013-4686(01)00630-2

Larsson, D. G. J., de Pedro, C., & Paxeus, N. (2007). Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, 148(3), 751-755. doi:10.1016/j.jhazmat.2007.07.008

Leme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: A review on its application. Mutation Research/Reviews in Mutation Research, 682(1), 71-81. doi:10.1016/j.mrrev.2009.06.002

Li, Y., Niu, J., & Wang, W. (2011). Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: Kinetics, mechanism and toxicity of photolysis products. Chemosphere, 85(5), 892-897. doi:10.1016/j.chemosphere.2011.07.008

Liu, P., Zhang, H., Feng, Y., Yang, F., & Zhang, J. (2014). Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chemical Engineering Journal, 240, 211-220. doi:10.1016/j.cej.2013.11.057

Mao, F., He, Y., & Gin, K. (2018). Evaluating the Joint Toxicity of Two Benzophenone-Type UV Filters on the Green Alga Chlamydomonas reinhardtii with Response Surface Methodology. Toxics, 6(1), 8. doi:10.3390/toxics6010008

Mora-Gómez, J., García-Gabaldón, M., Ortega, E., Sánchez-Rivera, M.-J., Mestre, S., & Pérez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 44(2), 2216-2222. doi:10.1016/j.ceramint.2017.10.178

Mora-Gomez, J., Ortega, E., Mestre, S., Pérez-Herranz, V., & García-Gabaldón, M. (2019). Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Separation and Purification Technology, 208, 68-75. doi:10.1016/j.seppur.2018.05.017

Özcan, A., Atılır Özcan, A., & Demirci, Y. (2016). Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment. Chemical Engineering Journal, 304, 518-526. doi:10.1016/j.cej.2016.06.105

Priac, A., Badot, P.-M., & Crini, G. (2017). Treated wastewater phytotoxicity assessment using Lactuca sativa : Focus on germination and root elongation test parameters. Comptes Rendus Biologies, 340(3), 188-194. doi:10.1016/j.crvi.2017.01.002

Radix, P., Léonard, M., Papantoniou, C., Roman, G., Saouter, E., Gallotti-Schmitt, S., … Vasseur, P. (2000). Comparison of Four Chronic Toxicity Tests Using Algae, Bacteria, and Invertebrates Assessed with Sixteen Chemicals. Ecotoxicology and Environmental Safety, 47(2), 186-194. doi:10.1006/eesa.2000.1966

Rizzo, L. (2011). Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research, 45(15), 4311-4340. doi:10.1016/j.watres.2011.05.035

Seco, J. I., Fernández-Pereira, C., & Vale, J. (2003). A study of the leachate toxicity of metal-containing solid wastes using Daphnia magna. Ecotoxicology and Environmental Safety, 56(3), 339-350. doi:10.1016/s0147-6513(03)00102-7

Uzu, G., Sobanska, S., Sarret, G., Muñoz, M., & Dumat, C. (2010). Foliar Lead Uptake by Lettuce Exposed to Atmospheric Fallouts. Environmental Science & Technology, 44(3), 1036-1042. doi:10.1021/es902190u

Vasconcelos, T. G., Henriques, D. M., König, A., Martins, A. F., & Kümmerer, K. (2009). Photo-degradation of the antimicrobial ciprofloxacin at high pH: Identification and biodegradability assessment of the primary by-products. Chemosphere, 76(4), 487-493. doi:10.1016/j.chemosphere.2009.03.022

Wang, W. C., & Freemark, K. (1995). The Use of Plants for Environmental Monitoring and Assessment. Ecotoxicology and Environmental Safety, 30(3), 289-301. doi:10.1006/eesa.1995.1033

Wang, X., Sun, C., Gao, S., Wang, L., & Shuokui, H. (2001). Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere, 44(8), 1711-1721. doi:10.1016/s0045-6535(00)00520-8

Yang, L.-H., Ying, G.-G., Su, H.-C., Stauber, J. L., Adams, M. S., & Binet, M. T. (2008). GROWTH-INHIBITING EFFECTS OF 12 ANTIBACTERIAL AGENTS AND THEIR MIXTURES ON THE FRESHWATER MICROALGA PSEUDOKIRCHNERIELLA SUBCAPITATA. Environmental Toxicology and Chemistry, 27(5), 1201. doi:10.1897/07-471.1

Yuan, F., Hu, C., Hu, X., Wei, D., Chen, Y., & Qu, J. (2011). Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. Journal of Hazardous Materials, 185(2-3), 1256-1263. doi:10.1016/j.jhazmat.2010.10.040

Zhou, Y., Xu, Y.-B., Xu, J.-X., Zhang, X.-H., Xu, S.-H., & Du, Q.-P. (2015). Combined Toxic Effects of Heavy Metals and Antibiotics on a Pseudomonas fluorescens Strain ZY2 Isolated from Swine Wastewater. International Journal of Molecular Sciences, 16(2), 2839-2850. doi:10.3390/ijms16022839

Zhu, L., Santiago-Schübel, B., Xiao, H., Hollert, H., & Kueppers, S. (2016). Electrochemical oxidation of fluoroquinolone antibiotics: Mechanism, residual antibacterial activity and toxicity change. Water Research, 102, 52-62. doi:10.1016/j.watres.2016.06.005

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record