- -

Using conceptual modeling to improve genome data management

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using conceptual modeling to improve genome data management

Mostrar el registro completo del ítem

Pastor López, O.; León-Palacio, A.; Reyes Román, JF.; García-Simón, A.; Casamayor Rodenas, JC. (2020). Using conceptual modeling to improve genome data management. Briefings in Bioinformatics. 22(1):45-54. https://doi.org/10.1093/bib/bbaa100

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165909

Ficheros en el ítem

Metadatos del ítem

Título: Using conceptual modeling to improve genome data management
Autor: Pastor López, Oscar León-Palacio, Ana REYES ROMÁN, JOSÉ FABIÁN García-Simón, Alberto Casamayor Rodenas, Juan Carlos
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] With advances in genomic sequencing technology, a large amount of data is publicly available for the research community to extract meaningful and reliable associations among risk genes and the mechanisms of disease. ...[+]
Palabras clave: Genomic data , Information systems , Framework , Case study , CSHG
Derechos de uso: Reserva de todos los derechos
Fuente:
Briefings in Bioinformatics. (issn: 1467-5463 )
DOI: 10.1093/bib/bbaa100
Editorial:
Oxford University Press
Versión del editor: https://doi.org/10.1093/bib/bbaa100
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2016-80811-P/ES/UN METODO DE PRODUCCION DE SOFTWARE DIRIGIDO POR MODELOS PARA EL DESARROLLO DE APLICACIONES BIG DATA/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F176/ES/GISPRO-GENOMIC INFORMATION SYSTEMS PRODUCTION/
Agradecimientos:
Spanish State Research Agency and the Generalitat Valenciana under the projects TIN2016-80811-P and PROMETEO/2018/176; ERDF.
Tipo: Artículo

References

McCombie, W. R., McPherson, J. D., & Mardis, E. R. (2018). Next-Generation Sequencing Technologies. Cold Spring Harbor Perspectives in Medicine, 9(11), a036798. doi:10.1101/cshperspect.a036798

Condit, C. M., Achter, P. J., Lauer, I., & Sefcovic, E. (2001). The changing meanings of ?mutation:? A contextualized study of public discourse. Human Mutation, 19(1), 69-75. doi:10.1002/humu.10023

Karki, R., Pandya, D., Elston, R. C., & Ferlini, C. (2015). Defining «mutation» and «polymorphism» in the era of personal genomics. BMC Medical Genomics, 8(1). doi:10.1186/s12920-015-0115-z [+]
McCombie, W. R., McPherson, J. D., & Mardis, E. R. (2018). Next-Generation Sequencing Technologies. Cold Spring Harbor Perspectives in Medicine, 9(11), a036798. doi:10.1101/cshperspect.a036798

Condit, C. M., Achter, P. J., Lauer, I., & Sefcovic, E. (2001). The changing meanings of ?mutation:? A contextualized study of public discourse. Human Mutation, 19(1), 69-75. doi:10.1002/humu.10023

Karki, R., Pandya, D., Elston, R. C., & Ferlini, C. (2015). Defining «mutation» and «polymorphism» in the era of personal genomics. BMC Medical Genomics, 8(1). doi:10.1186/s12920-015-0115-z

Hamid, J. S., Hu, P., Roslin, N. M., Ling, V., Greenwood, C. M. T., & Beyene, J. (2009). Data Integration in Genetics and Genomics: Methods and Challenges. Human Genomics and Proteomics, 1(1). doi:10.4061/2009/869093

Baudhuin, L. M., Biesecker, L. G., Burke, W., Green, E. D., & Green, R. C. (2019). Predictive and Precision Medicine with Genomic Data. Clinical Chemistry, 66(1), 33-41. doi:10.1373/clinchem.2019.304345

Amaral, G., & Guizzardi, G. (2019). On the Application of Ontological Patterns for Conceptual Modeling in Multidimensional Models. Lecture Notes in Computer Science, 215-231. doi:10.1007/978-3-030-28730-6_14

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. doi:10.1038/75556

Eilbeck, K., Lewis, S. E., Mungall, C. J., Yandell, M., Stein, L., Durbin, R., & Ashburner, M. (2005). Genome Biology, 6(5), R44. doi:10.1186/gb-2005-6-5-r44

Vihinen, M. (2013). Variation Ontology for annotation of variation effects and mechanisms. Genome Research, 24(2), 356-364. doi:10.1101/gr.157495.113

Köhler, S., Carmody, L., Vasilevsky, N., Jacobsen, J. O. B., Danis, D., Gourdine, J.-P., … McMurry, J. A. (2018). Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Research, 47(D1), D1018-D1027. doi:10.1093/nar/gky1105

Proceedings of the Eleventh International Conference on Data Engineering. (1995). Proceedings of the Eleventh International Conference on Data Engineering. doi:10.1109/icde.1995.380416

Okayama, T., Tamura, T., Gojobori, T., Tateno, Y., Ikeo, K., Miyazaki, S., … Sugawara, H. (1998). Formal design and implementation of an improved DDBJ DNA database with a new schema and object-oriented library. Bioinformatics, 14(6), 472-478. doi:10.1093/bioinformatics/14.6.472

Medigue, C., Rechenmann, F., Danchin, A., & Viari, A. (1999). Imagene: an integrated computer environment for sequence annotation and analysis. Bioinformatics, 15(1), 2-15. doi:10.1093/bioinformatics/15.1.2

Paton, N. W., Khan, S. A., Hayes, A., Moussouni, F., Brass, A., Eilbeck, K., … Oliver, S. G. (2000). Conceptual modelling of genomic information. Bioinformatics, 16(6), 548-557. doi:10.1093/bioinformatics/16.6.548

Vihinen, M., Hancock, J. M., Maglott, D. R., Landrum, M. J., Schaafsma, G. C. P., & Taschner, P. (2016). Human Variome Project Quality Assessment Criteria for Variation Databases. Human Mutation, 37(6), 549-558. doi:10.1002/humu.22976

Fleuren, W. W. M., & Alkema, W. (2015). Application of text mining in the biomedical domain. Methods, 74, 97-106. doi:10.1016/j.ymeth.2015.01.015

Salzberg, S. L. (2007). Genome re-annotation: a wiki solution? Genome Biology, 8(1). doi:10.1186/gb-2007-8-1-102

Rigden, D. J., & Fernández, X. M. (2018). The 26th annual Nucleic Acids Research database issue and Molecular Biology Database Collection. Nucleic Acids Research, 47(D1), D1-D7. doi:10.1093/nar/gky1267

Reyes Román, J. F., García, A., Rueda, U., & Pastor, Ó. (2019). GenesLove.Me 2.0: Improving the Prioritization of Genetic Variations. Evaluation of Novel Approaches to Software Engineering, 314-333. doi:10.1007/978-3-030-22559-9_14

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., … Rehm, H. L. (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405-423. doi:10.1038/gim.2015.30

Kelly, M. A., Caleshu, C., Morales, A., Buchan, J., Wolf, Z., … Funke, B. (2018). Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. Genetics in Medicine, 20(3), 351-359. doi:10.1038/gim.2017.218

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem