Mostrar el registro sencillo del ítem
dc.contributor.author | Montañés, Maria-Teresa | es_ES |
dc.contributor.author | García Gabaldón, Montserrat | es_ES |
dc.contributor.author | Roca-Pérez, Ll. | es_ES |
dc.contributor.author | Giner-Sanz, Juan José | es_ES |
dc.contributor.author | Mora-Gómez, Julia | es_ES |
dc.contributor.author | Pérez-Herranz, Valentín | es_ES |
dc.date.accessioned | 2021-05-04T03:32:12Z | |
dc.date.available | 2021-05-04T03:32:12Z | |
dc.date.issued | 2020-01-30 | es_ES |
dc.identifier.issn | 0147-6513 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165908 | |
dc.description.abstract | [EN] In this work, ecotoxicological bioassays based on Lactuca sativa seeds and bioluminescent bacterium (Vibrio fischeri) have been carried out in order to quantify the toxicity of Norfloxacin (NOR) and sodium sulfate solutions, before and after treating them using electrochemical advanced oxidation. The effect of some process variables (anode material, reactor configuration and applied current) on the toxicity evolution of the treated solution has been studied. A NOR solution shows an EC50 (5 days) of 336 mg L-1 towards Lactuca sativa. This threshold NOR concentration decreases with sodium sulfate concentration, in solutions that contain simultaneously Norfloxacin and sodium sulfate. In every case considered in this work, the electrochemical advanced oxidation process increased the toxicity (towards both Lactuca sativa and Vibrio fischeri) of the solution. This toxicity increase is mainly due to the persulfate formation during the electrochemical treatment. From a final solution toxicity point of view, the best results were obtained using a BDD anode in a divided reactor applying the lowest current intensity. | es_ES |
dc.description.sponsorship | The authors are very grateful to the Ministerio de Economia y Competitividad (Projects CTQ2015-65202-C2-1-R and RTI2018-101341-B-C21) for their economic support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Ecotoxicology and Environmental Safety | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Electrochemical oxidation | es_ES |
dc.subject | Lactuca sativa | es_ES |
dc.subject | Norfloxacin | es_ES |
dc.subject | Sodium sulfate | es_ES |
dc.subject | Toxicity | es_ES |
dc.subject | Vibrio fischeri | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Analysis of norfloxacin ecotoxicity and the relation with its degradation by means of electrochemical oxidation using different anodes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ecoenv.2019.109923 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-1-R/ES/CARACTERIZACION ELECTROQUIMICA DE ELECTRODOS CERAMICOS Y APLICACION A PROCESOS ELECTROQUIMICOS DE OXIDACION AVANZADA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101341-B-C21/ES/ELECTROCHEMICAL CHARACTERIZATION OF CERAMIC ELECTRODES AND MEMBRANES AND APPLICATION TO PHOTOELECTROOXIDATION AND ELECTROFILTRATION PROCESSES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Montañés, M.; García Gabaldón, M.; Roca-Pérez, L.; Giner-Sanz, JJ.; Mora-Gómez, J.; Pérez-Herranz, V. (2020). Analysis of norfloxacin ecotoxicity and the relation with its degradation by means of electrochemical oxidation using different anodes. Ecotoxicology and Environmental Safety. 188:1-10. https://doi.org/10.1016/j.ecoenv.2019.109923 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ecoenv.2019.109923 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 188 | es_ES |
dc.identifier.pmid | 31711779 | es_ES |
dc.relation.pasarela | S\407718 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Banks, M. K., & Schultz, K. E. (2005). Comparison of Plants for Germination Toxicity Tests in Petroleum-Contaminated Soils. Water, Air, and Soil Pollution, 167(1-4), 211-219. doi:10.1007/s11270-005-8553-4 | es_ES |
dc.description.references | Barreto, J. P. d. P., Araujo, K. C. d. F., de Araujo, D. M., & Martinez-Huitle, C. A. (2015). Effect of sp3/sp2 Ratio on Boron Doped Diamond Films for Producing Persulfate. ECS Electrochemistry Letters, 4(12), E9-E11. doi:10.1149/2.0061512eel | es_ES |
dc.description.references | Bueno, F., Borba, F. H., Pellenz, L., Schmitz, M., Godoi, B., Espinoza-Quiñones, F. R., … Módenes, A. N. (2018). Degradation of ciprofloxacin by the Electrochemical Peroxidation process using stainless steel electrodes. Journal of Environmental Chemical Engineering, 6(2), 2855-2864. doi:10.1016/j.jece.2018.04.033 | es_ES |
dc.description.references | Carlesi Jara, C., Fino, D., Specchia, V., Saracco, G., & Spinelli, P. (2007). Electrochemical removal of antibiotics from wastewaters. Applied Catalysis B: Environmental, 70(1-4), 479-487. doi:10.1016/j.apcatb.2005.11.035 | es_ES |
dc.description.references | Charles, J., Crini, G., Degiorgi, F., Sancey, B., Morin-Crini, N., & Badot, P.-M. (2013). Unexpected toxic interactions in the freshwater amphipod Gammarus pulex (L.) exposed to binary copper and nickel mixtures. Environmental Science and Pollution Research, 21(2), 1099-1111. doi:10.1007/s11356-013-1978-1 | es_ES |
dc.description.references | Chen, M., & Chu, W. (2012). Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis. Journal of Hazardous Materials, 219-220, 183-189. doi:10.1016/j.jhazmat.2012.03.074 | es_ES |
dc.description.references | Coledam, D. A. C., Aquino, J. M., Silva, B. F., Silva, A. J., & Rocha-Filho, R. C. (2016). Electrochemical mineralization of norfloxacin using distinct boron-doped diamond anodes in a filter-press reactor, with investigations of toxicity and oxidation by-products. Electrochimica Acta, 213, 856-864. doi:10.1016/j.electacta.2016.08.003 | es_ES |
dc.description.references | Da Silva, S. W., Navarro, E. M. O., Rodrigues, M. A. S., Bernardes, A. M., & Pérez-Herranz, V. (2019). Using p-Si/BDD anode for the electrochemical oxidation of norfloxacin. Journal of Electroanalytical Chemistry, 832, 112-120. doi:10.1016/j.jelechem.2018.10.049 | es_ES |
dc.description.references | Davis, J., Baygents, J. C., & Farrell, J. (2014). Understanding Persulfate Production at Boron Doped Diamond Film Anodes. Electrochimica Acta, 150, 68-74. doi:10.1016/j.electacta.2014.10.104 | es_ES |
dc.description.references | Oliveira, G. A. R. de, Leme, D. M., de Lapuente, J., Brito, L. B., Porredón, C., Rodrigues, L. de B., … Oliveira, D. P. de. (2018). A test battery for assessing the ecotoxic effects of textile dyes. Chemico-Biological Interactions, 291, 171-179. doi:10.1016/j.cbi.2018.06.026 | es_ES |
dc.description.references | Drèze, V., Monod, G., Cravedi, J.-P., Biagianti-Risbourg, S., & Le Gac, F. (2000). Ecotoxicology, 9(1/2), 93-103. doi:10.1023/a:1008976431227 | es_ES |
dc.description.references | Flaherty, C. M., & Dodson, S. I. (2005). Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere, 61(2), 200-207. doi:10.1016/j.chemosphere.2005.02.016 | es_ES |
dc.description.references | González-Pleiter, M., Gonzalo, S., Rodea-Palomares, I., Leganés, F., Rosal, R., Boltes, K., … Fernández-Piñas, F. (2013). Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Research, 47(6), 2050-2064. doi:10.1016/j.watres.2013.01.020 | es_ES |
dc.description.references | Gustavson, K. E., Sonsthagen, S. A., Crunkilton, R. A., & Harkin, J. M. (2000). Groundwater toxicity assessment using bioassay, chemical, and toxicity identification evaluation analyses. Environmental Toxicology, 15(5), 421-430. doi:10.1002/1522-7278(2000)15:5<421::aid-tox10>3.0.co;2-z | es_ES |
dc.description.references | Heberle, A. N. A., Alves, M. E. P., da Silva, S. W., Klauck, C. R., Rodrigues, M. A. S., & Bernardes, A. M. (2019). Phytotoxicity and genotoxicity evaluation of 2,4,6-tribromophenol solution treated by UV-based oxidation processes. Environmental Pollution, 249, 354-361. doi:10.1016/j.envpol.2019.03.057 | es_ES |
dc.description.references | Iniesta, J. (2001). Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochimica Acta, 46(23), 3573-3578. doi:10.1016/s0013-4686(01)00630-2 | es_ES |
dc.description.references | Larsson, D. G. J., de Pedro, C., & Paxeus, N. (2007). Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, 148(3), 751-755. doi:10.1016/j.jhazmat.2007.07.008 | es_ES |
dc.description.references | Leme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: A review on its application. Mutation Research/Reviews in Mutation Research, 682(1), 71-81. doi:10.1016/j.mrrev.2009.06.002 | es_ES |
dc.description.references | Li, Y., Niu, J., & Wang, W. (2011). Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: Kinetics, mechanism and toxicity of photolysis products. Chemosphere, 85(5), 892-897. doi:10.1016/j.chemosphere.2011.07.008 | es_ES |
dc.description.references | Liu, P., Zhang, H., Feng, Y., Yang, F., & Zhang, J. (2014). Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chemical Engineering Journal, 240, 211-220. doi:10.1016/j.cej.2013.11.057 | es_ES |
dc.description.references | Mao, F., He, Y., & Gin, K. (2018). Evaluating the Joint Toxicity of Two Benzophenone-Type UV Filters on the Green Alga Chlamydomonas reinhardtii with Response Surface Methodology. Toxics, 6(1), 8. doi:10.3390/toxics6010008 | es_ES |
dc.description.references | Mora-Gómez, J., García-Gabaldón, M., Ortega, E., Sánchez-Rivera, M.-J., Mestre, S., & Pérez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 44(2), 2216-2222. doi:10.1016/j.ceramint.2017.10.178 | es_ES |
dc.description.references | Mora-Gomez, J., Ortega, E., Mestre, S., Pérez-Herranz, V., & García-Gabaldón, M. (2019). Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Separation and Purification Technology, 208, 68-75. doi:10.1016/j.seppur.2018.05.017 | es_ES |
dc.description.references | Özcan, A., Atılır Özcan, A., & Demirci, Y. (2016). Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment. Chemical Engineering Journal, 304, 518-526. doi:10.1016/j.cej.2016.06.105 | es_ES |
dc.description.references | Priac, A., Badot, P.-M., & Crini, G. (2017). Treated wastewater phytotoxicity assessment using Lactuca sativa : Focus on germination and root elongation test parameters. Comptes Rendus Biologies, 340(3), 188-194. doi:10.1016/j.crvi.2017.01.002 | es_ES |
dc.description.references | Radix, P., Léonard, M., Papantoniou, C., Roman, G., Saouter, E., Gallotti-Schmitt, S., … Vasseur, P. (2000). Comparison of Four Chronic Toxicity Tests Using Algae, Bacteria, and Invertebrates Assessed with Sixteen Chemicals. Ecotoxicology and Environmental Safety, 47(2), 186-194. doi:10.1006/eesa.2000.1966 | es_ES |
dc.description.references | Rizzo, L. (2011). Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research, 45(15), 4311-4340. doi:10.1016/j.watres.2011.05.035 | es_ES |
dc.description.references | Seco, J. I., Fernández-Pereira, C., & Vale, J. (2003). A study of the leachate toxicity of metal-containing solid wastes using Daphnia magna. Ecotoxicology and Environmental Safety, 56(3), 339-350. doi:10.1016/s0147-6513(03)00102-7 | es_ES |
dc.description.references | Uzu, G., Sobanska, S., Sarret, G., Muñoz, M., & Dumat, C. (2010). Foliar Lead Uptake by Lettuce Exposed to Atmospheric Fallouts. Environmental Science & Technology, 44(3), 1036-1042. doi:10.1021/es902190u | es_ES |
dc.description.references | Vasconcelos, T. G., Henriques, D. M., König, A., Martins, A. F., & Kümmerer, K. (2009). Photo-degradation of the antimicrobial ciprofloxacin at high pH: Identification and biodegradability assessment of the primary by-products. Chemosphere, 76(4), 487-493. doi:10.1016/j.chemosphere.2009.03.022 | es_ES |
dc.description.references | Wang, W. C., & Freemark, K. (1995). The Use of Plants for Environmental Monitoring and Assessment. Ecotoxicology and Environmental Safety, 30(3), 289-301. doi:10.1006/eesa.1995.1033 | es_ES |
dc.description.references | Wang, X., Sun, C., Gao, S., Wang, L., & Shuokui, H. (2001). Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere, 44(8), 1711-1721. doi:10.1016/s0045-6535(00)00520-8 | es_ES |
dc.description.references | Yang, L.-H., Ying, G.-G., Su, H.-C., Stauber, J. L., Adams, M. S., & Binet, M. T. (2008). GROWTH-INHIBITING EFFECTS OF 12 ANTIBACTERIAL AGENTS AND THEIR MIXTURES ON THE FRESHWATER MICROALGA PSEUDOKIRCHNERIELLA SUBCAPITATA. Environmental Toxicology and Chemistry, 27(5), 1201. doi:10.1897/07-471.1 | es_ES |
dc.description.references | Yuan, F., Hu, C., Hu, X., Wei, D., Chen, Y., & Qu, J. (2011). Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. Journal of Hazardous Materials, 185(2-3), 1256-1263. doi:10.1016/j.jhazmat.2010.10.040 | es_ES |
dc.description.references | Zhou, Y., Xu, Y.-B., Xu, J.-X., Zhang, X.-H., Xu, S.-H., & Du, Q.-P. (2015). Combined Toxic Effects of Heavy Metals and Antibiotics on a Pseudomonas fluorescens Strain ZY2 Isolated from Swine Wastewater. International Journal of Molecular Sciences, 16(2), 2839-2850. doi:10.3390/ijms16022839 | es_ES |
dc.description.references | Zhu, L., Santiago-Schübel, B., Xiao, H., Hollert, H., & Kueppers, S. (2016). Electrochemical oxidation of fluoroquinolone antibiotics: Mechanism, residual antibacterial activity and toxicity change. Water Research, 102, 52-62. doi:10.1016/j.watres.2016.06.005 | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |